Eriophyid Mites Bud, Blister, Gall, and Rust Mites

Total Page:16

File Type:pdf, Size:1020Kb

Eriophyid Mites Bud, Blister, Gall, and Rust Mites Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-149-11 September 2011 Eriophyid Mites bud, blister, gall, and rust mites Ryan S. Davis, Arthropod Diagnostician and Taun Beddes, Cache County Horticulture Agent WHAT YOU SHOULD KNOW • Eriophyid mites cannot be seen without a 20x hand lens or greater magnification. • Eriophyid mites seldom cause serious injury or stress to plants; damage is normally aesthetic. • Damage from eriophyid mites usually consists of leaf galls, bud or flower galls, blisters, scabbing, and deformities of leaves, stems, buds, and flowers. • Control techniques include pruning, plant removal, insecticidal soap, horticultural oils, predatory mites, and broad-spectrum insecticides and miticides. Fig. 2. Microscopic view of an eriophyid mite (Aceria INTRODUCTION anthocoptes).2 Eriophyid mites are translucent, cigar-shaped microscopic mites that cause deformities on many plants species. described from around the world with many species still These mites are noticed when their feeding causes abnor- undescribed. Needless to say, you are likely to encounter malities of plant tissues such as erineum, galls, brooms, these mites some time in your gardening future. leaf curling, blisters, rusts, silvering, fruit rusetting, and de- formed buds, catkins, fruits, etc. Fortunately, these mites rarely cause serious harm to plants, and control is seldom needed. In fact, eriophyid mites can serve as an alterna- GENERAL BIOLOGY tive food source for predatory mites when their primary Family Name: Eriophyidae food source is absent. In that way, eriophyid mites can actually help reduce outbreaks of spider mites and other Range: Worldwide insects on which predatory spider mites feed, by allow- Hosts: Some mites are host specific, while others attack ing predatory mites to survive in the absence of their many plant, tree, and shrub species (Table 2). primary food. There are 1,859 species of eriophyid mites Identification of Adult:Nearly invisible to the unaided eye (1/100” in length), cylindrical/cigar-shaped, tapering from head to rear, and translucent white (Fig. 1). Unlike most mites, eriophyids only have 4 legs located near the head. Life History: Mites generally overwinter as fertilized adult females under bud scales, or protected sites on or near the host plant, and emerge at bud break in spring. Both males and females are present throughout the growing season. Reproduction is continuous, with generations completed every 2-3 weeks; overlapping generations are present. Key Habits: Overwintering females emerge from under budscales and other protected sites to lay eggs and feed on new foliage when buds begin to break in the spring. This time is most adventitious for insecticide applications. Fig. 1. Citrus rust mite (Phyllocoptruta oleivora).1 Some may transmit viruses that can deform plants or GENERAL BIOLOGY CONTINUED cause economic losses to various crops. Damage description: Below are pictures of symptoms caused by eriophyid mites categorized by plant part. Fig. 9. Cottonwood catkin gall mite (Eriophyes newesse- Fig. 10. Ash flower gall mite (Eriophyes fraxiniflora).1 gi).3 Fig. 3. Galls caused by boxelder pouchgall mite (Eriophy- Fig. 4. Leaf blisters on pear caused by pearleaf blister es negundi).3 mite (Phytoptus pyri).4 Fig. 11. Hackberry witches broom caused by Eriophyes Fig. 12. Example of a stem gall mite (Aceria sp.) on celtis.3 maple.8 Fig. 5. Erineum on Rocky Mountain Maple caused by Eri- Fig. 6. Fingergalls on chokecherry caused by Phytoptus ophyes calaceris.5 emarginate.4 Fig. 13. Poplar bud gall caused by Eriophyes parapopuli.3 Fig. 14. Damage caused by rose rosette virus transmitted by Phyllocoptes fructiphilus.4 PHOTO CREDITS 1. Texas A&M University, http://cookislands.bishopmuseum.org/species.asp?i 6. Clark, J.C. University of California Statewide IPM Project. d=9294. 7. Solomon, J. USDA Forest Service. Bugwood.org. 8. Csoka, G. Hungary Forest Research Institute. Bugwood.org. 2. Eric Erbe, USDA Agricultural Research Service, Bugwood.org. 3. Whitney Cranshaw, Colorado State University, Bugwood.org. Fig. 7. Bronzing of pear leaves caused by pear rust mite Fig. 8. Russeting of pear fruit by pear rust mite (Epitrimerus 4. Keifer, H.H., Baker, E.W., Kono, T., Delfinado, M., and Styer, W.E. An (Epitrimerus pyri).6 pyri).6 Illustrated Guide to Plant Abnormalities Caused by Eriophyid Mites. 5. Ciesla, W.M. Forest Health International. Bugwood.org. requires full coverage of foliage (top and bottom) CONTROL to be effective. Frequent applications are needed, eriophyid mite damage occurs on many plant species but may cause plant stress if used too often (inhibits and often does not impact long term health. Because photosynthesis). COMMON ERIOPHYID MITES AFFECTING PLANTS IN UTAH of this, chemical pesticides should not be considered a • Sulfur: Sulfur has long been used for mite control. Common Name Scientific Name Host Plants Damage Description primary management option. Full coverage is necessary for control. Do not apply tomato russet mite Aculops lycopersici tomato, nightshade plants new infestations turn lower stems and leaves brown, when temperatures exceed 90°F, or during periods of (Solanaceae) eventually withering; rusetting of tomato fruit; death high humidity. Non-Chemical Control • Neem oil: Azadirachtin (group unknown) is a bo- honeylocust rust mite Aculops spp. honeylocust feeding on undersides of leaves causes bronzing that is Cultural control practices that modify the growing envi- tanical insect growth regulator acquired from neem visible by late summer ronment can reduce the occurrence of unwanted pests. trees. peach silver mite Aculus cornutus peach, nectarine, almond silvering of leaves in late summer before leaf drop • Pesticide avoidance: Overuse of insecticides and • Predatory mites: Naturally occurring predatory willow pouchgall mite Aculops tetanothrix willow 2-3 mm diameter irregular and beadlike galls usually miticides can eliminate natural predators, and can mites often feed on Eriophyid mites and can keep located near the leaf midrib or between veins; gall color lead to pest resistance, making long-term control populations at tolerable levels. Avoid the use of is pink to red-purple to yellow and ranges from fuzzy, rough, to smooth; galls may cover whole leaf difficult. broad-spectrum insecticides to preserve predatory mites. Low or extinct populations of predatory mites apple rust mite Aculus schlechtendali apple injured terminal growth; lengthwise leaf curl; fruit ruset- • Monitor/scout: Periodic examination of plant mate- my be supplemented with predatory mites available ting rial reveal Eriophyid populations before they increase for order. One good option for hot arid regions is privet rust mite Asculus ligustri privet scratched appearance on top of leaves turning brown; to damaging numbers. Galendromus occidentalis (western predatory mite). leaf curl on young leaves • Plant selection: Use plants that are less susceptible Other species of predatory mites are available, but grape erineum mite Colomerus vitis grape deformation of bud clusters; felty erineum on lower leaf to eriophyid mites, and that are adapted to Utah’s work best in humid conditions, such as in a green- surface followed by blister-like swellings on upper leaf arid climate; contact your local USU Extension office house. Rocky Mountain Maple Eriophyes calaceris Rocky Mountain Maple greenish yellow to pink, crimson, or purple-red erineum for recommendations. Make sure plants or planting erineum mite on upper leaf surface, usually missing the major veins material you select are free from eriophyid mites. Insecticides and Miticides (Fig. 5) • Prune: Remove infested leaves or branches and hackberry mite Eriophyes celtis hackberry thin, short, stunted, and tightly bunched twigs resulting Table 1 contains an abbreviated list of active ingredients remove from the property. in witches’ brooms (Fig. 11) effective against Eriophyid mites. Make sure the host ash flowergall mite Eriophyes fraxiniflora ash infloresence gall (Fig. 10) • Plant removal: Heavily infested plants such as toma- plant is listed on product label you choose. toes and wheat, may need to be removed to reduce boxelder pouchgall mite Eriophyes negundi boxelder pouch-like galls on upper leaf surface created by inden- • When using pesticides, rotate the chemical group the spread of mites. Some mites have secondary tations on the underside of leaves, filled with fine white on a yearly basis to avoid insect resistance. Chemi- hairs-galls are mostly solitary, located between veins host plants, so removal of host weeds minimizes cal groups are listed in Table 1. sources of re-infestation. cottonwood catkin gall mite Eriophyes newessegi poplar (Populus spp.) grape-like growths/distortions of catkins; affected cat- • For gall-forming mites, once visible damage such as kins remain on tree until mid summer (Fig. 9) galls are observed, it is often too late to treat during poplar budgall mite Eriophyes parapopuli poplar irregular, asymmetrical, bumpy, solid mass of fleshy Chemical Control that growing season. swelling of the bud (Fig. 13) If severe infestations are causing major aesthetic dam- wheat curl mite/bulb mite Eriophyes tulipae barley, oats, corn, wheat, Poa leaf curling; red-streaked corn; leaf margin curling; age, tree stress, or crop economic loss, insecticides/miti- spp., Agropyron spp., foxtail brown blistering on bulbs; can transmit wheat streak cides may be necessary. Consider reduced-risk pesticides Active Ingredient
Recommended publications
  • THE ERIOPHYID MITES of CALIFORNIA (Acarina: Eriophyidae) by H
    BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 2, NO. 1 THE ERIOPHYID MITES OF CALIFORNIA (Acarina: Eriophyidae) BY H. H. KEIFER (California Scare Department of Agriculture) UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1352 BULLETIN OF THE CALIFORNIA INSECT SURVEY Editors: E. 0. Essig, S. B. Freeborn, E. G. Linsley, R. L. Usinger Volume 2, No. 1, pp. 1-128, plates 1-39 Submitted by Editors, May 6, 1952 Issued December 12, 1952 Price $2.00 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA CAMBRIDGE UNIVERSITY PRESS LONDON, ENGLAND PRINTED BY OFFSET IN THE UNITED STATBS OF AMERICA Contents Page Introduction .......................... 1 Hostlist ........................... 5 Keys to Genera. Species. and higher Groups ...........11 Discussion of Species ..................... 20 Bib 1iography .......................... 62 Host index ........................... 64 List of comn names ...................... 67 Index to mites. Genera. Species. etc .............. 08 Plate symbols ......................... 71 List of plates ......................... 72 Plates ............................. 74 THE ERIOPHYID MITES OF CALIFORNIA Introduction ’IhisBulletin is the result of fifteen years would classify these mites at the present, faces of intermittent exploration of California for the prospect of a growing number of species in the Friophyid mites. hhen the work began in 1937 the large genera, and of broad revisions to come. But principal species recognized were the relatively I believe the average type of Eriophyid to have al- few economic species. ‘Ihis situation not only left ready been pretty well defined, since these mites an opportunity to discover and describe new spe- are widespread, and ancient in origin. cies, it also demanded that as many new Eriophyids As we now know these tiny creatures, they con- as possible be put in print in order to erect a stitute a closed group, structurally pointing to taxonomic framework.
    [Show full text]
  • Population Dynamics of Tomato Russet Mite, Aculops Lycopersici (Massee) and Its Natural Enemy, Homeopronematus Anconai (Baker)
    JARQ 38 (3), 161 – 166 (2004) http://www.jircas.affrc.go.jp REVIEW Population Dynamics of Tomato Russet Mite, Aculops lycopersici (Massee) and Its Natural Enemy, Homeopronematus anconai (Baker) Akira KAWAI1* and Mohd. Mainul HAQUE2 Department of Fruit Vegetables, National Institute of Vegetables and Tea Science (Ano, Mie 514–2392, Japan) Abstract Developmental rates of Aculops lycopersici increased linearly as rearing temperature increased. A total of 81.2 degree-days above a developmental zero of 10.5°C were required to complete develop- ment from egg to adult emergence. Adult longevity decreased with increasing temperature. The high- est intrinsic rate of natural increase was observed at 25°C as 0.253 per day. The population increased exponentially on greenhouse tomato plants and the intrinsic rate of natural increase was estimated to be 0.175 per day. A. lycopersici first reproduced on the released leaves then moved upward. The infesta- tion caused great injury to the plants, with a large number of leaves turning brown and then drying up. The number of leaves, the plant height and the diameter of the main stem of the plants all decreased. Homeopronematus anconai naturally occurred on tomato plants. After the rapid population increase of H. anconai, the A. lycopersici population decreased sharply. An adult H. anconai consumed an aver- age of 69.3 A. lycopersici deutonymphs per day in the laboratory. H. anconai was thought to be a pro- spective natural enemy of A. lycopersici. Discipline: Insect pest Additional key words: population growth, injury, developmental zero, thermal constant, biological control presents results of the studies on the population dynamics Introduction of A.
    [Show full text]
  • Entomopathogenic Fungi and Bacteria in a Veterinary Perspective
    biology Review Entomopathogenic Fungi and Bacteria in a Veterinary Perspective Valentina Virginia Ebani 1,2,* and Francesca Mancianti 1,2 1 Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy; [email protected] 2 Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy * Correspondence: [email protected]; Tel.: +39-050-221-6968 Simple Summary: Several fungal species are well suited to control arthropods, being able to cause epizootic infection among them and most of them infect their host by direct penetration through the arthropod’s tegument. Most of organisms are related to the biological control of crop pests, but, more recently, have been applied to combat some livestock ectoparasites. Among the entomopathogenic bacteria, Bacillus thuringiensis, innocuous for humans, animals, and plants and isolated from different environments, showed the most relevant activity against arthropods. Its entomopathogenic property is related to the production of highly biodegradable proteins. Entomopathogenic fungi and bacteria are usually employed against agricultural pests, and some studies have focused on their use to control animal arthropods. However, risks of infections in animals and humans are possible; thus, further studies about their activity are necessary. Abstract: The present study aimed to review the papers dealing with the biological activity of fungi and bacteria against some mites and ticks of veterinary interest. In particular, the attention was turned to the research regarding acarid species, Dermanyssus gallinae and Psoroptes sp., which are the cause of severe threat in farm animals and, regarding ticks, also pets.
    [Show full text]
  • Population Growth Rate of Dry Bulb Mite, <I>Aceria Tulipae</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2017 Population growth rate of dry bulb mite, Aceria tulipae (Acariformes: Eriophyidae), on agriculturally important plants and implications for its taxonomic status Agnieszka Kiedrowicz Adam Mickiewicz University, Poznań, Poland, [email protected] Brian G. Rector Great Basin Rangelands Research Unit, USDA-ARS, [email protected] Suzanne Lommen University of Fribourg, Switzerland, [email protected] Lechosław Kuczyński Adam Mickiewicz University, Poznań, Poland Wiktoria Szydło University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Kiedrowicz, Agnieszka; Rector, Brian G.; Lommen, Suzanne; Kuczyński, Lechosław; Szydło, Wiktoria; and Skoracka, Anna, "Population growth rate of dry bulb mite, Aceria tulipae (Acariformes: Eriophyidae), on agriculturally important plants and implications for its taxonomic status" (2017). Faculty Publications: Department of Entomology. 624. http://digitalcommons.unl.edu/entomologyfacpub/624 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Agnieszka Kiedrowicz, Brian G. Rector, Suzanne Lommen, Lechosław Kuczyński, Wiktoria Szydło, and Anna Skoracka This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/entomologyfacpub/ 624 Exp Appl Acarol (2017) 73:1–10 DOI 10.1007/s10493-017-0173-3 Population growth rate of dry bulb mite, Aceria tulipae (Acariformes: Eriophyidae), on agriculturally important plants and implications for its taxonomic status 1 2 3,4 Agnieszka Kiedrowicz • Brian G.
    [Show full text]
  • VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
    ! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<!
    [Show full text]
  • Appl. Entomol. Zool. 38 (1): 97–101 (2003)
    Appl. Entomol. Zool. 38 (1): 97–101 (2003) Effect of temperature on development and reproduction of the tomato russet mite, Aculops lycopersici (Massee) (Acari: Eriophyidae) Mohd. Mainul HAQUE† and Akira KAWA I* National Institute of Vegetables and Tea Science, National Agricultural Research Organization; Ano, Mie 514–2392, Japan (Received 12 July 2002; Accepted 18 November 2002) Abstract The effect of constant temperature on the development, reproduction and population growth of Aculops lycopersici reared on a tomato leaflet was investigated. Survival rates from egg to adult were more than 69% at temperatures be- tween 15°C and 27.5°C, but only 53% at 30°C. Developmental rates increased linearly as rearing temperature in- creased from 15°C to 27.5°C. A total of 81.2 degree-days above a developmental zero of 10.5°C were required to complete development from egg to adult emergence. Adult longevity decreased with increasing temperature. Fecun- dity was highest at 25°C with 51.7 eggs per female. The highest intrinsic rate of natural increase was observed at 25°C as 0.253 per day. Key words: Aculops lycopersici; developmental zero; thermal constant; population growth; tomato INTRODUCTION MATERIALS AND METHODS The tomato russet mite, Aculops lycopersici Mites. A stock culture of A. lycopersici was col- Massee is an important pest of tomato, Lycopersi- lected from tomato plants in Mie Pref. in Novem- con esculentum Mill. It was first described in Aus- ber 1999. Mites were then cultured on potted tralia (Massee, 1937) but is now cosmopolitan tomato plants at 2565°C in the laboratory of the (Perring and Farrar, 1986).
    [Show full text]
  • Virus Del Mosaico Estriado Del Trigo
    DIRECCIÓN GENERAL DE SANIDAD VEGETAL DIRECCIÓN DEL CENTRO NACIONAL DE REFERENCIA FITOSANITARIA FICHA TÉCNICA Virus del mosaico estriado del trigo Lapierre y Hariri, 2008. Wheat streak mosaic virus (WSMV) DIRECCIÓN GENERAL DE SANIDAD VEGETAL DIRECCIÓN DEL CENTRO NACIONAL DE REFERENCIA FITOSANITARIA CONTENIDO IDENTIDAD .................................................................................................................................................................................. 1 Nombre científico ..................................................................................................................................... 1 Sinónimos .................................................................................................................................................... 1 Clasificación taxonómica ....................................................................................................................... 1 Nombres comunes .................................................................................................................................... 1 IMPORTANCIA ECONÓMICA DE LA PLAGA .................................................................................................................. 1 SITUACIÓN EN MÉXICO ......................................................................................................................................................... 1 DISTRIBUCIÓN MUNDIAL.....................................................................................................................................................
    [Show full text]
  • Article 520245 F5541bed099e4
    ﭘﺮﻳﺶ و ﻫﻤﻜﺎران: ﻧﻴﺎزﻫﺎي دﻣﺎﻳﻲ و ﭘﺎ راﻣﺘﺮﻫﺎي ﺑﻴﻮﻟﻮژﻳﻜﻲ ﻛﻔﺸﺪوزك Coccinula elegantula ... داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ اراك ﻓﺼﻠﻨﺎﻣﻪ ﺗﺨﺼﺼﻲ ﺗﺤﻘﻴﻘﺎت ﺣﺸﺮه ﺷﻨﺎﺳﻲ ﺷﺎﭘﺎ 4668- 2008 ( ﻋﻠﻤﻲ- ﭘﮋوﻫﺸﻲ ) ) http://jer.iau-arak.ac.ir ﺟﻠﺪ 7 ، ﺷﻤﺎره 2 ، ﺳﺎل 1394 (، 23- )29 ﻣﺮوري ﺑﺮ ﺗﻮزﻳﻊ ﮔﺴﺘﺮده ﮔﻮﻧﻪ ﺧﺴﺎرت زاي ﻛﻨﻪ ﭘﻬﻦ (( Polyphagotarsonemus latus (Banks ) و آﻓﺖ ﮔﻴﺎﻫﺎن * رﻳﭽﺎرد اﻟﻦ ﺑﻴﻜ ﺮ ( ﺳﺎﻧﺪي)1 ، ﻣﺴﻌﻮد ارﺑﺎﺑﻲ 2 2 -1 اﺳﺘﺎد، داﻧﺸﻜﺪه ﻋﻠﻮم ﺑﻴﻮﻟﻮژي، داﻧﺸﮕﺎه ﻟﻴﺪز، ﻳﻮرﻛﺰ، اﻧﮕﻠﺴﺘﺎن -2 اﺳﺘﺎد، ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﮔﻴﺎه ﭘﺰﺷﻜﻲ ﻛﺸﻮر ﭼﻜﻴﺪه اﻳﻦ ﻣﻘ ﺎﻟﻪ در ارﺗﺒﺎط ﺑﺎ اﻓﺮادي ﻣﻲ ﺑﺎﺷﺪ ﻛﻪ درﺑﺎره ﻛﻨﻪ زرد وﭘﻬﻦ ﺑﻪ ﻋﻨﻮان ﻳﻚ ﻛﻨﻪ ﺑﺎ داﻣﻨﻪ ﺗﻐﺬﻳﻪ وﺳﻴﻊ و آﻓﺖ ﻣﺨﺮب ﺑﺎ ﮔﺴﺘﺮش ﺟﻬﺎﻧﻲ در ﺣﺎل ﺗﺤﻘﻴﻖ ﻣﻲ ﺑﺎﺷﻨﺪ . آﻟﻮدﮔﻲ ﺷﺪﻳﺪ آن ﺑﺎﻋﺚ ﺧﺴﺎرت زﻳﺎد ﺑﻪ ﮔﻴﺎﻫﺎن ﻣﺨﺘﻠﻒ ﺑﻪ ﺧﺼﻮص آن ﻫﺎﻳﻲ ﻛﻪ ﺟﻨﺒﻪ ﺗﺠﺎري درﮔﻠﺨﺎﻧﻪ دارﻧﺪ ﻣﻲ ﺷﻮد . وﺿﻌﻴﺘﻲ ا ز ﺑﻴﻮﻟﻮژي و روش ﻫﺎي ﻛﻨﺘﺮل آن ﺑﻪ اﺧﺘﺼﺎر ﻣﻮرد ﺑﺮرﺳﻲ ﻗﺮارﮔﺮﻓﺘﻪ اﺳﺖ . واژه ﻫﺎي ﻛﻠﻴﺪي: ﻛﻨﻪ زرد و ﭘﻬﻦ، ﮔﻴﺎﻫﺎن ﻣﻴﺰﺑﺎن، ﺗﻮزﻳﻊ، ﭘﺮاﻛﻨﺶ، ﺧﺴﺎرت، ﻛﻨﺘﺮل * ﻧﻮﻳﺴﻨﺪه راﺑﻂ، ﭘﺴﺖ اﻟﻜﺘﺮوﻧﻴﻜﻲ: [email protected] ﺗﺎرﻳﺦ درﻳﺎﻓﺖ ﻣﻘﺎﻟﻪ ( /1/25 94 -) ﺗﺎرﻳﺦ ﭘﺬﻳﺮ ش ﻣﻘﺎﻟﻪ ( /30/3 )94 29 29 Baker. et.al., : The Broad mite, Polyphagotarsonemus latus (Banks), a résumé… References Arbabi, M., Namvar, P., Karmi, S. and Farokhi, M. 2001. First damage of Polyphagotarsonemus latus (Banks, 1906) (Acari: Tarsonomidae) on potato cultivated in Jhiroft of Iran. Applied Entomology and Phytopathology 69(1): 41-42. Baker, R. A. 2012. 'Plastrons and adhesive organs' – the functional morphology of surface sructures in the Broad mite, Polyphagotarsonemus latus (Banks, 1904). Acta Biologica, 19: 89- 96.
    [Show full text]
  • Assessing Potential Biological Control of the Invasive Plant, Tree-Of-Heaven, Ailanthus Altissima
    This article was downloaded by: [USDA National Agricultural Library] On: 11 August 2009 Access details: Access Details: [subscription number 741288003] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 Assessing potential biological control of the invasive plant, tree-of-heaven, Ailanthus altissima Jianqing Ding a; Yun Wu b; Hao Zheng a; Weidong Fu a; Richard Reardon b; Min Liu a a Institute of Biological Control, Chinese Academy of Agricultural Sciences, Beijing, P.R. China b Forest Health Technology Enterprise Team, USDA Forest Service, Morgantown, USA Online Publication Date: 01 June 2006 To cite this Article Ding, Jianqing, Wu, Yun, Zheng, Hao, Fu, Weidong, Reardon, Richard and Liu, Min(2006)'Assessing potential biological control of the invasive plant, tree-of-heaven, Ailanthus altissima',Biocontrol Science and Technology,16:6,547 — 566 To link to this Article: DOI: 10.1080/09583150500531909 URL: http://dx.doi.org/10.1080/09583150500531909 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date.
    [Show full text]
  • Thesis, University of Amsterdam, the Netherlands
    UvA-DARE (Digital Academic Repository) Consequences of russet mite-induced tomato defenses for community interactions Glas, J.J. Publication date 2014 Document Version Final published version Link to publication Citation for published version (APA): Glas, J. J. (2014). Consequences of russet mite-induced tomato defenses for community interactions. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 Consequences of russet mite-induced tomato defenses for community interactions Uitnodiging Consequences of russet mite-induced Tot het bijwonen van de openbare tomato defenses for community verdediging van het proefschrift interactions Consequences of russet mite-induced
    [Show full text]
  • Geological History and Phylogeny of Chelicerata
    Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while
    [Show full text]
  • NHBSS 034 2F Boonkong Inse
    Nat. Nat. HlST.BuLL. SlAM お C. 3 4( 2): 105-113 ,1986. INSECTS AND MITES FOUND ON STORED GARLIC IN THAILAND Suthasanee Suthasanee Boonkong* , Charlya Le kprayoon* and Wi na Meckvichai* ABSTRACT Sam ples of garlic bulbs from 6 storages in 3 pro' 吋ncesinno 此h町 nτbailand w釘 e ∞H阿国and examined 儒 ch month from Au 忠誠 1983 to June 1984. It was found the storage damage damage increased with time and was significantly different among storages. 百le major major causes of damage to garlic bulbs were 泊sects 田 d mites. Of Of 14 genera of insec 白隠ountered ,Las ioderma serricome (F abricius) ,A ra e(朋 6 f町制'Iaoo De geer and 砂 'hestio cautella (W alker) were most fr ,伺 uently found. Tw enty genera genera of mites were also identified 回 d among these ,Aceria tulipae (K eifer) was the most most destructive species. INTRODUCTION Garlic Garlic (Allium SIσ tivum L.), Family Liliaceae ,is known 部 a traditional medicinal plant. plant. For many centuries ,man has used the roots , the bulbs and the leaves of of many varieties of garlic ,prep 釘 ed in many ways ,either fresh or dried , alone or in combination combination with other substances such as water ,vinegar and honey. In a number of forms forms garlic has served as an amulet or as food , condiment or medicine. The English Pharmacopia Pharmacopia of 1949listed garlic as an antiseptic ,diaphroretic ,diuretic expectorant , and and also noted that garlic h踏切en 凶 ed to fight tuberculosis. 官leSp 創出h Pharmacopia of of 1954 also listed garlic among its drugs.
    [Show full text]