I. General Introduction

Total Page:16

File Type:pdf, Size:1020Kb

I. General Introduction SECTION 3 ACIDITHIOBACILLUS I. General Introduction This document presents information that is accepted in the literature about the known characteristics of bacteria in the genus Acidithiobacillus. Regulatory officials may find the technical information useful in evaluating properties of micro-organisms that have been derived for various environmental applications. Consequently, this document provides a wide range of information without prescribing when the information would or would not be relevant to a specific risk assessment. The document represents a snapshot of current information (end-2002) that may be potentially relevant to such assessments. In considering information that should be presented on this taxonomic grouping, the Task Group on Micro-organisms has discussed the list of topics presented in the “Blue Book” (i.e. Recombinant DNA Safety Considerations (OECD, 1986)) and attempted to pare down that list to eliminate duplications as well as those topics whose meaning is unclear, and to rearrange the presentation of the topics covered to be more easily understood (the Task Group met in Vienna, 15-16 June, 2000). This document is a first draft of a proposed Consensus Document for environmental applications involving organisms from the genus Acidithiobacillus. II. General Considerations 1. Subject of Document: Species Included and Taxonomic Considerations The four species of Acidithiobacillus covered in this document were formerly placed in the genus Thiobacillus Beijerinck. In recent years several members of Thiobacillus were transferred to other genera while the remainder became part of three newly created genera, Acidithiobacillus, Halothiobacillus, Thermithiobacillus, and to the revised genus Thiobacillus sensu stricto (Kelly and Harrison, 1989; Kelly and Wood, 2000). The reassignment to these three newly designated genera was based on physiological characteristics and 16S rRNA gene sequence comparisons (Kelly and Wood, 2000). Acidithiobacillus contains two species (A. ferrooxidans and A. thiooxidans) of the original genus Thiobacillus that have the potential to cause significant ecological damage. Two other species have been reassigned to this new genus, A. caldus and A. albertensis. All these species have been, or are likely to be, employed in various biotechnological applications in the environment. 2. Characteristics of the Organism: Identification and the Methods Used to Identify the Organism A. Characterisation of the genus Acidithiobacillus The genus was established by Kelly and Wood (2000), with A. thiooxidans (formerly Thiobacillus thiooxidans) as the type species. The four species included in the genus are Gram-negative, rod-shaped (0.4 x 2.0 µm), motile with one or two flagella, and possess the ability to use reduced sulphur compounds as electron donor for autotrophic growth, in common with various other unrelated “sulphur bacteria” (Kelly and Harrison, 1989; Kuenen et al., 1992). As with other Thiobacillus species now redistributed, members of this genus are distinguished morphologically from other colourless sulphur bacteria by 394 Section 3 - Acidithiobacillus forming external rather than internal sulphur particles (Kuenen, 1989). They are strictly aerobic and obligately acidophilic (optimum pH < 4.0). Some species oxidise ferrous iron and hydrogen (Table 4.12) or use natural and synthetic metal sulphides to generate energy, while one species (A. ferrooxidans) can oxidise iron. The optimum temperature ranges from 30-35 OC for mesophilic species to 45 OC for moderately thermophilic species. All of the species contain ubiquinone Q-8, and the G+C content of the DNA is 52-64 mol %. Thiobacillus sensu stricto now contains only species belonging to the β-subclass of the Proteobacteria, but Acidithiobacillus, together with Halothiobacillus and Thermithiobacillus, have been assigned to the γ-subclass (Kelly and Wood, 2000). A full account of the genus is given in the section contributed by Kelly and Wood (2005) in the 2nd edition of Bergey’s Manual of Systematic Bacteriology. B. Differentiation of Acidithiobacillus from related taxa Members of the genus are distinguished by their obligate acidophilic nature (pH < 4.0) and possession of ubiquinone Q-8. C. Characters used in classification Phenotypic characters Many of the phenotypic characters of Acidithiobacillus such as the rod-like shape, motility, Gram- negative reaction and utilisation of sulphur compounds are shared in common with species formerly placed in Thiobacillus. These characters are useful for broad recognition but no longer for critical identification. Mol% G+C content The determination of the mol % G+C content of the DNA of bacterial isolates has been used for a long time to determine whether strains could be related to each other. It is to some extent, a negative test. While widely differing G+C values can suggest that two isolates are not related, matching G+C values do not guarantee that they are the same. G+C values for the four species of Acidithiobacillus are, however, often sufficiently far apart to serve as useful species characteristics. Ubiquinones and cellular fatty acid analysis Lane et al. (1985) determined that there was a correlation between ubiquinone type and physiological behaviour. Katayama-Fujimura et al. (1982) used types of ubiquinones and the DNA base composition to differentiate 11 species of the former genus Thiobacillus. The association between species and ubiquinone type was constant except for T. perometabolis, one strain having 8 and the other 10-isoprene units. Species presently assigned to Acidithiobacillus all possessed eight units. The strain of A. ferrooxidans examined by the later authors was unique in that it had ubiquinones with 9 as well as 8 isoprene units. Nucleotide structure 5S rRNA sequences were obtained for thirteen species of the original genus Thiobacillus (Lane et al., 1985, 1992) and these sequences were shown to be distinct for each species. Similarities within the sequences also enabled the species also to be assigned to the α, β or γ groups of the four groups of Proteobacteria, the last group including species of Acidithiobacillus. DNA homologies DNA hybridisation studies on A. ferrooxidans and A. thiooxidans, together with Thiobacillus thioparus and five bacteria formerly placed in Thiobacillus (Huber and Stetter, 1989, 1990) established the value of these tests because they showed that there was usually a high degree of homology (>70%) between strains of the same species. 395 Part 4 – Consensus Documents on Micro-Organism Table 4.12 Acidithiobacillus : Characters used in classification Species Optimum pHa pH range Optimum Temperature Ubiquinone Mol % Subclass of References temperature range G+C Proteobacteria Strictly chemolithotrophic and autotrophic Acidithiobacillus albertensis 3.5-4.0 2.0-4.5 28-30 ND Q-8 61-62 ND b, c Acidithiobacillus 2.0-2.5 1.3-4.5 30-35 2-37 Q-8 58-59 γ b, d, e ferrooxidans Acidithiobacillus 2.0-3.0 0.5-5.5 28-30 10-37 Q-8 52 γ b, f thiooxidans Facultatively chemolithotrophic or mixotrophic with tetrathionate Acidithiobacillus caldus1 2-2.5 1-3.5 45 32-52 Q-8 63-64 γ g ND: not determined 1Moderately thermophilic aKatayama-Fujimura et al. (1982); bKelly and Harrison (1989)); cBryant et al. (1983); dLeduc and Ferroni (1994); eMcCready (1988); fFliermans and Brock (1972); gHallberg and Lindstrom (1994). 396 Section 3 - Acidithiobacillus D. Comments on the species Acidithiobacillus albertensis Syn. Thiobacillus albertensis (Bryant et al., 1983; Kelly and Harrison, 1989; Kelly and Wood, 2000). This species is distinguished morphologically by a tuft of polar flagella and a glycocalyx extending outwards from the outer membrane of the bacterial cell envelope and which is used to attach itself to elemental sulphur (Bryant et al., 1983). These features together with the relatively high G+C content of the DNA, differentiate this species from the other three (Kelly and Wood, 2000). It has been tentatively assigned to Acidithiobacillus because a 16S rRNA sequence for the species is not yet available (Kelly and Wood, 2005). Acidithiobacillus caldus Syn. Thiobacillus caldus (Hallberg and Lindstrom, 1994; Kelly and Harrison, 1989; Kelly and Wood, 2000). This species is distinguished by extremely short rod-shaped cells, each with a single polar flagellum (Hallberg and Lindstrom, 1994), and by its moderately thermophilic nature. It cannot oxidise sulphidic ores, but it may be found associated with others involved in leaching. It is facultatively rather than obligately chemolithotrophic. A specific, fast and sensitive non-radioactive immuno-binding assay had been used for the detection and enumeration of this species (Amaro et al., 1994). Chemiluminescence or peroxidase-conjugated immunoglobulins are employed in a dot or slot blotting system. This method is very convenient for monitoring bioleaching micro-organisms in effluents from industrial bioleaching processes. Acidithiobacillus ferrooxidans Syn. Thiobacillus ferrooxidans (Temple and Colmer, 1951; Kelly and Harrison, 1989; Kelly and Wood, 2000). Morphologically this species appears to be distinguished by a single coiled flagellum in mature cells (Gonzalez and Cotoras, 1987). Also, this is the only species in the genus so far to be able to utilise iron as well as sulphur. Serological and electrophoretic methods have been employed for the rapid detection of isolates of A. ferrooxidans and the differentiation of strains (Jerez et al., 1986). Different serotypes, characterised by specific lipopolysaccharide banding patterns
Recommended publications
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera
    Microbiol. Cult. Coll. June 2003. p. 13 ─ 21 Vol. 19, No. 1 Polyamine Profiles of Some Members of the Alpha Subclass of the Class Proteobacteria: Polyamine Analysis of Twenty Recently Described Genera Koei Hamana1)*,Azusa Sakamoto1),Satomi Tachiyanagi1), Eri Terauchi1)and Mariko Takeuchi2) 1)Department of Laboratory Sciences, School of Health Sciences, Faculty of Medicine, Gunma University, 39 ─ 15 Showa-machi 3 ─ chome, Maebashi, Gunma 371 ─ 8514, Japan 2)Institute for Fermentation, Osaka, 17 ─ 85, Juso-honmachi 2 ─ chome, Yodogawa-ku, Osaka, 532 ─ 8686, Japan Cellular polyamines of 41 newly validated or reclassified alpha proteobacteria belonging to 20 genera were analyzed by HPLC. Acetic acid bacteria belonging to the new genus Asaia and the genera Gluconobacter, Gluconacetobacter, Acetobacter and Acidomonas of the alpha ─ 1 sub- group ubiquitously contained spermidine as the major polyamine. Aerobic bacteriochlorophyll a ─ containing Acidisphaera, Craurococcus and Paracraurococcus(alpha ─ 1)and Roseibium (alpha-2)contained spermidine and lacked homospermidine. New Rhizobium species, including some species transferred from the genera Agrobacterium and Allorhizobium, and new Sinorhizobium and Mesorhizobium species of the alpha ─ 2 subgroup contained homospermidine as a major polyamine. Homospermidine was the major polyamine in the genera Oligotropha, Carbophilus, Zavarzinia, Blastobacter, Starkeya and Rhodoblastus of the alpha ─ 2 subgroup. Rhodobaca bogoriensis of the alpha ─ 3 subgroup contained spermidine. Within the alpha ─ 4 sub- group, the genus Sphingomonas has been divided into four clusters, and species of the emended Sphingomonas(cluster I)contained homospermidine whereas those of the three newly described genera Sphingobium, Novosphingobium and Sphingopyxis(corresponding to clusters II, III and IV of the former Sphingomonas)ubiquitously contained spermidine.
    [Show full text]
  • Phosphorus Recovery from Sewage Sludge Using Acidithiobacilli
    International Journal of Environmental Research and Public Health Article Phosphorus Recovery from Sewage Sludge Using Acidithiobacilli Surendra K. Pradhan 1,* , Helvi Heinonen-Tanski 1, Anna-Maria Veijalainen 1, Sirpa Peräniemi 2 and Eila Torvinen 1 1 Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; helvi.heinonentanski@uef.fi (H.H.-T.); anna-maria.veijalainen@uef.fi (A.-M.V.); eila.torvinen@uef.fi (E.T.) 2 Department of Pharmacy, University of Eastern Finland, FI-70211 Kuopio, Finland; sirpa.peraniemi@uef.fi * Correspondence: surendra.pradhan@uef.fi Abstract: Sewage sludge contains a significant amount of phosphorus (P), which could be recycled to address the global demand for this non-renewable, important plant nutrient. The P in sludge can be solubilized and recovered so that it can be recycled when needed. This study investigated the P solubilization from sewage sludge using Acidithiobacillus thiooxidans and Acidithiobacillus ferroox- idans. The experiment was conducted by mixing 10 mL of sewage sludge with 90 mL of different water/liquid medium/inoculum and incubated at 30 ◦C. The experiment was conducted in three semi-continuous phases by replacing 10% of the mixed incubated medium with fresh sewage sludge. In addition, 10 g/L elemental sulfur (S) was supplemented into the medium in the third phase. The pH of the A. thiooxidans and A. ferrooxidans treated sludge solutions was between 2.2 and 6.3 until day 42. In phase 3, after supplementing with S, the pH of A. thiooxidans treated sludge was reduced to 0.9, Citation: Pradhan, S.K.; which solubilized and extracted 92% of P.
    [Show full text]
  • Rubisco POSTER 2016 MACUB
    Direct PCR Detection, Cloning, and Characterization of Bacterial RubisCO Genes from New Jersey Soils Stephanie Zapata*, Anna Gonzalez, Margarita Kulko, Ryan Kim, Theranda Jashari, Aidan Holwerda, Tina Choe, and Luis Jimenez Department of Biology and Horticulture, Bergen Community College, Paramus, New Jersey, USA Abstract Materials and Methods Ribulose-1,5-bisphosphate carboxylase/oxygenase, commonly known by PCR detection of bacterial RubisCO genes in soil the abbreviation RubisCO, is an enzyme involved in the first major step of Cloning libraries carbon fixation, a process by which atmospheric carbon dioxide is The DNA fragments from the PCR amplification of RubisCO converted by bacteria to energy-rich molecules such as glucose. genes were cloned using plasmid pCR®4-TOPO (Life Microbial DNA was extracted from temperate soils using the Zymo Technologies, Thermo Fisher Scientific, Grand Island, NY) Microbe DNA MiniPrep protocol. RubisCo gene sequences were according to the manufacturer’s instructions. Transformations amplified by PCR using degenerate primers cbbLG1F and cbbLG1R. were performed using Mix and Go Competent E. coli strains DNA fragments of approximately 800 base pair were detected in all positive soil samples. Clone libraries were constructed with the amplified (Zymo Research, Irvine, CA). White colonies grown on Luria ç800 bp DNA fragments by ligating the detected fragments with vector pCR®4- Bertani (LB) Agar with ampicillin (50 ug/ml) were transferred to LB TOPO. Transformations were performed using competent Mix and Go broth containing ampicillin (50 ug/ml). Samples were incubated Escherichia coli cells. Plasmids were isolated from each clone using the overnight at 37°C. Zyppy Plasmid Miniprep and inserts were screened by PCR using M13 Plasmids were isolated from each clone using the Zyppy Plasmid DNA primers.
    [Show full text]
  • A Survey of Carbon Fixation Pathways Through a Quantitative Lens
    Journal of Experimental Botany, Vol. 63, No. 6, pp. 2325–2342, 2012 doi:10.1093/jxb/err417 Advance Access publication 26 December, 2011 REVIEW PAPER A survey of carbon fixation pathways through a quantitative lens Arren Bar-Even, Elad Noor and Ron Milo* Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel * To whom correspondence should be addressed. E-mail: [email protected] Received 15 August 2011; Revised 4 November 2011; Accepted 8 November 2011 Downloaded from Abstract While the reductive pentose phosphate cycle is responsible for the fixation of most of the carbon in the biosphere, it http://jxb.oxfordjournals.org/ has several natural substitutes. In fact, due to the characterization of three new carbon fixation pathways in the last decade, the diversity of known metabolic solutions for autotrophic growth has doubled. In this review, the different pathways are analysed and compared according to various criteria, trying to connect each of the different metabolic alternatives to suitable environments or metabolic goals. The different roles of carbon fixation are discussed; in addition to sustaining autotrophic growth it can also be used for energy conservation and as an electron sink for the recycling of reduced electron carriers. Our main focus in this review is on thermodynamic and kinetic aspects, including thermodynamically challenging reactions, the ATP requirement of each pathway, energetic constraints on carbon fixation, and factors that are expected to limit the rate of the pathways. Finally, possible metabolic structures at Weizmann Institute of Science on July 3, 2016 of yet unknown carbon fixation pathways are suggested and discussed.
    [Show full text]
  • Comparative Genome Analysis of Acidithiobacillus Ferrooxidans, A
    Hydrometallurgy 94 (2008) 180–184 Contents lists available at ScienceDirect Hydrometallurgy journal homepage: www.elsevier.com/locate/hydromet Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: Insights into their metabolism and ecophysiology Jorge Valdés 1, Inti Pedroso, Raquel Quatrini, David S. Holmes ⁎ Center for Bioinformatics and Genome Biology, Life Science Foundation, MIFAB and Andrés Bello University, Santiago, Chile ARTICLE INFO ABSTRACT Available online 2 July 2008 Draft genome sequences of Acidthiobacillus thiooxidans and A. caldus have been annotated and compared to the previously annotated genome of A. ferrooxidans. This has allowed the prediction of metabolic and Keywords: regulatory models for each species and has provided a unique opportunity to undertake comparative Acidithiobacillus genomic studies of this group of related bioleaching bacteria. In this paper, the presence or absence of Bioinformatics predicted genes for eleven metabolic processes, electron transfer pathways and other phenotypic Comparative genomics fi Metabolic integration characteristics are reported for the three acidithiobacilli: CO2 xation, the TCA cycle, sulfur oxidation, sulfur reduction, iron oxidation, iron assimilation, quorum sensing via the acyl homoserine lactone mechanism, hydrogen oxidation, flagella formation, Che signaling (chemotaxis) and nitrogen fixation. Predicted transcriptional and metabolic interplay between pathways pinpoints possible coordinated responses to environmental signals such as energy source, oxygen and nutrient limitations. The predicted pathway for nitrogen fixation in A. ferrooxidans will be described as an example of such an integrated response. Several responses appear to be especially characteristic of autotrophic microorganisms and may have direct implications for metabolic processes of critical relevance to the understanding of how these microorganisms survive and proliferate in extreme environments, including industrial bioleaching operations.
    [Show full text]
  • 1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
    Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds.
    [Show full text]
  • Acidithiobacillus Ferrooxidans for Biotechnological Applications
    Engineering and Characterization of Acidithiobacillus ferrooxidans for Biotechnological Applications Xiaozheng Li Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Xiaozheng Li All rights reserved ABSTRACT Engineering and Characterization of Acidithiobacillus ferrooxidans for Biotechnology Applications Xiaozheng Li Acidithiobacillus ferrooxidans is a gram-negative bacterium that is able to extract energy from oxidation of Fe 2+ and reduced sulfur compounds and fix carbon dioxide from atmosphere. The facts that A. ferrooxidans thrives in acidic pH (~2), fixes carbon dioxide from the atmosphere and oxidizes Fe 2+ for energy make it a good candidate in many industrial applications such as electrofuels and biomining. Electrofuels is a new type of bioprocess, which aims to store electrical energy, such as solar power, in the form of chemical bonds in the liquid fuels. Unlike traditional biofuels made from agricultural feedstocks, electrofuels bypass the inefficient photosynthesis process and thus have potentially higher photon-to-fuel efficiency than traditional biofuels. This thesis covers the development of a novel bioprocess involving A. ferrooxidans to make electrofuels, i.e. isobutyric acid and heptadecane. There are four major steps: characterization of wild-type cells, engineering of medium for improved electrochemical performance, genetic modification of A. ferrooxidans and optimization of operating conditions to enhance biofuel production. Each is addressed in one of the chapters in this thesis. In addition, applications of A. ferrooxidans in biomining processes will be briefly discussed. An economic analysis of various applications including electrofuels and biomining is also presented. Wild-type A.
    [Show full text]
  • Microbial Ecology of Biofiltration Units Used for the Desulfurization of Biogas
    chemengineering Review Microbial Ecology of Biofiltration Units Used for the Desulfurization of Biogas Sylvie Le Borgne 1,* and Guillermo Baquerizo 2,3 1 Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana- Unidad Cuajimalpa, 05348 Ciudad de México, Mexico 2 Irstea, UR REVERSAAL, F-69626 Villeurbanne CEDEX, France 3 Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, 72810 San Andrés Cholula, Puebla, Mexico * Correspondence: [email protected]; Tel.: +52–555–146–500 (ext. 3877) Received: 1 May 2019; Accepted: 28 June 2019; Published: 7 August 2019 Abstract: Bacterial communities’ composition, activity and robustness determines the effectiveness of biofiltration units for the desulfurization of biogas. It is therefore important to get a better understanding of the bacterial communities that coexist in biofiltration units under different operational conditions for the removal of H2S, the main reduced sulfur compound to eliminate in biogas. This review presents the main characteristics of sulfur-oxidizing chemotrophic bacteria that are the base of the biological transformation of H2S to innocuous products in biofilters. A survey of the existing biofiltration technologies in relation to H2S elimination is then presented followed by a review of the microbial ecology studies performed to date on biotrickling filter units for the treatment of H2S in biogas under aerobic and anoxic conditions. Keywords: biogas; desulfurization; hydrogen sulfide; sulfur-oxidizing bacteria; biofiltration; biotrickling filters; anoxic biofiltration; autotrophic denitrification; microbial ecology; molecular techniques 1. Introduction Biogas is a promising renewable energy source that could contribute to regional economic growth due to its indigenous local-based production together with reduced greenhouse gas emissions [1].
    [Show full text]
  • Molecular Systematics of the Genus Acidithiobacillus: Insights Into the Phylogenetic Structure and Diversification of the Taxon
    ORIGINAL RESEARCH published: 19 January 2017 doi: 10.3389/fmicb.2017.00030 Molecular Systematics of the Genus Acidithiobacillus: Insights into the Phylogenetic Structure and Diversification of the Taxon Harold Nuñez 1 †, Ana Moya-Beltrán 1, 2 †, Paulo C. Covarrubias 1, Francisco Issotta 1, Juan Pablo Cárdenas 3, Mónica González 1, Joaquín Atavales 1, Lillian G. Acuña 1, D. Barrie Johnson 4* and Raquel Quatrini 1* 1 Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile, 2 Faculty of Biological Sciences, Andres Bello University, Santiago, Chile, 3 uBiome, Inc., San Francisco, CA, USA, 4 College of Natural Sciences, Bangor University, Bangor, UK The acidithiobacilli are sulfur-oxidizing acidophilic bacteria that thrive in both natural and anthropogenic low pH environments. They contribute to processes that lead to the generation of acid rock drainage in several different geoclimatic contexts, and their Edited by: Jesse G. Dillon, properties have long been harnessed for the biotechnological processing of minerals. California State University, Long Presently, the genus is composed of seven validated species, described between 1922 Beach, USA and 2015: Acidithiobacillus thiooxidans, A. ferrooxidans, A. albertensis, A. caldus, A. Reviewed by: Daniel Seth Jones, ferrivorans, A. ferridurans, and A. ferriphilus. However, a large number of Acidithiobacillus University of Minnesota, USA strains and sequence clones have been obtained from a variety of ecological niches over Stephanus Nicolaas Venter, the years, and many isolates are thought to vary in phenotypic properties and cognate University of Pretoria, South Africa genetic traits. Moreover, many isolates remain unclassified and several conflicting specific *Correspondence: D. Barrie Johnson assignments muddle the picture from an evolutionary standpoint.
    [Show full text]
  • The Diversity of Cultivable Hydrocarbon-Degrading Bacteria Isolated from Crude Oil Contaminated Soil and Sludge from Arzew Refinery in Algeria
    THE DIVERSITY OF CULTIVABLE HYDROCARBON-DEGRADING BACTERIA ISOLATED FROM CRUDE OIL CONTAMINATED SOIL AND SLUDGE FROM ARZEW REFINERY IN ALGERIA Sonia SEKKOUR1*, Abdelkader BEKKI1, Zoulikha BOUCHIBA1, Timothy M. Vogel2, Elisabeth NAVARRO2 Address(es): Ing. Sonia SEKKOUR PhD., 1Université Ahmed Benbella, Faculté des sciences de la nature et de la vie, Département de Biotechnologie, Laboratoire de biotechnologie des rhizobiums et amélioration des plantes, 31000 Oran, Algérie. 2Environmental Microbial Genomics Group, Laboratoire Ampère, Centre National de la Recherche Scientifique, UMR5005, Institut National de la Recherche Agronomique, USC1407, Ecole Centrale de Lyon, Université de Lyon, Ecully, France. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2019.9.1.70-77 ARTICLE INFO ABSTRACT Received 27. 3. 2018 The use of autochtonious bacterial strains is a valuable bioremediation strategy for cleaning the environment from hydrocarbon Revised 19. 2. 2019 pollutants. The isolation, selection and identification of hydrocarbon-degrading bacteria is therefore crucial for obtaining the most Accepted 14. 3. 2019 promising strains for decontaminate a specific site. In this study, two different media, a minimal medium supplemented with petroleum Published 1. 8. 2019 and with oil refinery sludge as sole carbon source, were used for the isolation of native hydrocarbon-degrading bacterial strains from crude oil contaminated soils and oil refinery sludges which allowed isolation of fifty-eight strains.The evalution of diversity of twenty- two bacterials isolates reveled a dominance of the phylum Proteobacteria (20/22 strains), with a unique class of Alphaproteobacteria, Regular article the two remaining strains belong to the phylum Actinobacteria. Partial 16S rRNA gene sequencing performed on isolates showed high level of identity with known sequences.
    [Show full text]
  • Thermithiobacillus Tepidarius DSM 3134T, a Moderately Thermophilic, Obligately Chemolithoautotrophic Member of the Acidithiobacillia
    Boden et al. Standards in Genomic Sciences (2016) 11:74 DOI 10.1186/s40793-016-0188-0 SHORT GENOME REPORT Open Access Permanent draft genome of Thermithiobacillus tepidarius DSM 3134T, a moderately thermophilic, obligately chemolithoautotrophic member of the Acidithiobacillia Rich Boden1,2* , Lee P. Hutt1,2, Marcel Huntemann3, Alicia Clum3, Manoj Pillay3, Krishnaveni Palaniappan3, Neha Varghese3, Natalia Mikhailova3, Dimitrios Stamatis3, Tatiparthi Reddy3, Chew Yee Ngan3, Chris Daum3, Nicole Shapiro3, Victor Markowitz3, Natalia Ivanova3, Tanja Woyke3 and Nikos Kyrpides3 Abstract Thermithiobacillus tepidarius DSM 3134T was originally isolated (1983) from the waters of a sulfidic spring entering the Roman Baths (Temple of Sulis-Minerva) at Bath, United Kingdom and is an obligate chemolithoautotroph growing at the expense of reduced sulfur species. This strain has a genome size of 2,958,498 bp. Here we report the genome sequence, annotation and characteristics. The genome comprises 2,902 protein coding and 66 RNA coding genes. Genes responsible for the transaldolase variant of the Calvin-Benson-Bassham cycle were identified along with a biosynthetic horseshoe in lieu of Krebs’ cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome c oxidase (cbb3, EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). Metalloresistance genes involved in pathways of arsenic and cadmium resistance were found. Evidence of horizontal gene transfer accounting for 5.9 % of the protein-coding genes was found, including transfer from Thiobacillus spp. and Methylococcus capsulatus Bath, isolated from the same spring. A sox gene cluster was found, similar in structure to those from other Acidithiobacillia – by comparison with Thiobacillus thioparus and Paracoccus denitrificans, an additional gene between soxA and soxB was found, annotated as a DUF302-family protein of unknown function.
    [Show full text]