A Novel Bacterial Thiosulfate Oxidation Pathway Provides a New Clue About the Formation of Zero-Valent Sulfur in Deep Sea

Total Page:16

File Type:pdf, Size:1020Kb

A Novel Bacterial Thiosulfate Oxidation Pathway Provides a New Clue About the Formation of Zero-Valent Sulfur in Deep Sea The ISME Journal (2020) 14:2261–2274 https://doi.org/10.1038/s41396-020-0684-5 ARTICLE A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea 1,2,3,4 1,2,4 3,4,5 1,2,3,4 4,5 1,2,4 Jing Zhang ● Rui Liu ● Shichuan Xi ● Ruining Cai ● Xin Zhang ● Chaomin Sun Received: 18 December 2019 / Revised: 6 May 2020 / Accepted: 12 May 2020 / Published online: 26 May 2020 © The Author(s) 2020. This article is published with open access Abstract Zero-valent sulfur (ZVS) has been shown to be a major sulfur intermediate in the deep-sea cold seep of the South China Sea based on our previous work, however, the microbial contribution to the formation of ZVS in cold seep has remained unclear. Here, we describe a novel thiosulfate oxidation pathway discovered in the deep-sea cold seep bacterium Erythrobacter flavus 21–3, which provides a new clue about the formation of ZVS. Electronic microscopy, energy-dispersive, and Raman spectra were used to confirm that E. flavus 21–3 effectively converts thiosulfate to ZVS. We next used a combined proteomic and genetic method to identify thiosulfate dehydrogenase (TsdA) and thiosulfohydrolase (SoxB) playing key roles in the conversion of thiosulfate to ZVS. Stoichiometric results of different sulfur intermediates further clarify the function of TsdA − – – – − 1234567890();,: 1234567890();,: in converting thiosulfate to tetrathionate ( O3S S S SO3 ), SoxB in liberating sulfone from tetrathionate to form ZVS and sulfur dioxygenases (SdoA/SdoB) in oxidizing ZVS to sulfite under some conditions. Notably, homologs of TsdA, SoxB, and SdoA/SdoB widely exist across the bacteria including in Erythrobacter species derived from different environments. This strongly indicates that this novel thiosulfate oxidation pathway might be frequently used by microbes and plays an important role in the biogeochemical sulfur cycle in nature. Introduction system [2–4]. The production of ZVS is an important energy-conserving strategy for prokaryotes inhabiting these Zero-valent sulfur (ZVS) is widespread under the sea floor areas. Intimately associated with microbial cells, ZVS is [1], particularly in the cold seep and the hydrothermal regarded as a bio-signature of the activity of sulfur- oxidizing microorganisms [5–7]. The process of ZVS pro- duction begins with the formation of polysulfide, which has Supplementary information The online version of this article (https:// been implicated in a number of important geochemical doi.org/10.1038/s41396-020-0684-5) contains supplementary reactions, such as pyritization [8]. Cyclooctasulfur S8 and 2− material, which is available to authorized users. inorganic polysulfide (Sn ) are important forms of ZVS, which is a critical intermediate in the biogeochemical sulfur * Chaomin Sun [email protected] cycle [9, 10]. As a common substrate oxidized by almost all sulfur 1 CAS Key Laboratory of Experimental Marine Biology & Center lithotrophs, thiosulfate has been suggested to fulfill a key of Deep Sea Research, Institute of Oceanology, Chinese Academy role in the sulfur cycle [11]. At least three thiosulfate oxi- of Sciences, Qingdao, China dation pathways are postulated to exist in sulfur oxidizing 2 Laboratory for Marine Biology and Biotechnology, Qingdao bacteria [12, 13], and each has the possibility to form ZVS National Laboratory for Marine Science and Technology, fi Qingdao, China either extra- or intracellularly. The rst is the Sox pathway, which is governed by the conserved operon SoxXYZABCD 3 College of Earth Science, University of Chinese Academy of Sciences, Beijing, China and operates in photo- and chemo-lithotrophic alphapro- teobacteria [14, 15]. The oxidation of thiosulfate is per- 4 Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China formed via a multienzyme complex consisting of the thiosulfate-induced periplasmic proteins SoxAX, SoxYZ, 5 CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese SoxB, and SoxCD. The complete Sox pathway results in Academy of Sciences, Qingdao, China sulfate as the sole product, whereas the incomplete pathway 2262 J. Zhang et al. (with SoxCD absent) results in either intra- [16–19]or Erythrobacteraceae offer a valuable source for further stu- extracellular [20] accumulation of ZVS. However, the col- dies focused on aerobic anoxygenic phototrophic metabo- orless sulfur bacteria Thiomicrospira thermophile, which lism [34, 35], carbon cycling in the ocean [36], and have contains a complete Sox pathway, exhibits pH-dependent high potential for applications in biotechnology because thiosulfate oxidation to either extracellular ZVS and sulfate they contain important enzymes, such as epoxide hydrolase at low pH (incomplete) or sulfate only at alkaline pH [37, 38] and manganese oxydase [39]. The genus Ery- (complete) [21]. throbacter is abundant in different marine environments The second thiosulfate oxidation pathway is the tetra- [40–42] including the deep-sea cold seep where the relative thionate intermediate (S4I) pathway, which involves pro- abundance of Erythrobacter could reach 4% of the total duction and consumption of polythionate [22]. S4I is widely bacterial community [43], which strongly suggests that found in Beta- and Gammaproteobacteria, particularly the Erythrobacter plays an important ecological role in the obligate chemolithotrophic genera including Acid- deep-sea cold seep. However, to the best of our knowledge, ithiobacillus, Thiobacillus, Halothiobacillus, Thermithioba- the involvement of Erythrobacter in the oxidation of thio- cillus, and Advenella [23, 24]. The production of sulfate and other reductive sulfur compounds has not been tetrathionate is likely coupled with enzymes that subse- elucidated. quently split tetrathionate to thiosulfate, sulfate, or elemental In our previous study, a large amount of ZVS was found sulfur [25, 26]. In addition, the Betaproteobacteria Advenella in the chemosynthetic communities of the Formosa Ridge kashmirensis either oxidizes tetrathionate to sulfate or uses it cold seep in the South China Sea, suggesting that ZVS may as an intermediate during thiosulfate oxidation [27]. be a key intermediate in the sulfur cycle in the deep-sea cold The third thiosulfate oxidation pathway is branched seep [4]. However, the microbial contribution to the for- thiosulfate oxidation, comprehensively characterized in the mation of ZVS was unknown. Here, we report a novel purple sulfur bacterium Allochromatium vinosum, and this thiosulfate oxidation pathway in Erythrobacter (and other pathway involves the interaction of Sox- and S4I-related bacteria), that provides a new clue about the formation of enzyme systems [16, 28]. Under neutral or slightly acidic ZVS in the deep-sea cold seep. The key genes responsible growth conditions thiosulfate dehydrogenase (TsdA) cata- for thiosulfate oxidation and ZVS production in E. flavus lyzes some of the thiosulfate to tetrathionate, while thio- 21–3 were determined by a combination of proteomic, sulfate oxidizes to sulfate with the formation of sulfur genetic, and stoichiometric methods. The broad distribution globules through the Sox system. In conjunction with the of these genes was investigated and discussed. dissimilatory sulfite reductase system, sulfur globules are further oxidized to sulfate [29]. Sulfur oxidizing bacteria are defined as microbes that use Materials and methods reductive sulfur compounds as an energy source for growth. They are highly diverse, and include the green and purple Bacterial strains, plasmids, primers, and growth sulfur bacteria, purple non-sulfur bacteria and colorless conditions sulfur bacteria. All green sulfur bacteria belong to the phylum Chlorobi and most oxidize sulfide and ZVS to E. flavus 21–3 was isolated from sediment samples col- sulfate [20]. Purple sulfur bacteria include the families lected by RV KEXUE from the cold seep in the South China Chromatiaceae and Ectothiorhodospiraceae and produce Sea (119°17′04.956′′ E, 22°06′58.384′′N) at a depth of intra- and extracellular sulfur when grown in the presence of ~1143 m in September 2017 (Supplementary Table S1). sulfide and thiosulfate [29]. Purple non-sulfur bacteria are a The ~0.5 g sediment sample was added to 100 mL of sulfur highly diverse and heterogeneous group of bacteria [30] that producing medium (SPM). The SPM contained: 10 g prefer photoheterotrophic growth under anaerobic condi- Na2S2O·5H2O, 0.2 g K2HPO4, 1 g NaHCO3, 0.4 g NH4Cl, tions, and include many species that can grow photo- 0.6 g MgSO4, 0.001 g FeCl3, and 0.001 g MnCl2 in 1 L of autotrophically with hydrogen or sulfide as the electron sea water, and 15 g/L agar was added to make the corre- donor. The colorless sulfur bacteria are often identified as sponding solid medium. Samples were incubated at 28 °C chemolithoautotrophic, chemolihoheterotrophic, or che- with shaking at a speed of 150 rpm for 2 days. For isolation moorganoheterotrophic [31]. The famous genera in this of single colony, gradient dilutions were made before group include Thiobacillus, Acidithiobacillus, Halothioba- spread plating. Genomic DNA was extracted (water-boil- cillus, and Beggiatoa [10, 32]. ing) from the isolates, and PCR was performed to amplify The genus Erythrobacter belongs to the family Ery- the 16S rRNA gene sequence as described previously [44]. throbacteraceae, members of which have been isolated To determine the phylogenetic position of E. flavus 21–3, from seawater, tidal flats, marine sediment,
Recommended publications
  • Investigation of the Thermophilic Mechanism in the Genus
    Xu et al. BMC Genomics (2018) 19:385 https://doi.org/10.1186/s12864-018-4789-4 RESEARCHARTICLE Open Access Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis Lin Xu1,2, Yue-Hong Wu1, Peng Zhou1, Hong Cheng1, Qian Liu1 and Xue-Wei Xu1,3* Abstract Background: Type strains of the genus Porphyrobacter belonging to the family Erythrobacteraceae and the class Alphaproteobacteria have been isolated from various environments, such as swimming pools, lake water and hot springs. P. cryptus DSM 12079T and P. tepidarius DSM 10594T out of all Erythrobacteraceae type strains, are two type strains that have been isolated from geothermal environments. Next-generation sequencing (NGS) technology offers a convenient approach for detecting situational types based on protein sequence differences between thermophiles and mesophiles; amino acid substitutions can lead to protein structural changes, improving the thermal stabilities of proteins. Comparative genomic studies have revealed that different thermal types exist in different taxa, and few studies have been focused on the class Alphaproteobacteria, especially the family Erythrobacteraceae. In this study, eight genomes of Porphyrobacter strains were compared to elucidate how Porphyrobacter thermophiles developed mechanisms to adapt to thermal environments. Results: P. cryptus DSM 12079T grew optimally at 50 °C, which was higher than the optimal growth temperature of other Porphyrobacter type strains. Phylogenomic analysis of the genus Porphyrobacter revealed that P. cryptus DSM 12079T formed a distinct and independent clade. Comparative genomic studies uncovered that 1405 single-copy genes were shared by Porphyrobacter type strains. Alignments of single-copy proteins showed that various types of amino acid substitutions existed between P.
    [Show full text]
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
    antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R.
    [Show full text]
  • Proteomic Analysis of Organic Sulfur Compound Utilisation in Advenella Mimigardefordensis Strain DPN7T
    RESEARCH ARTICLE Proteomic analysis of organic sulfur compound utilisation in Advenella mimigardefordensis strain DPN7T Christina Meinert1, Ulrike Brandt1, Viktoria Heine1, Jessica Beyert1, Sina Schmidl1, Jan Hendrik WuÈbbeler1, Birgit Voigt2, Katharina Riedel2, Alexander SteinbuÈchel1,3* 1 Institut fuÈr Molekulare Mikrobiologie und Biotechnologie, WestfaÈlische Wilhelms-UniversitaÈt, MuÈnster, Germany, 2 Institut fuÈr Mikrobiologie, Ernst-Moritz-Arndt-UniversitaÈt, Greifswald, Germany, 3 Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 2-Mercaptosuccinate (MS) and 3,3Â-ditiodipropionate (DTDP) were discussed as precursor substance for production of polythioesters (PTE). Therefore, degradation of MS and DTDP was investigated in Advenella mimigardefordensis strain DPN7T, applying differential prote- OPEN ACCESS omic analysis, gene deletion and enzyme assays. Protein extracts of cells cultivated with MS, DTDP or 3-sulfinopropionic acid (SP) were compared with those cultivated with propio- Citation: Meinert C, Brandt U, Heine V, Beyert J, Schmidl S, WuÈbbeler JH, et al. (2017) Proteomic nate (P) and/or succinate (S). The chaperone DnaK (ratio DTDP/P 9.2, 3SP/P 4.0, MS/S analysis of organic sulfur compound utilisation in 6.1, DTDP/S 6.2) and a Do-like serine protease (DegP) were increased during utilization of T Advenella mimigardefordensis strain DPN7 . PLoS all organic sulfur compounds. Furthermore, a putative bacterioferritin (locus tag ONE 12(3): e0174256. https://doi.org/10.1371/ journal.pone.0174256 MIM_c12960) showed high abundance (ratio DTDP/P 5.3, 3SP/P 3.2, MS/S 4.8, DTDP/S 3.9) and is probably involved in a thiol-specific stress response.
    [Show full text]
  • Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations
    fmicb-09-02879 December 1, 2018 Time: 14:0 # 1 ORIGINAL RESEARCH published: 04 December 2018 doi: 10.3389/fmicb.2018.02879 Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations Klervi Crenn, Delphine Duffieux and Christian Jeanthon* CNRS, Sorbonne Université, Station Biologique de Roscoff, Adaptation et Diversité en Milieu Marin, Roscoff, France Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. The cosmopolitan diatoms Thalassiosira and Chaetoceros often dominate phytoplankton communities in marine systems. Past studies of diatom-bacterial associations have employed community- level methods and culture-based or natural diatom populations. Although bacterial assemblages attached to individual diatoms represents tight associations little is known on their makeup or interactions. Here, we examined the epibiotic bacteria of 436 Thalassiosira and 329 Chaetoceros single cells isolated from natural samples and Edited by: collection cultures, regarded here as short- and long-term associations, respectively. Matthias Wietz, Epibiotic microbiota of single diatom hosts was analyzed by cultivation and by cloning- Alfred Wegener Institut, Germany sequencing of 16S rRNA genes obtained from whole-genome amplification products. Reviewed by: The prevalence of epibiotic bacteria was higher in cultures and dependent of the host Lydia Jeanne Baker, Cornell University, United States species. Culture approaches demonstrated that both diatoms carry distinct bacterial Bryndan Paige Durham, communities in short- and long-term associations. Bacterial epibonts, commonly University of Washington, United States associated with phytoplankton, were repeatedly isolated from cells of diatom collection *Correspondence: cultures but were not recovered from environmental cells.
    [Show full text]
  • Nitrogen-Fixing, Photosynthetic, Anaerobic Bacteria Associated with Pelagic Copepods
    - AQUATIC MICROBIAL ECOLOGY Vol. 12: 105-113. 1997 Published April 10 , Aquat Microb Ecol Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods Lita M. Proctor Department of Oceanography, Florida State University, Tallahassee, Florida 32306-3048, USA ABSTRACT: Purple sulfur bacteria are photosynthetic, anaerobic microorganisms that fix carbon di- oxide using hydrogen sulfide as an electron donor; many are also nitrogen fixers. Because of the~r requirements for sulfide or orgamc carbon as electron donors in anoxygenic photosynthesis, these bac- teria are generally thought to be lim~tedto shallow, organic-nch, anoxic environments such as subtidal marine sediments. We report here the discovery of nitrogen-fixing, purple sulfur bactena associated with pelagic copepods from the Caribbean Sea. Anaerobic incubations of bacteria associated with fuU- gut and voided-gut copepods resulted in enrichments of purple/red-pigmented purple sulfur bacteria while anaerobic incubations of bacteria associated with fecal pellets did not yield any purple sulfur bacteria, suggesting that the photosynthetic anaerobes were specifically associated with copepods. Pigment analysis of the Caribbean Sea copepod-associated bacterial enrichments demonstrated that these bactena possess bacter~ochlorophylla and carotenoids in the okenone series, confirming that these bacteria are purple sulfur bacteria. Increases in acetylene reduction paralleled the growth of pur- ple sulfur bactena in the copepod ennchments, suggesting that the purple sulfur bacteria are active nitrogen fixers. The association of these bacteria with planktonic copepods suggests a previously unrecognized role for photosynthetic anaerobes in the marine S, N and C cycles, even in the aerobic water column of the open ocean. KEY WORDS: Manne purple sulfur bacterla .
    [Show full text]
  • Article-Associated Bac- Teria and Colony Isolation in Soft Agar Medium for Bacteria Unable to Grow at the Air-Water Interface
    Biogeosciences, 8, 1955–1970, 2011 www.biogeosciences.net/8/1955/2011/ Biogeosciences doi:10.5194/bg-8-1955-2011 © Author(s) 2011. CC Attribution 3.0 License. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea C. Jeanthon1,2, D. Boeuf1,2, O. Dahan1,2, F. Le Gall1,2, L. Garczarek1,2, E. M. Bendif1,2, and A.-C. Lehours3 1Observatoire Oceanologique´ de Roscoff, UMR7144, INSU-CNRS – Groupe Plancton Oceanique,´ 29680 Roscoff, France 2UPMC Univ Paris 06, UMR7144, Adaptation et Diversite´ en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France 3CNRS, UMR6023, Microorganismes: Genome´ et Environnement, Universite´ Blaise Pascal, 63177 Aubiere` Cedex, France Received: 21 April 2011 – Published in Biogeosciences Discuss.: 5 May 2011 Revised: 7 July 2011 – Accepted: 8 July 2011 – Published: 20 July 2011 Abstract. Aerobic anoxygenic phototrophic (AAP) bac- detected in the eastern basin, reflecting the highest diver- teria play significant roles in the bacterioplankton produc- sity of pufM transcripts observed in this ultra-oligotrophic tivity and biogeochemical cycles of the surface ocean. In region. To our knowledge, this is the first study to document this study, we applied both cultivation and mRNA-based extensively the diversity of AAP isolates and to unveil the ac- molecular methods to explore the diversity of AAP bacte- tive AAP community in an oligotrophic marine environment. ria along an oligotrophic gradient in the Mediterranean Sea By pointing out the discrepancies between culture-based and in early summer 2008. Colony-forming units obtained on molecular methods, this study highlights the existing gaps in three different agar media were screened for the production the understanding of the AAP bacteria ecology, especially in of bacteriochlorophyll-a (BChl-a), the light-harvesting pig- the Mediterranean Sea and likely globally.
    [Show full text]
  • Kinetics and Mechanism of Polythionate Oxidation to Sulfate at Low Ph by O2 and Fe3+
    Geochimica et Cosmochimica Acta, Vol. 67, No. 23, pp. 4457–4469, 2003 Copyright © 2003 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/03 $30.00 ϩ .00 doi:10.1016/S0016-7037(03)00388-0 3؉ Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2 and Fe 1, 2 1,2 GREGORY K. DRUSCHEL, *ROBERT J. HAMERS, and JILLIAN F. BANFIELD † 1Departments of Geology and Geophysics and 2Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA (Received October 16, 2002; accepted in revised form May 30, 2003) 2Ϫ Abstract—Polythionates (SxO6 ) are important in redox transformations involving many sulfur compounds. Here we investigate the oxidation kinetics and mechanisms of trithionate and tetrathionate oxidation between pH 0.4 and pH 2 in the presence of Fe3ϩ and/or oxygen. In these solutions, Fe3ϩ plus oxygen oxidizes tetrathionate and trithionate at least an order of magnitude faster than oxygen alone. Kinetic measurements, coupled with density functional calculations, suggest that the rate-limiting step for tetrathionate oxidation involves Fe3ϩ attachment, followed by electron density shifts that result in formation of a sulfite radical and 0 S3O3 derivatives. The overall reaction orders for trithionate and tetrathionate are fractional due to rearrange- ment reactions and side reactions between reactants and intermediate products. The pseudo-first order rate coefficients for tetrathionate range from 10Ϫ11 sϪ1 at 25°C to 10Ϫ8 sϪ1 at 70°C, compared to 2 ϫ 10Ϫ7 sϪ1 Ϯ at 35 °C for trithionate. The apparent activation energy (EA) for tetrathionate oxidation at pH 1.5 is 104.5 4.13 kJ/mol.
    [Show full text]
  • Biodiversity of Microorganisms Colonizing the Surface of Polystyrene Samples Exposed to Different Aqueous Environments
    sustainability Article Biodiversity of Microorganisms Colonizing the Surface of Polystyrene Samples Exposed to Different Aqueous Environments Tatyana Tourova 1, Diyana Sokolova 1, Tamara Nazina 1,* , Denis Grouzdev 2 , Eugeni Kurshev 3 and Anatoly Laptev 3 1 Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] (T.T.); [email protected] (D.S.) 2 Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 3 Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials”, State Research Center of the Russian Federation, 105005 Moscow, Russia; [email protected] (E.K.); [email protected] (A.L.) * Correspondence: [email protected]; Tel.: +7-499-135-03-41 Received: 25 March 2020; Accepted: 29 April 2020; Published: 30 April 2020 Abstract: The contamination of marine and freshwater ecosystems with the items from thermoplastics, including polystyrene (PS), necessitates the search for efficient microbial degraders of these polymers. In the present study, the composition of prokaryotes in biofilms formed on PS samples incubated in seawater and the industrial water of a petrochemical plant were investigated. Using a high-throughput sequencing of the V3–V4 region of the 16S rRNA gene, the predominance of Alphaproteobacteria (Blastomonas), Bacteroidetes (Chryseolinea), and Gammaproteobacteria (Arenimonas and Pseudomonas) in the biofilms on PS samples exposed to industrial water was revealed. Alphaproteobacteria (Erythrobacter) predominated on seawater-incubated PS samples. The local degradation of the PS samples was confirmed by scanning microscopy. The PS-colonizing microbial communities in industrial water differed significantly from the PS communities in seawater.
    [Show full text]
  • Downloaded from the NCBI Genome Portal (Table S1)
    J. Microbiol. Biotechnol. 2021. 31(4): 601–609 https://doi.org/10.4014/jmb.2012.12054 Review Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M Sang-Hyeok Cho1, Yujin Jeong1, Eunju Lee1, So-Ra Ko3, Chi-Yong Ahn3, Hee-Mock Oh3, Byung-Kwan Cho1,2*, and Suhyung Cho1,2* 1Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea 2KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea 3Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pan- genome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species.
    [Show full text]
  • Sulphate-Reducing Bacteria's Response to Extreme Ph Environments and the Effect of Their Activities on Microbial Corrosion
    applied sciences Review Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion Thi Thuy Tien Tran 1 , Krishnan Kannoorpatti 1,* , Anna Padovan 2 and Suresh Thennadil 1 1 Energy and Resources Institute, College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, NT 0909, Australia; [email protected] (T.T.T.T.); [email protected] (S.T.) 2 Research Institute for the Environment and Livelihoods, College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, NT 0909, Australia; [email protected] * Correspondence: [email protected] Abstract: Sulphate-reducing bacteria (SRB) are dominant species causing corrosion of various types of materials. However, they also play a beneficial role in bioremediation due to their tolerance of extreme pH conditions. The application of sulphate-reducing bacteria (SRB) in bioremediation and control methods for microbiologically influenced corrosion (MIC) in extreme pH environments requires an understanding of the microbial activities in these conditions. Recent studies have found that in order to survive and grow in high alkaline/acidic condition, SRB have developed several strategies to combat the environmental challenges. The strategies mainly include maintaining pH homeostasis in the cytoplasm and adjusting metabolic activities leading to changes in environmental pH. The change in pH of the environment and microbial activities in such conditions can have a Citation: Tran, T.T.T.; Kannoorpatti, significant impact on the microbial corrosion of materials. These bacteria strategies to combat extreme K.; Padovan, A.; Thennadil, S. pH environments and their effect on microbial corrosion are presented and discussed.
    [Show full text]
  • The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
    life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment.
    [Show full text]