<<

Journal of Research 8(2):197-214, 2019

Taxonomic hierarchy of the and Korean indigenous novel Proteobacteria species

Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2

1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea

*Correspondent: [email protected]

The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class , 257 species to the class , 82 species to the class , and one species to the class . The predominant orders were , , , Lysobacterales and . The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju. Most species isolated from Korean fermented foods and solar salterns were halophilic or halotolerant. Air-borne members of the genera , , and Massilia had common characteristics in terms of G+C content, major respiratory quinones, and major polar lipids. Keywords: Korean‌ territory, phylum Proteobacteria, Taxonomic hierarchy

Ⓒ 2019 National Institute of Biological Resources DOI:10.12651/JSR.2019.8.2.197

Generally, the phylum Proteobacteria is known to be habitats, including air, freshwater, seawater, soil, plants, comprised of Gram-negative microorganisms, which , and acid mines. Furthermore, members include have an outer membrane mainly composed lipopolysac- a wide variety of as well as nitrogen-fixing charides. Members of this phylum possess diverse char- and predatory microorganisms. For this reason, the name acteristics morphologically, physiologically, ecologically, Proteobacteria was chosen due to the group member’s and pathogenically. A variety of cell shapes have been diverse properties despite their common ancestry (Stacke- observed such as rods, stalks, buds, and filaments. Many brandt et al., 1988; Spain et al., 2009). species are motile by means of flagella, whereas some are For the preservation of prokaryotic resources, a number non-motile or rely on gliding. Moreover, the species have of new bacterial species have been isolated from various various types of metabolic processes. Most members are environments in Korea, and the information on the novel facultatively or obligately anaerobic, chemolithoautotro- species belonging to the phyla (Bae et al., phic, and heterotrophic, whereas some are autotrophic 2016) and (Seong et al., 2018) have been com- and perform (Imhoff and Hiraishi, 2005; piled. Imhoff et al., 2005; Spieck and Bock, 2005). Members The present work aimed to elucidate the chronologi- of this phylum are distributed across a wide range of cal process of establishing a taxonomic hierarchy for the 198 JOURNAL OF SPECIES RESEARCH Vol. 8, No. 2 phylum Proteobacteria as well as the classifications of . Table 1 shows the periodic history of bacterial species belonging to this phylum isolated from the phylum Proteobacteria, which was first proposed Korean environments. In addition, we report the envi- by Garrity et al. (2005) and authorized by the Interna- ronmental and regional origins and the properties of the tional Committee on Systematics of (ICSP). Proteobacteria isolates. A hierarchical taxonomic system A systematic history of the phylum Proteobacteria was of the phylum Proteobacteria was retrieved from the ‘Hi- first reported in 1809 by Link, who proposed the genus erarchical classification of bacteria’ in the List of Prokary- Polyangium with the type species P. vitellinum (Skerman otic Names with Standing in Nomenclature (LPSN; http:// et al., 1980). Successively, the genera Serratia (type spe- www.bacterio.net/). Then, this system was compared with cies S. marcescens), Spirillum (type species S. volutans), the ‘ in NCBI database (https://www.ncbi.nlm. Gallionella (type species G. ferruginea), Chromatium nih.gov/taxonomy)’. Finally, all names belonging to this (type species C. okenii), (type species V. cholerae), phylum were checked by searching the ‘Notification list’ Crenothrix (type species C. polyspora), and Neisseria and ‘Validation list’ in the International Journal of Sys- (type species N. gonorrhoeae) were proposed until 1885 tematic and Evolutionary Microbiology (IJSEM; http://ijs. (Skerman et al., 1980). After that, the higher taxa, fam- microbiologyresearch.org/). Data mentioned in this paper ily and order, were proposed along with the first family are limited to the Proteobacteria species validated until Crenotrichaceae (by Hansgirg in 1888) and first order February 2018. (by Orla-Jensen in 1921) (Skerman et al., 1980). During that time, well-known taxa such as History of taxonomic hierarchy of the phylum genera , , , Escherichia, Proteobacteria and as well as family Spirillaceae were created (Skerman et al., 1980). The phylum Proteobacteria is the largest group in the

Table 1. Establishment of hierarchical taxonomic system of the phylum Proteobacteria. Year Taxonomic history Reference 1809 Cr. G. Polyangium (1809), Serratia (1823), Spirillum (1832), Gallionella (1838), Skerman et al., 1980 -1885 Chromatium (1852), Vibrio (1854), Crenothrix (1870), Neisseria (1885) 1888 Cr. F. Crenotrichaceae (1888), Spirillaceae (1894), (1917)*1); Skerman et al., 1980 -1920 G. Rhizobium (1889), Pseudomonas (1894), Rickettsia (1916), Escherichia, Shigella (1919), (1920) 1921 Cr. O. Pseudomonadales (1921), (1935), (1939), Skerman et al., 1980 -1965 Spirillales (1940)*2), Myxococcales (1945), Hypomicrobiales (1957); F. Archangiaceae, Myxococcaceae, Polyangiaceae, , (1933), , Gallionellaceae, Nevskiaceae (1935), Pseudomonadaceae, (1936), (1937), (1938), (1957), (1965) 1968 Cr. K. Prokaryotae Gibbons & Murray, 1978 1976 Pu. First Draft Approved lists of bacterial names Ad Hoc, 1976 1978 Cr. Dv. Firmacutes, , ; O. Lysobacterales Gibbons & Murray, 1978; Christensen & Cook, 1978 1980 Pu. Approved lists of bacterial names Skerman et al., 1980 1988 Cr. C. Proteobacteria Stakerbrandt et al., 1988 1989 Pu. Approved lists of bacterial names (Amended) Skerman et al., 1989 1990 Cr. Dm. Bacteria higher rank of K. Prokaryotae Woese et al., 1990 1994 Ex. K. Prokaryotae Embley et al., 1994 1998 Pu. List of Bacterial Names with Standing in Nomenclature (Now LPSN) https://www.bacterio.net 2001 Cr. O. “Vivrionales”*3) Garrity & Holt, 2001 2004 Cr. O. Nautiliales Miroshnichenko et al., 2004 2005 Cr. P. Proteobacteria; C. Alpha-, Beta-, Delta-, Epsilon-, Gammaproteobacteria; Garrity et al., 2005; O. Kordiimonadales & 27 Os. Kwon et al., 2005; Pu. Bergey’s manual of systematic bacteriology 2nd ed. Vol. 2 (Part B & C) Brenner et al., 2005a&b. 2008 Cr. O. Sneathiellales Kurahashi et al., 2008 2009 Cr. O. Kiloniellales Wiese et al., 2009 2013 Cr. C. *4); O. Magnetococcales, Kwong & Moran, 2013 2014 Cr. C. ; O. Oligoflexales Nakai et al., 2014 2015 Cr. O. Acidiferrobacterales, Arenicellales, Cellvibrionales, Nevskiales, Sulfuricellales Naushad et al., 2015; Watanabe et al., 2015 2016 Cr. O. “Enterobacteriales”*3) Adeolu et al., 2016 2017 Cr. C. “”*5), Hydrogenophilalia ; O. “Mariprofundales”*5) Makita et al., 2017; Ex. O. Methylophilales, Sulfuricellales Boden et al., 2017 *1), Combined to Bradyrhizobiaceae; 2), Combined to ; 3), Shown in “Taxonomic outline”, Bergey’s manual of systematic bacteriology 2nd ed. (Garrity and Holt, 2001); 4), Not listed on “Hierarchical classification of prokaryotes”, LPSN; 5), Invalid name. Abbreviations: Dm., domain; K., ; Dv., division; P., phylum; C., class; O., order; F., family; G. genus; Cr., creation; Ex., exclusion; Pu., publication. May 2019 Seong et al. Novel Proteobacteria species of Korea 199

Meanwhile, in 1968, the kingdom Prokaryotae was system of the phylum Proteobacteria was generally ad- created as the highest level of life and was appropriately opted starting in 2011. Recently, four new classes, Acid- at the same level as Eukaryotae (Gibbons and Murray, ithiobacillia (from Gammaproteobacteria; Williams and 1978). Its lower rank, the division Gracilicutes was cre- Kelly, 2013), Oligoflexia (Nakai et al., 2014), “Zetapro- ated (Gibbons and Murray, 1978). The division name teobacteria” (Makita et al., 2017), and Hydrogenophilalia Gracilicutes represents thinner cell walls, implying a (from Betaproteobacteria; Boden et al., 2017), and 13 Gram-negative type of (Gibbons and Murray, new orders were proposed: Emcibacterales, Iodidimonad- 1978), and this division was further separated into the ales (Iino et al., 2016), Magnetococcales (Alphaproteo- classes Photobacteria (containing subclasses Oxyphoto- bacteria; Bazylinski et al., 2013), Bradymonadales (Del- bacteriae and Anoxyphotobacteriae) and Scotobacteria taproteobacteria; Wang et al., 2015c), Enterobacteriales (for non-photosynthetic bacteria). Two other divisions, (Adeolu et al., 2016), Acidiferrobacterales (Kojima et al., Firmicutes and Mollicutes, were also proposed to encom- 2015), Arenicellales (Teramoto et al., 2015), Cellvibri- pass Gram-positive bacteria and cell wall-lacking bacte- onales (Spring et al., 2015), Nevskiales (Naushad et al., ria, respectively (Gibbons and Murray, 1978). Around this 2015), Orbales (Gammaproteobacteria; Kwong and Mo- same time, Murray (1984) proposed that three classes, ran, 2013), Oligoflexales (Nakai et al., 2014), Bacteriov- Scotobacteria (for non-photosynthetic bacteria), Anoxy- oracales (Hahn et al., 2017), and Silvanigrellales (Oligof- photobacteria (for photosynthetic bacteria having pho- lexia; Hahn et al., 2017). tosystem I alone), and Oxyphotobacteria (for bacteria As of February 2018, the phylum Proteobacteria con- having both photosynthetic systems I and II), be placed sisted of nine classes comprising 56 orders, 155 families, under the division Gracilicutes in Bergey’s Manual of and 1,084 genera. In this work, the following taxa were Systematic Bacteriology (BSMB) 1st ed. In other words, included categorized in one of the following statuses: 1) the class Photobacteria was rearranged and divided into validated but not shown in the ‘Hierarchical classification the two classes Anoxyphotobacteria and Oxyphotobacte- of prokaryotes (LPSN)’ and 2) listed in the ‘Taxonomy ria which is now classified as the phylum . (NCBI) database’ but listed in quotes on the ‘Hierarchi- Thus, members belonging to photosynthetic and other cal classification of prokaryotes (LPSN)’. These taxa are Gram-negative bacteria had been affiliated within the di- as follows: three classes, Acidithiobacillia, Hydrogeno- vision Gracilicutes (Skerman et al., 1980) until 1988. The philalia, and “Zetaproteobacteria”, the orders Entero- taxon name “division” was changed to “phylum” after the bacterales (Adeolu et al., 2016), Immundisolibacterales phylogenetic relationships were applied to the bacterial (Corteselli et al., 2017), Emcibacterales, Iodidimonadales taxonomy (Woese, 1987). (Iino et al., 2016), Micropepsales (Harbison et al., 2017), With a higher rank than order, the class Proteobacte- Rhodothalassiales (Venkata Ramana et al., 2013), “Mari- ria was created under the division Gracilicutes in 1988 profundales”, “Parvularculales”, “Procabacteriales”, and by Stackebrandt et al. (1988) in order to encompass the “Vibrionales”, and the families Erwiniaceae, Pectobacte- and their relatives. Moreover, the authors riaceae, Yersiniaceae, Hafniaceae, Morganellaceae, Bud- suggested to divide the class Proteobacteria into Alpha, viciaceae (Adeolu et al., 2016), Thorselliaceae (Kämpfer Beta, Gamma, and Delta groups at the subclass level. In et al., 2015), Micropepsaceae (Harbison et al., 2017), 1990, the domain Bacteria was created as a higher rank Chelatococcaceae (Dedysh et al., 2016), Mabikibactera- of the kingdom Prokaryotae, which was excluded in 1994 ceae (Choi et al., 2017), Notoacmeibacteraceae (Huang (Woese et al., 1990; Embley et al., 1994). Members of et al., 2017), Rhodothalassiaceae, Vulgatibacteraceae, the classes Scotobacteria and Proteobacteria were reclas- Labilitrichaceae, Anaeromyxobacteraceae (Yamamoto et sified and moved to the new classes and al., 2014), Wenzhouxiangellaceae (Wang et al., 2015b), or phyla such as Cyanobacteria, Chlorof- Immundisolibacteraceae (Corteselli et al., 2017), Kang- lexi, Plantobacteria, and Spirochaetae (Garrity and Holt, iellaceae (Wang et al., 2015a), Ventosimonadaceae (Lin 2001; Cavalier-Smith, 2002). Finally, the phylum Proteo- et al., 2016), Fastidiosibacteraceae (Xiao et al., 2018), bacteria was created with its lower rank, classes Alpha-, “Salinisphaeraceae” (Naushad et al., 2015), “Maripro- Beta-, Delta-, Epsilon-, and Gammaproteobacteria, which fundaceae”, “Parvularculaceae”, “Kordiimonadaceae”, was listed in Bergey’s Manual of Systematic Bacteriol- “”, “Procabacteriaceae”, “Hydrogen- ogy (Garrity et al., 2005). At that time, 28 orders were imonaceae”, and “Saccharospirillaceae”. proposed: 27 orders in BSMB 2nd ed. and order Kordii- On the other hand, the orders Holosporales, Koprii- monadales by Kwon et al. (2005). Members of Cytopha- monadales, , Ferritrophicales, Ferrova- ga, Flavobacteria, and , previously affil- les, and Salinisphaerales and the families Pelagibactera- iated within the class Scotobacteria, were moved to the ceae, Geminicoccaceae, Ferritrophicaceae, and Ferrova- phylum which was created in 2011 (Krieg ceae which appeared in the NCBI database were not in- et al., 2011). Consequently, a hierarchical classification cluded due to the lack of validation. Moreover, the orders 200 JOURNAL OF SPECIES RESEARCH Vol. 8, No. 2

Methylophilales and Sulfuricellales were not included families in the order Rhizobiales. The family Rhizobiace- since these orders were combined into the order Nitroso- ae contained 11 species while one of its genera, , monadales (Boden et al., 2017). The order Xanthomon- contained six species. The genera and Methylo- adales and its family were excluded bacterium within the families and since the names Lysobacterales and Lysobacteraceae , respectively, contained five species have priority over those names, respectively. The families each. Twenty six species were distrib- Haliangiaceae and Sinobacteraceae were also excluded uted within two families, (12 species since families Kofleriaceae and Nevskiaceae have priority within four genera) and (nine species over those names, respectively (Tindal, 2014). within eight genera), with four species (one genus) of which the family unassigned. The genus of the family Acetobacteraceae contained nine novel Korean Novel species belonging to the phylum Proteobacteria species. originating from Korea In the order Caulobacterales, 25 novel Korean isolates Efforts to name the Proteobacteria isolates from Korea were affiliated with two families Caulobacteraceae (15 began in 1999 using the species pyrifoliae for species within four genera) and (10 plant-pathogenic isolates obtained from Asian pear tree species within eight genera). (Kim et al., 1999). Since then, many new Proteobacteria species have been recorded with valid names. In February Composition of novel species belonging to the class 2018, 644 Proteobacteria species originating from Korea Betaproteobacteria: Betaproteobacteria isolates were were approved (Table 2). affiliated with only three orders, Burkholderiales (73 spe- All Proteobacteria species are affiliated within four cies), Neisseriales (seven species), and Rhodocyclales (two classes (Alpha-, Beta-, Epsilon-, and Gamma-proteobac- species). Seventy-three Burkholderiales isolates consisted teria), 25 orders, 65 families, and 261 genera (including of 23 species (11 genera), 17 Burk- 10 genera of which families were unassigned). A total of holderiaceae species (four genera), 15 Oxalobacteraceae 304 species belong to the class Alphaproteobacteria, 257 species (four genera), 13 species, and five species to the class Gammaproteobacteria, 82 species to species (five genera) of which the family was unassigned. the class Betaproteobacteria, and one species to the class All seven Neisseriales species were affiliated with seven Epsilonproteobacteria. different genera of the family Chromobacteriaceae. Only two species (two genera) belonged to the family Zoo- Composition of novel species belonging to the class gloeaceae within the order Rhodocyclales. The genera Alphaproteobacteria: Novel Korean isolates belonging Burkholderia (11 species) and Massilia (10 species) with- to the class Alphaproteobacteria were affiliated with 129 in the families and Oxalobacteraceae genera and 23 families within eight orders. A total of of the order Burkholderiales, respectively, were dominant. 129 species were affiliated with the order Rhodobactera- les, 77 species with Sphingomonadales, 42 species with Composition of novel species belonging to the class Rhizobiales, 25 species each with Rhodospirillales and Gammaproteobacteria: Ten orders were detected in the Caulobacterales, and the remaining six species were affil- class Gammaproteobacteria; Lysobacterales (73 species), iated with the orders Kiloniellales, Kordiimonadales, and Alteromonadales (65 species), (39 spe- Sneathiellales or with an order unassigned. In the order cies), Pseudomonadales (23 species), Cellvibrionales (20 Rhodobacterales, all species were included in 64 genera species), Chromatiales (seven species), Nevskiales (six belonging to the single family . The species), , Orbales, (one spe- genera (11 species), (10 species), cies each), and an order unassigned (four species). For- Roseovarius (10 species), (seven species), Sul- ty-five species (eight genera) and 28 species (eight genera) fitobacter (six species), Litoreibacter (five species), and belonged to two Lysobacterales families, Lysobacterace- (five species) encompassed five or more Korean ae and Rhodanobacteraceae, respectively. Twenty-three, novel species. Fifty-six species belonging to 10 genera eight, and five novel species were affiliated with the gen- were affiliated with the family , and era Lysobacter, Pseudoxanthomonas, and Arenimonas 21 species belonging to three genera were with the family of the family Lysobacteraceae, respectively. Moreover, of the order Sphingomonadales. A 12 and eight species belonged to Rhodanobacter and number of isolates were affiliated with the Sphingomona- Dyella of the family Rhodanobacteraceae, respectively. daceae genera (29 species) and Sphingo- Sixty-five Alteromonadales species were distributed into pyxis (10 species) as well as the two Erythrobacteraceae 20 genera within nine families. Among them, a larger genera Altererythrobacter and (nine species number of isolates belonged to the families Alteromonad- each). Forty-two species belong to 24 genera within 13 aceae (31 species within 11 genera) and Shewanellaceae May 2019 Seong et al. Novel Proteobacteria species of Korea 201

(13 species within one genus). The genera indigenous Proteobacteria isolates. Among them, 15 cor- (13 species; Shewanellaceae), (seven spe- responding authors proposed 488 novel species; Yoon, J. cies), (six species; ), H. (172 species; Sungkyunkwan University), Kwon, S. W. and (five species; ) were the (60 species; Rural Development Administration), Jeon, most abundant groups. Oceanospirillales isolates were C. O. (42 species; Chung-Ang University ), Bae, J. W. (33 composed of seven families (18 genera), including the species; Kyung Hee University), Lee, S. T. (30 species; abundant family Halomonadaceae (14 species within four KAIST), Seong, C. N. (19 species; Sunchon National genera). Eleven (Halomonadaceae) species University), Lee, T. H. (18 species; Kyung Hee Univer- were isolated from Korean environments. The two fam- sity), Cho, B. C. (17 species; Seoul National University), ilies Moraxellaceae (15 species within four genera) and Chun, J. (16 species; Seoul National University), Im, W. T. Pseudomonadaceae (eight species within the single genus (16 species; Hankyoung National University), Kim, J. (15 Pseudomonas) were found in the order Pseudomonadales. species; Kyeonggi University), Yang, D. C. (14 species; Seven species were affiliated with the genus Psychro- Kyung Hee University), Cho, J. C. (14 species; Inha Uni- bacter of the family Moraxellaceae. Twenty Cellvibrio- versity), Chung Y. R. (12 species; Gyeongsang National nales species were distributed into five families, including University), and Lee, S. D. (10 species; Jeju National the abundant family Cellvibrionaceae (10 species within University). six genera). Six species were placed in the genus Micro- bulbifer of the family Microbulbiferaceae. In addition, Isolation sources: Proteobacteria species from Ko- remaining Gammaproteobacteria isolates were affiliated rea were isolated from natural environments such as soil, with the orders “Vibrionales” (11 species, three genera, freshwater, seawater, tidal flat sediments, air, and solar single family), Chromatiales (seven species, three genera, salterns, and a number of species were also isolated from three families), Nevskiales (six species, four genera, two artificial sources such as fermented foods, wastewater, families), (four species, two genera, sin- compost, air conditioning systems, and water purifying gle family), ‘Enterobacteriales’ (two species, two genera, systems. Several species were associated with animals two families), Legionellales, Orbales, Thiotrichales (one and plants. Isolation sources of the species are described species each), and an order unassigned (four species, three in detail. A total of 171 species were isolated from soil, genera). Among them, the genera Photobacterium (six including cultivated fields, forest soil, rhizosphere, nat- species; Vibrionaceae) and Rheinheimera (five species; ural caves, and reclaimed soil. Moreover, seawater (130 Chromatiaceae) were dominant. species) and tidal flat sediments (118 species) were the main isolation sources for Proteobacteria. Other major Composition of the novel species belonging to the isolation sources were as follows: marine animals (32 spe- class Epsilonproteobacteria: Only one spe- cies), wastewater (31 species), seashore sand (30 species), cies was affiliated with the family Campylobacteraceae, freshwater (27 species), air and air conditioning systems the order within the class Epsilonpro- (22 species), solar salterns (19 species), and freshwater teobacteria. sediments (16 species). In addition, there were many oth- er isolation sources for Proteobacteria species: Korean New genera or higher taxa: The order Kordiimonad- traditional fermented foods (jeotgal and kimchi; eight ales within the class Alphaproteobacteria (Kwon et al., species), terrestrial plants (eight species), marine seaweed 2005) and three families, (Hwang (seven species), laboratory cultures (seven species), com- and Cho, 2008) and Mabikibacteraceae (Choi et al., post (six species), gut (five species), water cooling 2017) of the order Rhizobiales and Litoricolaceae (Kim or purifying systems (four species), freshwater algae (two et al., 2007) of the order Oceanospirillales, were first species), and deep sea sediments (one species). Compared created using isolates from the Korean environment as a to the isolation sources of novel Actinobacteria and Fir- type genus and species. Unfortunately, the family name micutes species, Proteobacteria species were isolated “Kordiimonadaceae” was not validly published. In addi- more frequently from marine environments such as sea- tion, 86 genera were first created using isolates from the water, tidal flat sediments, marine animals, seashore sand, Korean environment as the type species. Among them, 42 and air/air conditioning systems but less frequently from genera consisted of only a single type species (Table 2). Korean traditional fermented foods and clinical speci- mens (Bae et al., 2016; Seong et al., 2018). Researcher, isolation source, regional origin, and Regional origin of the isolates: Novel Proteobacteria properties of species species were isolated from the whole territory of Korea. Researchers: Eighty-one corresponding authors were Predominant isolation regions of validly named Proteo- involved in the proposal of novel species from the Korean bacteria species were as follows (Table 2): 129 species 202 JOURNAL OF SPECIES RESEARCH Vol. 8, No. 2 (ss,

JB, ¶e), (sv,

(sv, GW), (sv, (py, GSI) (py,

K. soli P. muchangponense P. (tf, JJ)

M. platani B. naejangsanensis B. (fs, GD),

(ww, CD), (ww,

(ai, GSI),

(sv, UD), (sv,

D. subaequoris M. iners B. lenta B. P. koreense P. K. geumhonensis (sv, CD), (sv,

(tf, JG)† (ai, AR),

(sr, CD), (sr, (mp, JJ)

D. soli (sv, GSI), (sv,

(fs, CD) (fs, GD),

(sv, UD), (sv, (source, region, function)

M. frigidaeris K. defluvii C. profunda C. profunda P. hankyongense P. K. gwangyangensis N. kimnyeongensis B. kwangchunensis B. Species D. insulae (ww, AR)† (ww, (wc, CD),

(fw, GBU), (fw, (sv, GSI), (sv,

(ai, GSI)

(ss, JJ), (ss, JJ),

(sv, UD) (sv,

(co, GSI), (ai, GSI)

(sw, GW), (sw,

(sw, JJ) (sw,

(sv, GSI), (sv,

(sw, GD)† (sw,

S. granuli R. soli C. hibisci B. basaltis B. N. basaltis A. ureilytica M. dankookense D. humi P. composti P. K. dalseonensis M. aerophila K. aquimaris H. maritima H. marina (fw, CD), (fw,

(tf, UN, ¶e)† (py, GBU), (py,

(sv, JJ)† (sv,

(cu, AR)† (cu, AR), (ww, CD, ¶k), (ww, (ww, CD, ¶k) (ww,

(sw, GW)† (sw,

(ww, AR), (ww, (wc, JG),

(ww, GD) (ww,

(ww, GSI, ¶j) (ww, (ai, GSI),

(ss, CD)†

(fw, CD), (fw,

(tf, GW)

(mp, CD)† (fw, CD)† (fw, (sr, GBU), (sr,

(sv, GSI) (sv,

(ma, GD) (py, CD) (py,

(tf, CD), (sw, JJ)† (sw, (cu, CD, ¶j)

(mp, CD)

(ai, GSI),

(sw, UN)† (sw, (tf, CD),

(fw, CB)†, (fw,

(sw, JJ)† (sw,

(tf, GBU),

(sv, GW) (sv, (tf, JJ)† (sr, CD) (sr,

(mp, GBU)

(ww, GD)† (ww,

(sr, JB)† (sr,

F. rubidus F. A. aquaticus aquimaris P. B. aveniformis B. H. litoralis C. daeguensis M. ruber C. azotifigens P. koreensis P. B. terrae L. taeanensis P. aquaticum P. M. soli M. aerolatum A. solisilvae H. litorea K. spongiae H. halophila D. caeni D. geojensis L. donghaensis R. halophytocola K. terrae N. aquimarinus CD) M. K. adipata P. koreensis P. O. daejeonense S. koreensis K. aestuarii C. gelatinilyticus C. marinus C. daechungensis M. myrionectae gotjawalensis V. M. aerilata A. frigidaquae S. daejeonensis A. sudae ) (1) (5) 1 (5)

(

(1)

(6)

(3)

(1) (1) (1) (1)

(1) )

(1) (1)

(1) (3)

2

(1)

(3) (1)

(1)

(

(1) (1) (2) (1) (2)

(2)

(1) (1) (1)

(2) (1) (1)

(2) (5)

(1)

Genus (6)

Caulobacter Ochrobactrum Kordiimonas Daeguia Lentilitoribacter Methyloterrigena Shinella Variibacter Cucumibacter Mabikibacter Fretibacter Fretibacter Asprobacter Pseudahrensia Ponticaulis Microvirga Kiloniella Devosia Methylobacterium Aureimonas Ciceribacter Litorimonas Rhizobium Marinicauda Kaistia species with valid name originated from Korea. † (304) (3)

(25) (7)

(1)† (2) (7)

Proteobacteria (1) (6) (10) (1)† (3)

(1)

(1) (15) (1)

(1) (42)

(1) (1)

(11) (2)

Family List of novel Caulobacterales Kiloniellales Rhizobiales Kordiimonadales Alphaproteobacteria Caulobacteraceae Kiloniellaceae Aurantimonadaceae Chelatococcaceae Rhodobiaceae Hyphomicrobiaceae Bradyrhizobiaceae Hyphomonadaceae Brucellaceae Kordiimonadaceae Methylobacteriaceae Rhizobiaceae Cohaesibacteraceae Mabikibacteraceae Order Order Order Order Order Order Order Order Class Table 2. Table May 2019 Seong et al. Novel Proteobacteria species of Korea 203 (tf, GSI),

(tf, JG)

(sv, GSI), (sv, (sw, UD), (sw, (sw, GBU), (sw,

P. hibisci P. L. variabilis P. litorisediminis P. L. maricola (tf, CD), (ma, UN),

(sw, JJ), (sw,

M. hallyeonensis (sw, GBU), (sw,

(ww, GSI), (ww,

(sw, GBU), (sw,

L. meonggei J. faecimaris L. tamlensis (sw, GBU), (sw,

(tf, JG, ¶b)

P. limosus P. L. litorea P. haeundaensis P. (sw, JJ), (sw,

(sw, UD), (sw, (ma, UN),

(sl, GSI)

(ss, GD),

(ww, CB), (ww,

M. geojedonensis (source, region, function) (ma, UN, ¶a),

C. naphthalenivorans J. donghaensis L. halocynthiae J. seosinensis L. koreensis L. soesokkakensis P. koreensis P. (sw, JJ) (sw,

Species (cu, AR)†,

(sw, JJ), (sw,

P. fistulariae P. (tf, JG) (sw, GSI), (sw,

(tf, JB), (ss, JJ),

(tf, JG),

(ma, GW),

(ss, GD),

(sl, CD)†

(py, GBU) (py, O. jejudonensi

(ww, CD), (ww,

C. marinus J. confluentis M. cryptomonadis J. seohaensis P. daeponensis P. P. homiensis P. M. salinus L. pyoseonensis (tf, UN)† L. aestuariicola

P. caeni P. (tf, JB)†

L. suaedae L. ascidiaceicola (sw, JJ, ¶a)† (sw, (wc, JB)

(ma, GBU),

(tf, JG)† (tf, JG) (tf, JG)† (tf, JB),

(sw, GW), (sw,

(tf, JG)†

(ma, GW, ¶h)† (ma, GW, (sw, JJ) (sw,

(sw, UN)† (sw, (ma, GW)† (sw, JJ)† (sw, (sw, JJ), (sw,

(ma, GBU)† (ss, GD),

(mp, CD)† (sw, JJ, ¶a)† (sw, (sr, GSI)† (sr, (sw, GBU), (sw,

(tf, CD)

(sv, GSI), (sv, (ss, CD)† (tf, GSI),

(sw, GW)† (sw, (sw, JG), (sw,

(sl, GSI)† (tf, CD)†

(tf, CD) (tf, GSI)

(tf, JG)†

(tf, CD)

(tf, JG),

(tf, CD)†

(sw, GSI), (sw, (tf, GBU)

(tf, JG, ¶a)† (sw, UN) (sw, (tf, CD),

(tf, GD),

(sw, GBU) (sw,

(sv, GSI) (sv,

O. ascidiaceicola C. salinaria A. marinus C. baekdonensis L. taeanense L. beolgyonensis L. ponti G. straminiformis P. litorisediminis P. A. boseongensis M. pontilimi P. hibiscisoli P. C. aestuarii C. lipolyticum A. pelagivivens H. namhaensis A. soesokkakensis A. donghaensis D. aquaemixtae A. donghaensis L. halophilum L. ponticola A. confluentis L. arenae soli P. P. aestuarii P. J. aquimarina D. eburneus L. saemankumensis A. insulae M. litorea L. marina H. aestuarii J. pohangensis H. halocynthiae M. byunsanensis A. porphyridii O. litoreus aquaemixtae P. B. aestuarii L. acticola methylaminivorans P. N. aestuarii A. beolgyonensis P. lutimaris P. (1)

(1)

(1) (1)

(1)

(1) (1)

(1) (2) (1)

(1) (1)

(1) (1) (1)

(1)

(1)

(1) (5) (1)

(2)

(3)

(1)

(1)

(1) (11) (1) (1)

(7)

(1) (1) (1) (10) (1)

(1)

(2)

(2)

(5)

(1) Genus

Aestuariicoccus Pelagicola Litorisediminicola Loktanella Citreimonas Citreicella Citreicella Aestuariivita Aquimixticola Aestuariispira Aliiroseovarius Maribius Hasllibacter Pontibaca Labrenzia Hwanghaeicola Gemmobacter Aestuariihabitans Palleronia Nioella Aquicoccus Albimonas Jannaschia Limibaculum Albirhodobacter Boseongicola Lutimaribacter Confluentimicrobium Litoreibacter Litorimicrobium Paracoccus species with valid name originated from Korea. (129) Proteobacteria (129) Family Continued. List of novel Rhodobacterales Rhodobacteraceae Table 2. Table Order Order Table 2. Table 204 JOURNAL OF SPECIES RESEARCH Vol. 8, No. 2 (ma, UN) (sv, GSI), (sv,

(tf, GBU)

(sw, UN), (sw,

(sr, WS), (sr,

(sw, GBU), (sw,

R. meonggei R. hibiscisoli A. deserti S. noctilucae R. halotolerans R. sediminilitoris (ma, UN),

(ww, JG), (ww, (sw, CD), (sw,

(sw, GW), (sw, (ma, UN),

(ma, JG),

(sw, JG) (sw,

(sv, GSI) (sv,

(sv, CD) (sv,

R. frigidaquae A. aquiaggeris R. halocynthiae S. marinus R. scapharcae A. namhicola R. halocynthiae R. terrae (sw, JJ), (sw,

(ai, CD), (ss, GBU)

(tf, CD),

(sw, GBU) (sw,

R. terricola (sw, UN), (sw,

(ss, JG)

(sw, JJ), (sw,

(tf, JG),

(sw, CD), (sw,

(sv, WS), (sv,

(source, region, function)

(sl, JG)

(sv, UD), (sv,

S. litoralis R. aerophila T. maritimus T. R. faecimaris R. soli P. sabulilitoris P. A. aquaemixtae R. gaetbuli Species A. marensis R. marinus R. roseus P. wandonensis P. R. terrae (tf, JG)

(ai, AR),

(sv, JG) (sv,

(sv, JG), (sv,

(ma, JG), (tf, CB),

(sw, GBU), (sw,

(sw, JG), (sw, (sw, JJ), (sw,

(sw, GBU), (sw, (tf, UN),

(tf, CD),

(tf, JB),

(sw, CD), (sw,

(sv, GSI), (sv,

(sv, UD) (sv,

R. conchae P. lutimaris P. T. sediminicola T. S. geojensis R. lentus A. luteolus A. aestuarii R. soli R. mesophilum P. ponti P. R. lutimaris R. graminifolii T. aquaeponti T. R. aerofrigidensis R. aquimarinus (tf, JB) D. soli

(tf, JB)†

(tf, JG)† (ss, JJ)

(sw, GBU) (sw, (tf, JG), (sw, JJ), (sw,

(sv, GSI) (sv, (tf, JG)† (ss, GBU), (ma, JG)†

(sw, UD), (sw,

(sw, CD), (sw,

(sw, JJ) (sw,

(sv, GSI)† (sv, (ai, GSI),

(ww, GD)† (ww, (sw, GBU), (sw, (sw, CD), (sw, GW)†, (sw,

(tf, JB), (fw, GSI), (fw, (fw, GBU), (fw, (tf, GSI),

(ai, CD) (sw, GBU)† (sw, (ai, GSI),

(ss, GSI) (sw, UN)† (sw, UN)† (sw, (sw, GBU), (sw,

(sl, UN)†

(sw, GD) (sw, GBU)† (sw, (sw, JJ)† (sw,

(fs, CD)† (sw, GBU) (sw,

(sv, GBU, ¶j) (sv,

(fw, GBU), (fw, (sw, CD) (sw,

(ta, UN) (sv, CD) (sv,

P. caenipelagi P. P. litoralis P. S. saemankumensis R. aquatilis R. aerilata T. litoreum T. P. aquimaris P. A. gangjinensis R. jejudonensis P. insulae P. gijangensis P. S. chungangensis T. lentus T. N. iridis D. rigui S. noctilucicola P. confluentis P. R. aestuarii aquimaris T. S. marina A. aestiaquae P. aquimaris P. D. rubra I. ginsengisoli R. riguiloci R. aerolatum saemankumensis W. P. aestuariivivens P. R. ponti S. aerolata R. arenilitoris T. arenosa T. B. apis C. bisanense L. halophilus S. donghicola B. soli P. litoralis P. S. marina S. flavidus T. aestuarii T. R. litoreus (1)

(3) (1)

(9)

(2) (1) (1) (1)

(3) (1)

(1)

(1) (1)

(2)

(3)

(6) (9) (1) (1) (1)

(10)

(1) (1)

(1)

(1) (1) (4)

(3) (1)

(1) (1)

(1) (1)

(5) (1) (1)

(2) Genus

(1)

Pseudoruegeria Pseudohalocynthiibacter Wenxinia Roseovarius Limibacillus Pseudoseohaeicola Roseomonas Ruegeria Pontivivens Skermanella Sneathiella Altererythrobacter Salinihabitans Pseudopelagicola Bombella

Inquilinus Thalassobaculum Tropicimonas Puniceibacterium Seohaeicola Dongia Dankookia Caenispirillum Nitrospirillum Pelagibius Reyranella species with valid name originated from Korea. (77) (25)

(1) (21)

Proteobacteria

(129)

(9)

(12)

(1)

(4)

Family Continued. List of novel Rhodospirillales Sneathiellales Sphingomonadales Unassigned Acetobacteraceae Rhodobacteraceae Rhodospirillaceae Sneathiellaceae Erythrobacteraceae Order Order Order Order Order Order Table 2. Table Table 2. Table May 2019 Seong et al. Novel Proteobacteria species of Korea 205

(fs, CD),

(fs, JG),

(fw, CD) (fw,

(sv, CD), (sv, (sv, GBU), (sv, (sw, JG), (sw,

(sw, JJ), (sw,

(sv, GSI), (sv,

(sv, JJ) (sv, S. daechungensis (sv, GSI), (sv,

S. marina S. jinjuensis B. solisilvae S. taejonensis (fw, GBU), (fw,

S. limnosediminicola E. gangjinensis (ai, AR), (ai,

. vulcanisoli (sw, JJ), (sw, (fs, CD)

(fw, GBU) (fw,

(ma, JJ),

(sv, CB), (sv,

(sv, GSI), (sv,

(tf, JB), S. palustris

S. carri (sv, CD), (sv,

(sv, GSI) (sv,

S. litoris (tf, JB) B. soli

(sv, CD), S (sv, S. vulgare

(fw, GSI) (fw, B. megalochromosomata

S. ginsenosidimutans S. jejuensis S. lacus H. soli (fw, CD), (fw, S. solisilvae E. gaetbuli

(sv, GBU), (sv,

S. wooponensis S. soli (sw, UN) (sw,

(fs, CD),

(fa, CD), C. viridis (sv, CD), (sv,

(ww, GSI), (ww,

(tf, GBU, ¶b) (sv, GSI), (sv,

E. seohaensis (sv, UD), (sv,

(sv, GSI), (sv,

(sr, GD), (sr,

(ma, GSI), (sv, JG), (sv,

(sw, GW), (sw,

S. aquatilis (fw, GBU), (fw,

(fw, JG), (fw, S. oryziterrae (ss, CD)

S. granuli S. soli (source, region, function) (sw, JB), (sw,

P. donghaensis P.

S. insulae S. paulinellae B. sediminicola B. humisilvae E. flavus S. rigui S. silvisoli S. ginsengisoli (sv, GSI), (sv,

(sv, CD), (sv, Species

S. kyungheensis C. naiadis (sv, GSI), (sv, P. harenae P. (sv, CD), (sv,

H. crassostreae (sw, UD), (sw,

(sv, CD) (sv, E. marinus N. pentaromativorans

(sv, CD), (sv, (sv, CD), (sv, (sw, JJ), (sw, S. agri (ww, CD), (ww,

(fs, CD),

(ai, AR), (sv, CB)† (sv, (sw, WS), (sw,

(sr, CD, ¶b), (sr,

(fw, CD), (fw, (fw, GBU) (fw, (sv, GSI) (sv, (sv, CD) (sv,

(sv, CD), (sv,

(fs, AR),

(fw, GSI), (fw,

(co, GBU)

(tf, JB), (sv, CD) (sv,

(sr, JG), (sr,

(tf, JG),

(sv, UN) (sv,

S. ginsengisoli (sr, GD) (sr, P. dokdonensis P.

S. panaciterrulae C. ginsengisoli B. ginsengisoli S. flavimaris P. ureilyticus P. P. soli P. H. caeni S. frigidaeris B. terrae C. terrae S. hankookensis N. humi E. aquimixticola B. rhizosphaerae S. sediminicola S. oligoaromativorans C. lacunae S. koreensis C. koreensis S. chungbukense E. lutimaris S. aestuarii A. soli A. ureilytica P. ginsengisoli P. (sw, WS), (sw, (sv, GSI) (sv,

(tf, JG)

(sv, CD), (sv, (sv, JJ), (sv, S. vermicomposti

(sv, GSI), (sv, (sv, UD), (sv,

(sv, UD), (sv, (sv, GSI), (sv,

(py, GSI), (py,

(ss, GBU), (ww, GD), (ww, (ww, GD), (ww, (fw, CD), (fw,

(sv, GSI, ¶j) (sv,

(sw, UN), (sw, (co, GSI) (sv, GSI), (sv,

(sv, GSI), (sv,

(ai, GSI)

(sv, GD), (sv, AR)†, (ww, (sv, WS), (sv, (sv, CD), (sv, (ai, JJ), (ww, JJ) (ww,

(tf, UN)

(sw, JJ), (sw, (sv, JJ) (sv,

(fa, CD), (sw, GBU, ¶d), (sw, (mp, CD)

(ww, CD), (ww,

(ww, CD)† (ww,

(sv, CD), (sv, (cu, AR),

(sr, JJ) (sr,

(ww, AR), (ww, (cu, AR)

(sr, CD), (sr,

D. aerolatus S. aestuariivivum P. ginsengisoli P. S. aerophila P. algicida P. S. soli S. dokdonensis B. fulva C. koreensis S. panaciterrae E. aquimaris P. suwonensi P. S. gotjawalisoli C. daejeonensis N. aquiterrae S. algicola P. granuli P. C. yeoncheonense P. stygius P. A. riparia P. algicola P. azotifigens P. P. caeni P. C. koreensis B. sordidicola S. arenilitoris B. monticola S. rhizophila P. jejuensis P. S. baekryungensis S. sediminis B. denitrificans M. jejuensis E. jejuensis C. granuli S. kaistensis S. naasensis H. bisanensis A. lacteus P. daeguensis P. (1)

(3) (1) (1)

(1)

(4)

(2) (1) (4)

(2) (1)

(3)

(2) (2)

(29) (1)

(1) (9) (2)

(4) (1) (10) (11) (4)

(3)

(1)

(2) (2) (1)

(2)

(1)

Genus Acidovorax Pigmentiphaga Polaromonas Melaminivora Chitinimonas Sphingomicrobium Cupriavidus Comamonas Hydrogenophaga Sphingomonas Azohydromonas Parasphingopyxis Sphingosinicella Paraburkholderia Erythrobacter Diaphorobacter Sphingorhabdus Parapusillimonas Castellaniella Paralcaligenes Paenalcaligenes Caenimonas Burkholderia Stakelama Porphyrobacter Pusillimonas Phreatobacter species with valid name originated from Korea. (82)

(73)

(56)

(21) Proteobacteria

(23)

(17) (1)

(13)

(1)

Family Continued. List of novel Burkholderiales Betaproteobacteria Comamonadaceae Alcaligenaceae Sphingomonadaceae Unassigned Burkholderiaceae Erythrobacteraceae Order Order Order Unassigned Order Table 2. Table Table 2. Table Class 206 JOURNAL OF SPECIES RESEARCH Vol. 8, No. 2 (ai, GSI),

M. suwonensis (sw, GW), (sw,

(ai, JJ),

(sv, GSI), (sv,

(sv, JB) (sv,

M. jejuensis M. goseongensis V. soli V. M. solisilvae (sw, CD), (sw, (sv, CD, ¶c), (sv,

(sv, GSI) (sv,

(ai, GSI),

(sv, GSI, ¶i), (sv,

(tf, JG)

(sl, JB)

(sw, GW) (sw,

M. flavimaris (source, region, function) (sv, UD) (sv,

R. rhizophilus M. niastensis (ff, AR) (ff,

O. sediminis V. ginsengisoli V. A. marina M. salicampi Species (sw, CD), (sw,

M. chloroacetimidivorans (sv, GSI), (sv,

(ai, GSI),

A. jeotgali (tf, GSI)† (sv, UD), (sv,

(sw, UN), (sw, (tf, CD),

(sw, GBU) (sw,

H. rhizosphaerae (fw, GSI) (fw, (sw, GW), (sw,

(sv, GSI), (sv,

M. daepoensis (sr, GD), (sr,

R. monticola M. niabensis A. litorea (ma, UN)

O. ostreae A. litoreus A. salexigens M. litoralis M. agilis (fw, CB, ¶b), (fw, V. dokdonensis V.

A. agri U. seohonense (sv, JB, ¶d)† (sv, (tf, CD, ¶a)†

(sw, JJ) (sw, (tf, JG),

S. piscis (sv, GSI), (sv, (fs, GW)† (fs, GW)†

(sv, GSI), (sv,

(tf, GW), (fs, GW, ¶i) (fs, GW,

(fw, CD) (fw, (sw, UD) (sw, (fw, GSI)† (fw,

(sv, JJ, ¶d)† (sv,

(sw, GW, ¶a), GW, (sw,

(ai, GSI)

(tf, GSI),

(ss, GD),

(ss, UD) (fw, GSI) (fw, (ai, GSI)

(tf, CD, ¶d), (tf, JG), (sv, GSI) (sv,

(ai, GSI), (sv, JJ), (sv,

(sw, UD) (sw,

(ww, GD), (ww, (sv, GSI) (sv,

(sv, GBU)† (sv,

(sv, GSI) (sv, (sv, CD, ¶d)† (sv,

(ww, GD) (ww,

(sr, GSI, ¶a) (sr, (ww, AR), (ww,

A. aestuariivivens P. oligotrophus P. G. nitratireducens P. yongneupense P. A. halophilus A. denitrificans Z. aerophila M. terrae A. chitinilytica P. gefcensis P. P. aquaticus P. A. aestuarii H. chlorophenolicum A. aestuarii M. kyonggiensis A. marinus M. koreensis O. donghaensis A. hydrocarbonica

V. defluvii V. Z. caeni M. aerilata U. jejuense M. confluentis L. oryzae S. terrae A. olei I. inkyongensis R. fulvus X. aerolatus B. dokdonensis S. limi N. suwonense J. naejangsanensis R. alkalitolerans U. gangwonense

(1)

(1) (1)

(1)

(2) (2) (1) (3)

(2)

(1) (3) (1) (7)

(2) (1)

(3) (2) (1) (3)

(1)

(1)

(1) (1) (1)

(4) (1) (1)

(1)

(1) (1)

(10)

Genus (1)

(1)

Simplicispira Oceanisphaera Leeia Ramlibacter Rhizobacter Xenophilus Andreprevotia Massilia Paucibacter Pseudogulbenkiania Silvimonas Inhella Jeongeupia Aquitalea Zobellella Paludibacterium Uliginosibacterium Piscinibacter

Alishewanella Zoogloea Undibacterium

Agarivorans Marinobacter Variovorax Noviherbaspirillum Herbaspirillum Arcobacter

Aquabacterium

species with valid name originated from Korea. (257) (1)

(1)

(65)

(4)

(1) (7)

(2)

Proteobacteria (31) (23)

(15)

(7)

(4)

(2)

(5)

Family Continued. List of novel Neisseriales Alteromonadales Campylobacterales Rhodocyclales Aeromonadales Gammaproteobacteria Epsilonproteobacteria Unassigned Chromobacteriaceae Aeromonadaceae Comamonadaceae Alteromonadaceae Zoogloeaceae Oxalobacteraceae Campylobacteraceae Order Order Order Order Order Order Order Order Order Order Table 2. Table Class Table 2. Table Class May 2019 Seong et al. Novel Proteobacteria species of Korea 207 (tf, JG),

(sw, GSI), (sw,

(ds, GW, ¶g), (ds, GW,

(sl, GSI)

(sw, UN), (sw,

M. pacificus M. marisflavi (ss, GD),

(sr, GBU) (sr,

S. donghaensis (tf, UN),

(tf, CD),

I. seosinensis R. soli S. marisflavi (sw, UD), (sw,

A. donghaensis (tf, JJ),

(sl, UN), (sw, JG), (sw,

M. maritimus M. lutimaris (sw, JJ, ¶d) (sw,

(sw, GBU) (sw,

(co, CD)†,

R. gaetbuli (tf, JG), S. marina

S. dokdonensis I. salinarum (sl, UN) (sw, GSI), (sw,

(tf, CD)

(ma, UN)

(ss, JG), (tf, JB),

(sw, GBU) (sw, (ma, JG)

(ss, JJ),

(ma, UN)

(ss, GD), P. aquimarina P.

(source, region, function)

M. litorale A. daejeonensis M. locisalis P. marina P. S. curdlanivorans (tf, GSI)

P. haliotis P. M. gwangyangensis S. basaltis C. meonggei Species S. upenei T. ponticola T. R. arenilitoris (tf, CD),

(fs, CB), I. homiensis

(tf, JG)†,

(tf, GW, ¶d), (tf, GW, S. litorisediminis

(sw, GW), (sw,

(tf, GBU, ¶d) (ss, JJ, ¶d),

(ss, JJ), (sl, UN), (sw, CD), (sw,

(sw, UN), (sw,

(ma, UN), (ma, GW),

(sl, JB), T. ganghwensis T.

(sw, GW), (sw,

(ma, JG),

M. koreense S. lutimaris M. celer M. halophilum T. litorea T. P. agarilytica P. P. donghaensis P. S. areninigrae A. daechungensis S. spongiae P. aquimarina P. I. halophile C. asteriadis S. aquimarina S. haliotis (tf, CD, ¶a)

R. aquimaris (tf, JG),

(tf, GBU, ¶d), (tf, JG),

(sl, CD)†,

(tf, JG, ¶d), (tf, JB),

(tf, JG),

(tf, GSI)

(ma, GSI), (ss, JJ, ¶d)

(tf, GW)† (tf, CD) (tf, CD)

(tf, JG)

(sv, GBU) (sv, (wc, GBU)

(tf, JB),

(ss, GSI)† (ta, GSI)

(py, UN) (py, (tf, GBU, ¶b),

(mp, JG) (tf, GSI)

(tf, JB), (sv, GBU), (sv,

(tf, JG), (sw, JG), (sw, CD) (sw,

(sw, JG), (sw, (tf, JJ),

(tf, JG),

(sw, GSI)† (sw,

(sw, JJ) (sw,

(sw, GSI) (sw,

P. byunsanensis P. M. agarilyticum F. pelagia F. C. aestuarii Z. aliphaticivorans P. aestuariivivens P. P. alcaniphilus P. I. aestuarii T. denitrificans T. A. oryziterrae S. gaetbuli G. undariae M. rhizophilum G. agarilyticus S. chungwhensis crassostreae T. M. aestuariivivens M. aestuarii U. caenipelagi S. aestuariiviva E. pyrifoliae T. agariperforans T. M. salipaludis E. flava P. aestuarii P. P. sediminis P. G. papilionis S. seohaensis P. aestuarii P. M. arenosum A. composti P. litoralis P. R. aestuari S. aestuarii L. busanensis (3)

(1)

(3) (6)

(1)

(3)

(1) (2) (3)

(1)

(1) (3) (5) (6)

(1) (1)

(2) (5)

(1) (1)

(13)

(5) (1)

(1) (1)

(1) (3)

(3)

(1)

Genus (1)

Parahaliea Gilvimarinus Rheinheimera Zhongshania Shewanella Paramoritella Legionella Salinimonas Porticoccus Marinimicrobium Eionea Pseudomaricurvus Umboniibacter Psychrosphaera Marinobacterium Arenimonas Idiomarina Simiduia Thioalbus Granulosicoccus Marimicrobium Erwinia Gibbsiella Thalassomonas species with valid name originated from Korea. (6)

(1) 2)

(

(20) (73)

(1)

(1) (6) (1) Proteobacteria (7)

(1)

(31)

(1) 45)

(10) (

(13) (5)

(1)

(5) (1)

(8) (1)

(1)

(2)

Family List of novel Continued. Cellvibrionales Chromatiales Lysobacterales Legionellales Legionellaceae Porticoccaceae Erwiniaceae Ectothiorhodospiraceae Microbulbiferaceae Idiomarinaceae Spongiibacteraceae Chromatiaceae Alteromonadaceae Lysobacteraceae Enterobacteriaceae Shewanellaceae Halieaceae Moritellaceae Granulosicoccaceae Cellvibrionaceae Order Order Order Order Order Order Order Order Order Order Table 2. Table 2. Table 208 JOURNAL OF SPECIES RESEARCH Vol. 8, No. 2 (sv, GSI), (sv,

(sl, CD)

(sv, UD), (sv,

(sw, GBU), (sw,

(sl, JB), (sv, GW), (sv,

L. maris (sv, GSI), (sv, (tf, JG)

L. dokdonensis

(sw, CD) (sw, (fs, CD),

(sv, GD) (sv,

H. salicampi ), H. gomseomensis (sv, GBU), (sv,

R. ginsenosidimutans (sv, CD), (sv, (sv, CB), (sv,

D. kyungheensis R. terrae (sv, CD), (sv,

sw, CD sw, (sv, GSI) (sv,

(sl, UN),

L. oryzae (sv, GD), (sv,

L. sediminicola (sv, CD), (sv, K. sediminilitoris

L. koreensis P. yeongjuensis P. (sv, GSI), (sv,

M. hwangdonensis (sr, JB), (sr, P. putridarboris P.

L. daejeonensis R. soli H. kribbensis (sv, CD), (sv, H. denitrificans (

(tf, CD)†, L. olei

(co, GSI),

(ww, CD), (ww, R. ginsengisoli

D. koreensis (co, CD)

(sw, UD), (sw,

L. yangpyeongensis (sv, CD), (sv,

(sl, CD), (sv, CD), (sv,

(ff, AR), (ff, (ww, AR), (ww,

(sv, UD) (sv,

(sv, JJ), (sv, (sv, GSI), (sv, (sv, CD), (sv,

K. koreensis (source, region, function) (sv, GSI), (sv,

(sw, GSI) (sw, S. koreensis P. suwonensis P.

P. koreensis P. L. rhizosphaerae D. soli L. hankyongensis M. dokdonensis R. fulvus H. koreensis L. novalis (sv, JJ) (sv, H. cibimaris Species

D. jejuensis L. terrae L. concretionis (sv, CB) (sv, (sv, CD), (sv,

(sv, GD), (sv, L. marina (sw, GBU), (sw,

R. rhizosphaerae (sv, UD), (sv, (tf, GSI)

(sv, GSI), (sv, (ma, JG)

(ss, JJ),

(ma, JG)

(sv, UD)†, (sv,

(sv, GSI), (sv, (ff, AR), (ff,

(ff, AR), (ff, (sv, GD), (sv, D. terrae

(ww, CD), (ww,

(sw, GSI) (sw,

(sl, JB)

(sv, CD), (sv, (sv, GSI), (sv,

(tf, CD),

(sv, GSI), (sv,

M. basaltis (sv, GBU, ¶f), (sv, (sv, JJ), (sv, P. sangjuensis P.

L. soli S. ginsengisoli

R. caeni (sv, CD) (sv, R. umsongensis

H. jeotgali D. koreensis S. orenii P. dokdonensis P. N. concharum L. marina K. geojedonensis H. ganghwensis K. scapharcae L. panaciterrae L. niastensis L. ginsengisoli H. alimentaria L. lutimaris D. soli R. koreensis (tf, CD, ¶e) D. ginsengisoli

L. capsici S. terrae (sv, GD), (sv, (sv, WS, ¶d)† (sv,

(sl, CD),

(sr, GBU), (sr, (ww, CD), (ww, (sv, CD), (sv, (ww, CB), (ww,

(ff, AR) (ff, (sv, GSI), (sv,

(sw, UD), (sw, (ww, AR), (ww,

(tf, GSI), (tf, CD),

(sv, GSI) (sv,

(tf, CD)†

(sl, CD)

(sw, JJ)†, (sw, (sv, GSI), (sv, (sv, GSI) (sv, (sw, CD) (sw, (fw, CD) (fw,

(sv, CD), (sv, (sv, GSI), (sv, (sw, GW)†, (sw, (sr, JJ), (sr, (tf, JB), (sv, CD) (sv,

(tf, JG), (sw, GBU, ¶d), (sw,

(sv, GSI)† (sv, (ma, GW)†, (cu, AR)

(sw, GSI) (sw,

(sw, CD) (sw,

(ma, JG)

(sv, WS) (sv, (tf, JG)

(sv, GSI), (sv,

(sv, GSI), (sv,

(sv, GSI), (sv, (sv, JJ)† (sv,

(ma, JG)

(sv, CD)†, (sv,

A. gelatiniphagus P. granulatum P. S. salaries L. fragariae L. agri R. thiooxydans P. perspica P. L. aestuarii O. citrea N. acidivorans S. soli K. marisflavi K. asteriae T. marinus T. D. marensis R. humi F. keumensis F. H. janggokensis P. daejeonensis P. L. solanacearum S. algicola F. yonginensis F. R. cellulosilytica H. chejuensis A. ceti T. koreensis T. S. dokdonensis H. taeanensis P. sacheonensis P. D. ginsengisoli D. agri R. aciditrophus N. terrae L. niabensis C. crustatorum L. lipolytica S. daejeonensis C. soli L. yeojuensis L. panacisoli K. aquimarina H. aestuarii M. algicida E. atrinae (8)

(3)

(1)

(1) (1) (12)

(1) (2)

(1) (1)

(4)

(2)

1)

(1)

(

(1) (1)

(1) (3) (3) (11) (1)

(2)

(23)

(1) (2) (1)

(1)

(2) (4)

(2) (1) (1)

(1)

Genus

(8)

Oleiagrimonas Kangiella Luteibacter Kistimonas Silanimonas Kushneria Fluviicoccus Chujaibacter Pontibacterium Stenotrophomonas Lysobacter Thermomonas Dyella Marinomonas Halomonas Rhodanobacter Salinicola Salinisphaera Thalassolituus Rudaea Pseudoxanthomonas Dokdonella Nevskia Panacagrimonas Amphritea Luteimonas Litoricola Fulvimonas Neptunomonas Solimonas species with valid name originated from Korea. (39)

(28)

(9) Proteobacteria

(2)

(1) 45)

(14) (14)

( (6)

(2)† (4)

4) (5) (

Family List of novel Continued. Nevskiales Oceanospirillales Rhodanobacteraceae Salinisphaeraceae Nevskiaceae Litoricolaceae Lysobacteraceae Halomonadaceae Kangiellaceae Halomonadaceae Order Order Order Order Table 2. Table Table 2. Table May 2019 Seong et al. Novel Proteobacteria species of Korea 209

(ss, JJ),

(tf, JB, ¶a),

(ff, AR), (ff,

P. sabulinigri P. P. lipolyticum P. (tf, CD, ¶j)

P. cibarius P. (ss, GD),

(sw, GSI), (sw,

(sw, UN), (sw,

(sv, JG) (sv,

V. oceanisediminis V. P. celer P. A. soli P. pohangensis P. P. ganghwense P. (tf, CD),

(sw, UN), (sw, (sv, CB) (sv,

(py, UN), (py, (tf, JB),

(sv, GSI, ¶a), (sv,

(source, region, function)

V. litoralis V. P. panacis P. P. aquimaris P. Species (sw, JG) (sw,

P. umsongensis P. P. gaetbulicola P. (ma, JG, ¶d), A. halotolerans

(sv, GSI), (sv, (ff, AR), (ff,

(tf, JG, ¶a)† (sw, UN) (sw,

(sr, CD), (sr,

(fw, GSI)† (fw, (sw, JB) (sw,

(ma, JG),

P. wandonensis P. (fs, GW),

P. koreensis P. V. hemicentroti V. (sw, JG) (sw, L. lipolytica

R. marina P. piscinae P. P. alimentarius P. P. aplysiae P. P. namhaensis P. P. taeanensis P. A. brisouii (sw, GW)†, (sw,

(ss, JJ),

(py, GBU, ¶f)† (py,

(sv, GBU), (sv, (tf, GSI), (ta, UN)

(tf, JG), (tf, JB) (sw, GD), (sw, (tf, GSI) (tf, JG),

(sw, GW) (sw, (sw, JG) (sw,

(ff, AR), (ff, (fw, GW), (fw,

(ta, UN) (sv, UD), (sv,

(ta, UN),

P. segetis P. P. baekdonensis P. acticola P. P. jinjuensis P. R. aestuarii S. aestuarii P. aquatic P. G. marina V. areninigrae V. P. lutimaris P. P. aestuarii P. A. apis W. larvae W. P. jeotgali P. G. sunshinyii O. sasakiae M. aminisulfidivorans P. aestuarii P. L. aequoris (2)

(1)

(1)

(1)

(6)

(7) (1) (agricultural and forest); seawater; sw, ta, terrestrial ; tf, tidal flat sediment; wc, water cooling or Abbreviations purifying of system; wastewater. the ww, (2)

(4) (8)

(2)

(1)

(1) (2)

Genus (1) (4)

Vibrio Psychrobacter Orbus Perlucidibaca Pseudohongiella Pseudomonas Photobacterium Grimontia Gynuella Saccharospirillum Wohlfahrtiimonas Methylophaga Paraperlucidibaca Acinetobacter Reinekea Litorivivens species with valid name originated from Korea. (23)

(4)

(8)

Proteobacteria (1)

(1)

(4)

(11)

(15)

(1) (11)

(4)

Family (1)

Continued. List of novel Orbales Pseudomonadales Vibrionales Thiotrichales Pseudomonadaceae Moraxellaceae Unassigned Saccharospirillaceae Piscirickettsiaceae Orbaceae Vibrionaceae Order Order Order Order Order Order Order Order Order Unassigned Order Table 2. Table Table 2. Table deep sea ds, system; co, compost; cu, culture in lab.; ai, air and air-conditioning source: of the Abbreviations and order. genus, family, the creation of †Denotes the species. number of the parentheses are *Numerals in the soil without vegetation or freshwater; ma, marine animal; mp, plant or seaweed; py; terrestrial plant, sl, solar saltern and salt lake; sr, fermented food; fs, freshwater sediment; fw, sediment; fa, freshwater algae; ff, soil with vegetation contaminated soil; ss, seashore sand; sv, region: AR, artificial environment; CB, Chungbuk; CD, Chungnam/Deajeon; UD, Ulreung and Dokdo islands; GBU, Gyeongnam/Busan/Ulsan;JB, GD,Jeonbuk; Gyeongbuk/Daegu;JG, GSI;Jeonnam/Gwangju; Gyeonggi/Seoul/Incheon;JJ, Gangwon; GW, Jeju; UN, site unspecified; WS,West 5 sea islands. Abbreviations ofdegradation; Antibiotic ¶d, production; Polysaccharide ¶g, thedegradation; High-pressure ¶e, cold-adapted Protein substance degradation; production; ¶f, ¶h, Steroid acid production; ¶i, Denitrification; ¶j, Nitrogen function: fixation; ¶k, ¶a, Aliphatic hydrocarbon degradation; ¶b, Aromatic hydrocarbon degradation; ¶c, Herbicide Nitrate reduction. 210 JOURNAL OF SPECIES RESEARCH Vol. 8, No. 2 from Chungnam/Daejeon (80 genera, 33 families, 15 riaceae, and Rhodanobacteraceae were mainly isolated orders, and three classes), 120 species from Gyeonggi/ from the terrestrial environment such as cultivated soil, Seoul/Incheon (75 genera, 32 families, 15 orders, and freshwater, and wastewater. three classes), 72 species from Jeonnam/Gwangju (54 Moreover, both Microvirga species and three out of genera, 24 families, 14 orders, and three classes), 60 spe- five Methylobacterium species of the family Methylobac- cies from Gyeongnam/Busan/Ulsan (47 genera, 19 fami- teriaceae, order Rhizobiales and five out of 10 Massilia lies, 13 orders, and three classes), 58 species from Jeju (43 species of the family Oxalobacteraceae, order Burkholde- genera, 25 families, 14 orders, and three classes), 34 spe- riales were isolated from air samples. The members of cies from Gwangwon (31 genera, 17 families, 11 orders, the genera Methylobacterium, Microvirga, and Massilia and three classes), 30 species from Gyeongbuk/Daegu (26 had common characteristics; high G+C content over 60 genera, 17 families, 11 orders, and three classes), 30 spe- mol%, ubiquinone -8 or -10 as a major respiratory qui- cies from Jeonbuk (23 genera, 16 families, 10 orders, and none, and phosphatidylethanolamine, phosphatidylglycer- three classes), and 25 species from Ulreung-/Dok-do Is- ol, and diphosphatidylglycerol as major polar lipids. lands (23 genera, 19 families, 12 orders, and four classes). Several novel Proteobacteria species from Korean Since 26 species (20 genera, 15 families, 10 orders, and environments showed specific functions such as degra- three classes) were isolated from artificial environments dation of polysaccharide, protein, lipid or hydrocarbon, such as fermented foods, wastewater treatment systems, and pesticide, and production of bile acid, high-pressure and air conditioning systems, their regional origins were cold-adapted molecule, and antibiotics. Also, some spe- not exactly specified. Moreover, regarding the 42 species cies were involved in the nitrogen cycle with nitrogen fix- (33 genera, 20 families, 11 orders, and three classes) from ation, denitrification or nitrate-reduction (Table 2). natural environments, their isolation regions could not be Finally, a large number of novel Proteobacteria species obtained. are being isolated since researchers are aiming to find novel strains from extreme or untapped environments and Properties of the novel species: Isolates from soil, by using new cultivating methods (Yang et al., 2007; Al- freshwater, seawater, and tidal flat sediments of Korea tankhuu and Kim, 2017). were affiliated with many genera. However, several taxa had co-relationships with isolation sources. In particular, some species were mainly isolated from marine-related Acknowledgements environments such as seawater, tidal flat sediments, ma- rine animals, and solar salterns: families Erythrobacter- This work was supported by the Sunchon National Uni- aceae, Kordiimonadaceae, and Rhodobacteraceae of the versity Research Fund in 2018. class Alphaproteobacteria as well as Vibrionaceae, Aero- monadaceae, Alteromonadaceae, Colwelliaceae, Idiom- arinaceae, Pseudoalteromonadaceae, Shewanellaceae, eferences Cellvibrionaceae, Microbulbiferaceae, Chromatiaceae, R “Saccharospirillaceae”, Hahellaceae, Halomonadaceae, Ad Hoc Committee of the Judicial Commission of the ICSB. Kangiellaceae, and Oceanospirillaceae of the class Gam- 1976. First draft approved lists of bacterial names. Int. J. maproteobacteria. In particular, 10 out of 14 Halomona- Syst. Bacteriol. 26(4):563-599. daceae species were isolated from solar salterns and fer- Adeolu, M., S. Alnajar, S. Naushad and R.S. Gupta. 2016. mented foods. Moreover, these Halomonadaceae species Genome-based phylogeny and taxonomy of the ‘Entero- were halophilic or halotolerant; in particular, Halomonas bacteriales’: proposal for Enterobacterales ord. nov. di- taeanensis (Lee et al., 2005) and Halomonas jeotgali (Kim vided into the families Enterobacteriaceae, Erwiniaceae et al., 2010) could grow at 25% NaCl (w/v). Compared to fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. Korean novel bacterial species of other phyla, these Ha- nov., Hafniaceae fam. nov., Morganellaceae fam. nov., lomonas species were less halophilic than the Firmicutes and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. species such as Lentibacillus kimchii (Oh et al., 2016) and 66(12):5575-5599.

Virgibacillus alimentarius (Kim et al., 2011) but more Altankhuu, K. and J. Kim. 2017. Massilia solisilvae sp. nov., halophilic than the Actinobacteria species such as No- Massilia terrae sp. nov. and Massilia agilis sp. nov., iso- cardiopsis kunsanensis (Chun et al., 2000) and Kocuria lated from forest soil in South Korea by using a newly koreensis (Park et al., 2010) as well as the Bacteroidetes developed culture method. Int. J. Syst. Evol. Microbiol. species such as Salegentibacter salinarum (Yoon et al., 67(8):3026-3032. 2008) and Psychroflexus salinarum (Yoon et al., 2009). Bae, K.S., M.S Kim, J.H. Lee, J.W. Kang, D.I. Kim, J.H. Lee Members of the families Caulobacteraceae, - and C.N. Seong. 2016. Korean indigenous bacterial spe- ceae, Alcaligenaceae, Burkholderiaceae, Chromobacte- cies with valid names belonging to the phylum Actinobac- May 2019 Seong et al. Novel Proteobacteria species of Korea 211

teria. J. Microbiol. 54(12):789-795. phyla of life. Philos. Trans. R. Soc. Lond. B. Biol. Sci. Bazylinski, D.A., T.J. Williams, C.T. Lefevre, R.J. Berg, C.L. 345(1311):21-33. Zhang, S.S. Bowser, A.J. Dean and T.J. Beveridge. 2013. Garrity, G.M. and J.G. Holt. 2001. Taxonomic outline of the gen. nov., sp. nov., a marine, and Bacteria. In: D.R. Boone, R.W. Castenholz magnetotactic bacterium that represents a novel lineage and G.M. Garrity (eds.), Bergey’s manual of systematic (Magnetococcaceae fam. nov., Magnetococcales ord. bacteriology, 2nd edn, vol. 1, Springer, New York. pp. nov.) at the base of the Alphaproteobacteria. Int. J. Syst. 155-166. Evol. Microbiol. 63(3):801-808. Garrity, G.M., J.A. Bell and T. Lilburn. 2005. The revised Boden, R., L.P. Hutt and A.W. RAE. 2017. Reclassification road map to the manual. In: D.J. Brenner, N.R. Krieg, J.T. of aquaesulis (Wood & Kelly, 1995) as Staley and G.M. Garrity (eds.), Bergey’s manual of sys- Annwoodia aquaesulis gen. nov., comb. nov., transfer tematic bacteriology, 2nd edn, vol. 2, Springer, New York. of Thiobacillus (Beijerinck, 1904) from the Hydrogeno- pp. 159-206. philales to the Nitrosomonadales, proposal of Hydrog- Gibbons, N.E. and R.G.E. Murray. 1978. Proposals concern- enophilalia class. nov. within the ‘Proteobacteria’, and ing the higher taxa of bacteria. Int. J. Syst. Bacteriol. four new families within the orders Nitrosomonadales and 28(1):1-6. Rhodocyclales. Int. J. Syst. Evol. Microbiol. 67(5):1191- Hahn, M.W., J. Schmidt, U. Koll, M. Rohde, S. Verbarg, 1205. A. Pitt, R. Nakai, T. Naganuma and E. Lang. 2017. Sil- Brenner, D.J., N.R. Krieg, J.T. Staley and G.M. Garrity. (eds.). vanigrella aquatica gen. nov., sp. nov., isolated from a 2005a. Bergey’s Manual of Systematic Bacteriology, 2nd freshwater lake, description of Silvanigrellaceae fam. nov. edn, vol. 2 (Part C: The Alpha-, Beta-, Delta-, and Epsi- and Silvanigrellales ord. nov., reclassification of the order lonproteobacteria). Springer, New York. in the class Oligoflexia, reclassification Brenner, D.J., N.R. Krieg, J.T. Staley, G.M. Garrity, D.R. of the families and Halobacteriovo- Boone and others. (eds.). 2005b. Bergey’s Manual of Sys- raceae in the new order Bacteriovoracales ord. nov., and tematic Bacteriology, 2nd edn, vol. 2 (Part B: The Gam- reclassification of the family Pseudobacteriovoracaceae maproteobacteria). Springer, New York. in the order Oligoflexales. Int. J. Syst. Evol. Microbiol. Cavalier-Smith, T. 2002. The neomuran origin of archaebac- 67(8):2555-2568. teria, the negibacterial root of the universal tree and bac- Harbison, A.B., L.E. Price, M.D. Flythe and S.L. Brauer. terial megaclassification. Int. J. Syst. Evol. Microbiol. 52 2017. Micropepsis pineolensis gen. nov., sp. nov., a mildly (1):7-76. acidophilic alphaproteobacterium isolated from a poor fen, Choi, G., M. Gao, D.S. Lee and H. Choi. 2017. Mabikibacter and proposal of Micropepsaceae fam. nov. within Micro- ruber gen. nov., sp. nov., a bacterium isolated from marine pepsales ord. nov. Int. J. Syst. Evol. Microbiol. 67(4):839- sediment, and proposal of Mabikibacteraceae fam. nov. in 844. the class Alphaproteobacteria. Int. J. Syst. Evol. Microbi- Huang, Z., F. Guo, Q. Lai and Z. Shao. 2017. Notoacmei- ol. 67(9):3375-3380. bacter marinus gen. nov., sp. nov., isolated from the gut of Christensen, P. and F.D. Cook. 1978. Lysobacter, a new genus a limpet and proposal of Notoacmeibacteraceae fam. nov. of nonfruiting, gliding bacteria with a high base ratio. Int. J. in the order Rhizobiales of the class Alphaproteobacteria. Syst. Bacteriol. 28(7):367-393. Int. J. Syst. Evol. Microbiol. 67(8):2527-2531. Chun, J., K.S. Bae, E.Y. Moon, S.O. Jung, H.K. Lee and S.J. Hwang, C.Y. and B.C. Cho. 2008. Cohaesibacter gelatinilyt- Kim. 2000. Nocardiopsis kunsanensis sp. nov., a moder- icus gen. nov., sp. nov., a marine bacterium that forms a ately halophilic actinomycete isolated from a saltern. Int. J. distinct branch in the order Rhizobiales, and proposal of Syst. Evol. Microbiol. 50(5): 1909-1913. Cohaesibacteraceae fam. nov. Int. J. Syst. Evol. Microbi- Corteselli, E.M., M.D. Aitken and D.R. Singleton. 2017. De- ol. 58(1):267-277. scription of Immundisolibacter cernigliae gen. nov., sp. Iino, T., M. Ohkuma, Y. Kamagata and S. Amachi. 2016. Iodi- nov., a high-molecular-weight polycyclic aromatic hydro- dimonas muriae gen. nov., sp. nov., an aerobic iodide-ox- carbon-degrading bacterium within the class Gammapro- idizing bacterium isolated from brine of a natural gas and teobacteria, and proposal of Immundisolibacterales ord. iodine recovery facility, and proposals of Iodidimonadace- nov. and Immundisolibacteraceae fam. nov. Int. J. Syst. ae fam. nov., Iodidimonadales ord. nov., Emcibacteraceae Evol. Microbiol. 67(4):925-931. fam. nov. and Emcibacterales ord. nov. Int. J. Syst. Evol. Dedysh, S.N., E.S. Haupt and P.F. Dunfield. 2016. Emended Microbiol. 66(12):5016-5022. description of the family and transfer of Imhoff, J.F. and A. Hiraishi. 2005. Aerobic bacteria containing the genera Chelatococcus and to the family and belonging to the Alphaproteobac- Chelatococcaceae fam. nov. Int. J. Syst. Evol. Microbiol. teria. In: D.J. Brenner, N.R. Krieg, J.T. Staley and G.M. 66(8):3177-3182. Garrity (eds.), Bergey’s manual of systematic bacteriology, Embley, T.M., R.P. Hirt and D.M. Williams. 1994. Biodiver- 2nd edn, vol. 2 (Part A), Springer, New York. pp. 145-148. sity at the molecular level: the domains, kingdoms and Imhoff, J.F., A. Hiraishi and J. Suling. 2005. Anoxygenic 212 JOURNAL OF SPECIES RESEARCH Vol. 8, No. 2

phototropic purple bacteria. In: D.J. Brenner, N.R. Krieg, member of Orbaceae fam. nov., Orbales ord. nov., a sister J.T. Staley and G.M. Garrity (eds.), Bergey’s manual of taxon to the order ‘Enterobacteriales’ of the Gammapro- systematic bacteriology, 2nd edn, vol. 2 (Part A), Springer, teobacteria. Int. J. Syst. Evol. Microbiol. 63(6):2008- New York. pp. 131-144. 2018. Kämpfer, P., S.P. Glaeser, L.K. Nilsson, T. Eberhard, S. Lee, J.C., C.O. Jeon, J.M. Lim, S.M. Lee, J.M. Lee, S.M. Håkansson, L. Guy, S. Roos, H.-J. Busse and O. Tereni- Song, D.J. Park, W.J. Li and C.J. Kim. 2005. Halomonas us. 2015. Proposal of Thorsellia kenyensis sp. nov. and taeanensis sp. nov., a novel moderately halophilic bac- Thorsellia kandunguensis sp. nov., isolated from larvae of terium isolated from a solar saltern in Korea. Int. J. Syst. Anopheles arabiensis, as members of the family Thorsell- Evol. Microbiol. 55(5):2027-2032. iaceae fam. nov. Int. J. Syst. Evol. Microbiol. 65(2):444- Lin, J.Y., W.J. Hobson and J.T. Wertz. 2016. Ventosimonas 451. gracilis gen. nov., sp. nov., a member of the Gammapro- Kim, H., Y.J. Choo and J.C. Cho. 2007. Litoricolaceae fam. teobacteria isolated from varians guts nov., to include Litoricola lipolytica gen. nov., sp. nov., representing a new family, Ventosimonadaceae fam. nov., a marine bacterium belonging to the order Oceanospiril- within the order ‘Pseudomonadales’. Int. J. Syst. Evol. lales. Int. J. Syst. Evol. Microbiol. 57(8):1793-1798. Microbiol. 66(8):2869-2875. Kim, J., M.J. Jung, S.W. Roh, Y.D. Nam, K.S. Shin and J.W. Makita, H., E. Tanaka, S. Mitsunobu, M. Miyazaki, T. Nunou- Bae. 2011. Virgibacillus alimentarius sp. nov., isolated ra, K. Uematsu, Y. Takaki, S. Nishi, S. Shimamura and K. from a traditional Korean food. Int. J. Syst. Evol. Microbi- Takai. 2017. Mariprofundus micogutta sp. nov., a novel ol. 61(12):2851-2855. iron-oxidizing zetaproteobacterium isolated from a deep- Kim, M.S., S.W. Roh and J.W. Bae. 2010. Halomonas jeot- sea hydrothermal field at the Bayonnaise knoll of the gali sp. nov., a new moderate halophilic bacterium iso- Izu-Ogasawara arc, and a description of Mariprofundales lated from a traditional fermented seafood. J. Microbiol. ord. nov. and Zetaproteobacteria classis nov. Arch. Micro- 48(3):404-10. biol. 199(2):335-346. Kim, W.S., L. Gardan, S.L. Rhim and K. Geider. 1999. Erwin- Miroshnichenko, M.L., S. L’Haridon, P. Schumann, S. Spring, ia pyrifoliae sp. nov., a novel that affects Asian E.A. Bonch-Osmolovskaya, C. Jeanthon and E. Stacke- pear trees (Pyrus pyrifolia Nakai). Int. J. Syst. Evol. Mi- brandt. 2004. profundus sp. nov., a novel crobiol. 49(2):899-906. of Nautiliales ord. nov. within the class ‘Epsi- Kojima, H., A. Shinohara and M. Fukui. 2015. Sulfurifustis lonproteobacteria’, isolated from a deep-sea hydrothermal variabilis gen. nov., sp. nov., a oxidizer isolated vent. Int. J. Syst. Evol. Microbiol. 54(1):41-45. from a lake, and proposal of Acidiferrobacteraceae fam. Murray, R.G.E. 1984. The higher taxa, or, a place for every- nov. and Acidiferrobacterales ord. nov. Int. J. Syst. Evol. thing...?, In: N.R. Krieg and J.G. Holt (eds.), Bergey’s Microbiol. 65(10):3709-3713. Manual of Systematic Bacteriology, vol. 1, The Williams Krieg, N.R., W. Ludwig, J. Euzéby and W.B. Whitman. 2011. & Wilkins Co., Baltimore, USA. pp. 31-34. Phylum XIV. Bacteroidetes phyl. nov., In: N.R. Krieg, J.T. Nakai, R., M. Nishijima, N. Tazato, Y. Handa, F. Karray, S. Staley, D.R. Brown, B.P. Hedlund, B.J. Paster, N.L. Ward, Sayadi, H. Isoda and T. Naganuma. 2014. Oligoflexus W. Ludwig and W.B. Whitman (eds.), Bergey’s Manual of tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, Systematic Bacteriology, 2nd edn, vol. 4, Springer, New filamentous bacterium of a novel proteobacterial lineage, York. pp. 25. and description of Oligoflexaceae fam. nov., Oligoflexales Kurahashi, M., Y. Fukunaga, S. Harayama and A. Yokota. ord. nov. and Oligoflexia classis nov. Int. J. Syst. Evol. 2008. Sneathiella glossodoripedis sp. nov., a marine alp- Microbiol. 64(10):3353-3359. haproteobacterium isolated from the nudibranch Glossod- Naushad, S., M. Adeolu, S. Wong, M. Sohail, H.E. Schellhorn oris cincta, and proposal of Sneathiellales ord. nov. and and R.S. Gupta. 2015. A phylogenomic and molecular Sneathiellaceae fam. nov. Int. J. Syst. Evol. Microbiol. marker based taxonomic framework for the order Xan- 58(3):548-552. thomonadales: proposal to transfer the families Algiphi- Kwon, K.K., H.S. Lee, S.H. Yang and S.J. Kim. 2005. Kor- laceae and Solimonadaceae to the order Nevskiales ord. diimonas gwangyangensis gen. nov., sp. nov., a marine nov. and to create a new family within the order Xan- bacterium isolated from marine sediments that forms a thomonadales, the family Rhodanobacteraceae fam. nov., distinct phyletic lineage (Kordiimonadales ord. nov.) in containing the genus Rhodanobacter and its closest rela- the ‘Alphaproteobacteria’. Int. J. Syst. Evol. Microbiol. tives. 107(2):467-485. 55(5):2033-2037. Oh, Y.J., H.-W. Lee, S.K. Lim, M.-S. Kwon, J. Lee, J.-Y. Kwong, W.K. and N.A. Moran. 2013. Cultivation and charac- Jang, J.H. Lee, H.W. Park, Y.-D. Nam, M.-J. Seo, S.W. terization of the gut symbionts of honey bees and bumble Roh and H.-J. Choi. 2016. Lentibacillus kimchii sp. nov., bees: description of Snodgrassella alvi gen. nov., sp. nov., an extremely halophilic bacterium isolated from kimchi, a a member of the family Neisseriaceae of the Betaproteo- Korean fermented vegetable. Antonie van Leeuwenhoek bacteria, and Gilliamella apicola gen. nov., sp. nov., a 109(6):869-876. May 2019 Seong et al. Novel Proteobacteria species of Korea 213

Park, E.J., S.W. Roh, M.S. Kim, M.J. Jung, K.S. Shin and J.W. Venkata Ramana, V., S. Kalyana Chakravarthy, E.V.V. Ra- Bae. 2010. Kocuria koreensis sp. nov., isolated from fer- maprasad, V. Thiel, J.F. Imhoff, Ch. Sasikala and Ch.V. mented seafood. Int. J. Syst. Evol. Microbiol. 60(1):140- Ramana. 2013. Emended description of the genus Rhodo- 143. thalassium Imhoff et al., 1998 and proposal of Rhodo- Seong, C.N., J.W. Kang, J.H. Lee, S.Y. Seo, J.J. Woo, C. Park, thalassiaceae fam. nov. and Rhodothalassiales ord. nov. K.S. Bae and M.S. Kim. 2018. Taxonomic hierarchy of Syst. Appl. Microbiol. 36(1):28-32. the phylum Firmicutes and novel Firmicutes species orig- Wang, G., M. Tang, H. Wu, S. Dai, T. Li, C. Chen, H. He, J. inated from various environments in Korea. J. Microbiol. Fan, W. Xiang and X. Li. 2015c. Aliikangiella marina gen. 56(1):1-10. nov., sp. nov., a marine bacterium from the culture broth Skerman, V.B.D., V. McGowan and P.H.A. Sneath. 1980. of Picochlorum sp. 122, and proposal of Kangiellaceae Approved Lists of Bacterial Names. Int. J. Syst. Bacteriol. fam. nov. in the order Oceanospirillales. Int. J. Syst. Evol. 30(1):225-420. Microbiol. 65(12):4488-4494. Skerman, V.B.D., V. McGowan and P.H.A. Sneath. 1989. Ap- Wang, G., M. Tang, T. Li, S. Dai, H. Wu, C. Chen, H. He, J. proved Lists of Bacterial Names (Amended). ASM Press, Fan, W. Xiang and X. Li. 2015b. Wenzhouxiangella mari- Washington DC., USA. na gen. nov, sp. nov, a marine bacterium from the culture Spain, A.M., L.R. Krumholz and M.S. Elshahed. 2009. Abun- broth of Picochlorum sp. 122, and proposal of Wenzhoux- dance, composition, diversity and novelty of soil Proteo- iangellaceae fam. nov. in the order Chromatiales. Antonie bacteria. ISME J 3(8):992-1000. van Leeuwenhoek 107(6):1625-1632. Spieck, E. and E. Bock. 2005. Nitrifying bacteria. In: D.J. Wang, Z.-J., Q.-Q. Liu, L.-H. Zhao, Z.-J. Du and G.-J. Chen. Brenner, N.R. Krieg, J.T. Staley and G.M. Garrity (eds.), 2015a. Bradymonas sediminis gen. nov., sp. nov., isolated Bergey’s manual of systematic bacteriology, 2nd edn. vol. from coastal sediment, and description of Bradymonada- 2 (Part A), Springer, New York. pp. 149-152. ceae fam. nov. and Bradymonadales ord. nov. Int. J. Syst. Spring, S., C. Scheuner, M. Goker and H.-P. Klenk. 2015. A Evol. Microbiol. 65(5):1542-1549. taxonomic framework for emerging groups of ecologi- Watanabe, T., H. Kojima and M. Fukui. 2015. Sulfuriferula cally important marine Gammaproteobacteria based on multivorans gen. nov., sp. nov., isolated from a freshwater the reconstruction of evolutionary relationships using ge- lake, reclassification of ‘Thiobacillus plumbophilus’ as nome-scale data. Front Microbiol. 6:281. Sulfuriferula plumbophilus sp. nov., and description of Stackebrandt, E., R.G.E. Murray and H.G. Truper. 1988. Pro- Sulfuricellaceae fam. nov. and Sulfuricellales ord. nov. teobacteria classis nov., a name for the phylogenetic taxon Int. J. Syst. Evol. Microbiol. 65(5):1504-1508. that includes the “purple bacteria and their relatives”. Int. J. Wiese, J., V. Thiel, A. Gärtner, R. Schmaljohann and J.F. Im- Syst. Evol. Microbiol. 38(3):321-325. hoff. 2009. Kiloniella laminariae gen. nov., sp. nov., an Teramoto, M., K. Yagyu and M. Nishijima. 2015. Perspicu- alphaproteobacterium from the marine macroalga Lami- ibacter marinus gen. nov., sp. nov., a semi-transparent naria saccharina. Int. J. Syst. Evol. Microbiol. 59(2):350- bacterium isolated from surface seawater, and description 356. of Arenicellaceae fam. nov. and Arenicellales ord. nov. Williams, K.P. and D.P. Kelly. 2013. Proposal for a new class Int. J. Syst. Evol. Microbiol. 65(2):353-358. within the phylum Proteobacteria, Acidithiobacillia Tindall, B.J. 2014. The family name Solimonadaceae Losey classis nov., with the type order , and et al. 2013 is illegitimate, proposals to create the names emended description of the class Gammaproteobacteria. ‘Sinobacter soli’ comb. nov. and ‘Sinobacter variicoloris’ Int. J. Syst. Evol. Microbiol. 63(8):2901-2906. contravene the Code, the family name Xanthomonad- Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. aceae Saddler and Bradbury 2005 and the order name 51(2):221-271. Saddler and Bradbury 2005 are illegit- Woese, C.R., O. Kandler and M.L. Wheelis. 1990. Towards imate and notes on the application of the family names a natural system of : proposal for the domains Solibacteraceae Zhou et al. 2008, Nevskiaceae Henrici Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. and Johnson 1935 (Approved Lists 1980) and Lysobacter- 87(12):4576-4579. aceae Christensen and Cook 1978 (Approved Lists 1980) Xiao, M., N. Salam, L. Liu, J.-Y. Jiao, M.-L. Zheng, J. Wang, S. and order name Lysobacteriales Christensen and Cook Li, C. Chen, W.-J. Li and P.-H. Qu. 2018. Fastidiosibacter 1978 (Approved Lists 1980) with respect to the classifica- lacustris gen. nov., sp. nov., isolated from a lake water tion of the corresponding type genera Solibacter Zhou et sample, and proposal of Fastidiosibacteraceae fam. nov. al. 2008, Nevskia Famintzin 1892 (Approved Lists 1980) within the order Thiotrichales. Int. J. Syst. Evol. Microbi- and Lysobacter Christensen and Cook 1978 (Approved ol. 68(1):347-352. Lists 1980) and importance of accurately expressing the Yamamoto, E., H. Muramatsu and K. Nagai. 2014. Vulgati- link between a taxonomic name, its authors and the corre- bacter incomptus gen. nov., sp. nov. and Labilithrix luteo- sponding description/circumscription/emendation. Int. J. la gen. nov., sp. nov., two isolated from soil Syst. Evol. Microbiol. 64(1):293-297. in Yakushima Island, and the description of Vulgatibacte- 214 JOURNAL OF SPECIES RESEARCH Vol. 8, No. 2

raceae fam. nov., Labilitrichaceae fam. nov. and Anaero- tibacter salinarum sp. nov., isolated from a marine solar myxobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. saltern. Int. J. Syst. Evol. Microbiol. 58(2):365-369. 64(10):3360-3368. Yoon, J.H., S.J. Kang, Y.T. Jung and T.K. Oh. 2009. Psychro- Yang, S.H., J.H. Lee, J.S. Ryu, C. Kato and S.J. Kim. 2007. flexus salinarum sp. nov., isolated from a marine solar Shewanella donghaensis sp. nov., a psychrophilic, piezo- saltern. Int. J. Syst. Evol. Microbiol. 59(10):2404-2407. sensitive bacterium producing high levels of polyunsatu- rated fatty acid, isolated from deep-sea sediments. Int. J. Submitted: May 15, 2019 Syst. Evol. Microbiol. 57(2):208-212. Revised: May 17, 2019 Yoon, J.H., M.H. Lee, S.J. Kang and T.K. Oh. 2008. Salegen- Accepted: May 19, 2019