Appl. Entomol. Zool. 38 (1): 97–101 (2003)

Total Page:16

File Type:pdf, Size:1020Kb

Appl. Entomol. Zool. 38 (1): 97–101 (2003) Appl. Entomol. Zool. 38 (1): 97–101 (2003) Effect of temperature on development and reproduction of the tomato russet mite, Aculops lycopersici (Massee) (Acari: Eriophyidae) Mohd. Mainul HAQUE† and Akira KAWA I* National Institute of Vegetables and Tea Science, National Agricultural Research Organization; Ano, Mie 514–2392, Japan (Received 12 July 2002; Accepted 18 November 2002) Abstract The effect of constant temperature on the development, reproduction and population growth of Aculops lycopersici reared on a tomato leaflet was investigated. Survival rates from egg to adult were more than 69% at temperatures be- tween 15°C and 27.5°C, but only 53% at 30°C. Developmental rates increased linearly as rearing temperature in- creased from 15°C to 27.5°C. A total of 81.2 degree-days above a developmental zero of 10.5°C were required to complete development from egg to adult emergence. Adult longevity decreased with increasing temperature. Fecun- dity was highest at 25°C with 51.7 eggs per female. The highest intrinsic rate of natural increase was observed at 25°C as 0.253 per day. Key words: Aculops lycopersici; developmental zero; thermal constant; population growth; tomato INTRODUCTION MATERIALS AND METHODS The tomato russet mite, Aculops lycopersici Mites. A stock culture of A. lycopersici was col- Massee is an important pest of tomato, Lycopersi- lected from tomato plants in Mie Pref. in Novem- con esculentum Mill. It was first described in Aus- ber 1999. Mites were then cultured on potted tralia (Massee, 1937) but is now cosmopolitan tomato plants at 2565°C in the laboratory of the (Perring and Farrar, 1986). In Japan, it was first National Institute of Vegetables and Tea Science. found in 1986 (Nemoto, 1991) and has since be- Development. In order to obtain an egg, a fe- come a serious pest (Nemoto, 2000). It increases male adult was put on the upper surface of a small rapidly on tomato and the infestation causes great tomato leaflet (cultivar ‘House Momotaro’). The injury to the plant (Haque and Kawai, 2002). A leaflet was then placed on filter paper in a plastic few life history studies on A. lycopersici have been container (60 mm dia.330 mm height) covered published (Rice and Strong, 1962; Abou-Awad, with a plastic lid having a 7 mm dia. hole. A small 1979). However, Rice and Strong (1962) calculated piece of cotton was placed at the base of the petiole the developmental period using the data of only of the leaflet. The cotton and filter paper were con- one to eight individuals in each category and stantly kept wet by soaking with water. The con- Abou-Awad (1979) showed only the data at 25°C tainers were then kept in an incubator at the experi- on leaves of Solanum nigrum. The effect of tem- mental temperature under long-day conditions perature on development and reproduction remains (L16:D8). After 24 h, a female adult was removed. unknown. Only one egg was left for rearing on each leaflet, In this study, the effect of temperature on the de- all others were removed. The stages were checked velopment and reproduction of A. lycopersici was every day to adult emergence. When leaflets lost investigated and the basic thermal requirements for their green color, A. lycopersici transferred to new development were determined. leaflets with a fine cotton single haired brush. This experiment was conducted at 15, 17.5, 20, 22.5, 25, 27.5 and 30°C. The number of eggs exposed to each temperature was 30–48. The relative humidity * To whom correspondence should be addressed at: E-mail: [email protected] † Present address: Department of Zoology, Rajshahi University; Rajshahi 6205, Bangladesh 97 98 M. M. HAQUE and A. KAWAI Fig. 1. Rearing unit for the experiments on fecundity and longevity of adult A. lycopersici. was not maintained exactly but fluctuated from 40 number of eggs laid was counted. The eggs were to 60%. removed and the adult mites were transferred to Reproduction. A. lycopersici adults were reared new rearing units. Since there is a possibility that individually in microcells. The rearing unit is some eggs were overlooked, the rearing units with- shown in Fig. 1. The microcells were made by out adults were maintained for four days at 27.5°C. drilling a hole of 10 mm dia. in a plastic plate If nymphs were found, they were considered as (40 mm370 mm35 mm). Each plate had four mi- eggs of the previous two days. The freshness of the crocells. Each rearing unit was prepared by placing leaflets was maintained by wetting the paper towel. a fresh green tomato leaflet on a 5 mm thick layer This experiment was conducted at 15, 20, 25 and of paper towel, which was supported beneath by a 30°C. 5 mm thick plastic plate. The top plastic plate con- taining the cells was placed on the leaflet and the RESULTS AND DISCUSSION whole unit held together with two rubber bands. Relative humidity was maintained constant by Development means of salt solutions as described by O’Brien The mean developmental periods and survival (1948). The salt solution was put in a tight box rate at each of seven temperatures are shown in (24 cm317 cm38 cm) and the plastic stage was Table 1. Egg duration decreased with an increase in placed inside the box. The rearing units were temperature up to 30°C. Egg duration at 15°C was placed on the plastic stage. The humidity chambers about four times as long as that at 30°C. Total with the rearing units were placed in incubators to nymphal duration gradually decreased with an in- maintain the desired temperatures. Mixtures of crease in temperature up to 27.5°C but at 30°C it NaCl, NaNO3 and KNO3 (1:1:1); CaCl2·6H2O; again increased. At 15°C the nymphal stage was CaCl2·6H2O; MgCl2·6H2O were used to make sat- about four times as long as at 27.5°C. The duration urated solutions at 15, 20, 25 and 30°C, respec- from egg to adult at 15°C was 17.1 days, about tively. The humidity fluctuated from 30 to 33% in four times as long as at 30°C. Survival rate of the all cases. eggs was high between 15 and 30°C and that of The experiments on fecundity and longevity nymphs was high at temperatures lower than were started by placing four second instar nymphs 27.5°C, but decreased at 30°C. of A. lycopersici in each cell. The next day, only There was a significant linear relationship be- one adult was left in each cell for rearing and all tween temperature and developmental rates of eggs other adults and nymphs were removed. The rear- (between 15 and 30°C), nymphs (between 15 and ing units were checked every two days and the 27.5°C) and egg to adult (between 15 and 27.5°C). Development and Reproduction of Aculops lycopersici 99 Table 1. Developmental duration and survival rate of A. lycopersici at different temperatures Duration in daysa Survival (%) Temp. (°C) Egg Nymph Egg to adult Egg Nymph Egg to adult 15 8.2660.18 (38) 8.7860.31 (27) 17.0760.18 (27) 93.8 82.1 77.0 17.5 5.8560.14 (39) 6.0560.14 (38) 11.7660.19 (38) 97.9 95.8 93.8 20 4.5960.12 (32) 4.0660.11 (32) 8.6660.18 (32) 96.7 72.2 69.8 22.5 3.5760.08 (47) 3.6260.10 (45) 7.1660.11 (45) 97.9 89.9 88.0 25 3.1460.14 (29) 2.4060.10 (25) 5.4860.14 (25) 94.1 88.5 83.2 27.5 2.5760.07 (47) 2.2160.07 (47) 4.7960.09 (47) 97.5 92.7 90.3 30 2.2360.09 (30) 2.3660.09 (28) 4.5760.09 (28) 95.0 55.7 52.9 a x¯6S.E. Numbers in parenthesis indicate sample size. Table 2. Regression equation between the velocity of development and temperature, developmental zero and thermal constant for A. lycopersici on tomato leaves Stage Regression equation r2 Developmental zero (°C) Thermal constant (K) (degree-days) Egg Y50.0217X20.2097 0.996 9.3 47.8 Nymph Y50.0283X20.3231 0.971 11.4 35.3 Egg to adult Y50.0122X20.1276 0.995 10.5 81.2 Table 3. Fecundity and longevity of ovipositing female A. lycopersici on tomato leaves at constant temperatures Temp. (°C) Longevity of ovipositing femalea % of ovipositing femalesb Fecundity (Total egg/ovipositing female) 15 32.260.6 (26) 77.1 21.964.1 20 29.760.7 (31) 75.6 31.964.4 25 25.760.8 (27) 69.2 51.769.8 30 17.360.6 (23) 74.2 42.766.7 a x¯6S.E. Numbers in parenthesis of the longevity column show sample size. b No. of ovipositing females/No. of mites. The developmental zero and the thermal constants peratures (Aceria mississippiensis; Chandrapatya are shown in Table 2. The developmental zero for and Baker, 1986; Phyllocoptruta oleivora, Allen et egg, nymph and egg to adult were 9.3, 11.4 and al., 1995; Eriophyes chibaensis, Kadono, 1995) 10.5°C, respectively, with thermal constants of have also been observed in other eriophyid mites. 47.8, 35.3 and 81.2 degree-days. Rice and Strong (1962) showed that high humid- Reproduction ity retarded development of A. lycopersici at high The longevity and fecundity of ovipositing fe- temperatures and 30–60% humidity was suitable male A.
Recommended publications
  • Population Dynamics of Tomato Russet Mite, Aculops Lycopersici (Massee) and Its Natural Enemy, Homeopronematus Anconai (Baker)
    JARQ 38 (3), 161 – 166 (2004) http://www.jircas.affrc.go.jp REVIEW Population Dynamics of Tomato Russet Mite, Aculops lycopersici (Massee) and Its Natural Enemy, Homeopronematus anconai (Baker) Akira KAWAI1* and Mohd. Mainul HAQUE2 Department of Fruit Vegetables, National Institute of Vegetables and Tea Science (Ano, Mie 514–2392, Japan) Abstract Developmental rates of Aculops lycopersici increased linearly as rearing temperature increased. A total of 81.2 degree-days above a developmental zero of 10.5°C were required to complete develop- ment from egg to adult emergence. Adult longevity decreased with increasing temperature. The high- est intrinsic rate of natural increase was observed at 25°C as 0.253 per day. The population increased exponentially on greenhouse tomato plants and the intrinsic rate of natural increase was estimated to be 0.175 per day. A. lycopersici first reproduced on the released leaves then moved upward. The infesta- tion caused great injury to the plants, with a large number of leaves turning brown and then drying up. The number of leaves, the plant height and the diameter of the main stem of the plants all decreased. Homeopronematus anconai naturally occurred on tomato plants. After the rapid population increase of H. anconai, the A. lycopersici population decreased sharply. An adult H. anconai consumed an aver- age of 69.3 A. lycopersici deutonymphs per day in the laboratory. H. anconai was thought to be a pro- spective natural enemy of A. lycopersici. Discipline: Insect pest Additional key words: population growth, injury, developmental zero, thermal constant, biological control presents results of the studies on the population dynamics Introduction of A.
    [Show full text]
  • Article 520245 F5541bed099e4
    ﭘﺮﻳﺶ و ﻫﻤﻜﺎران: ﻧﻴﺎزﻫﺎي دﻣﺎﻳﻲ و ﭘﺎ راﻣﺘﺮﻫﺎي ﺑﻴﻮﻟﻮژﻳﻜﻲ ﻛﻔﺸﺪوزك Coccinula elegantula ... داﻧﺸﮕﺎه آزاد اﺳﻼﻣﻲ، واﺣﺪ اراك ﻓﺼﻠﻨﺎﻣﻪ ﺗﺨﺼﺼﻲ ﺗﺤﻘﻴﻘﺎت ﺣﺸﺮه ﺷﻨﺎﺳﻲ ﺷﺎﭘﺎ 4668- 2008 ( ﻋﻠﻤﻲ- ﭘﮋوﻫﺸﻲ ) ) http://jer.iau-arak.ac.ir ﺟﻠﺪ 7 ، ﺷﻤﺎره 2 ، ﺳﺎل 1394 (، 23- )29 ﻣﺮوري ﺑﺮ ﺗﻮزﻳﻊ ﮔﺴﺘﺮده ﮔﻮﻧﻪ ﺧﺴﺎرت زاي ﻛﻨﻪ ﭘﻬﻦ (( Polyphagotarsonemus latus (Banks ) و آﻓﺖ ﮔﻴﺎﻫﺎن * رﻳﭽﺎرد اﻟﻦ ﺑﻴﻜ ﺮ ( ﺳﺎﻧﺪي)1 ، ﻣﺴﻌﻮد ارﺑﺎﺑﻲ 2 2 -1 اﺳﺘﺎد، داﻧﺸﻜﺪه ﻋﻠﻮم ﺑﻴﻮﻟﻮژي، داﻧﺸﮕﺎه ﻟﻴﺪز، ﻳﻮرﻛﺰ، اﻧﮕﻠﺴﺘﺎن -2 اﺳﺘﺎد، ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﮔﻴﺎه ﭘﺰﺷﻜﻲ ﻛﺸﻮر ﭼﻜﻴﺪه اﻳﻦ ﻣﻘ ﺎﻟﻪ در ارﺗﺒﺎط ﺑﺎ اﻓﺮادي ﻣﻲ ﺑﺎﺷﺪ ﻛﻪ درﺑﺎره ﻛﻨﻪ زرد وﭘﻬﻦ ﺑﻪ ﻋﻨﻮان ﻳﻚ ﻛﻨﻪ ﺑﺎ داﻣﻨﻪ ﺗﻐﺬﻳﻪ وﺳﻴﻊ و آﻓﺖ ﻣﺨﺮب ﺑﺎ ﮔﺴﺘﺮش ﺟﻬﺎﻧﻲ در ﺣﺎل ﺗﺤﻘﻴﻖ ﻣﻲ ﺑﺎﺷﻨﺪ . آﻟﻮدﮔﻲ ﺷﺪﻳﺪ آن ﺑﺎﻋﺚ ﺧﺴﺎرت زﻳﺎد ﺑﻪ ﮔﻴﺎﻫﺎن ﻣﺨﺘﻠﻒ ﺑﻪ ﺧﺼﻮص آن ﻫﺎﻳﻲ ﻛﻪ ﺟﻨﺒﻪ ﺗﺠﺎري درﮔﻠﺨﺎﻧﻪ دارﻧﺪ ﻣﻲ ﺷﻮد . وﺿﻌﻴﺘﻲ ا ز ﺑﻴﻮﻟﻮژي و روش ﻫﺎي ﻛﻨﺘﺮل آن ﺑﻪ اﺧﺘﺼﺎر ﻣﻮرد ﺑﺮرﺳﻲ ﻗﺮارﮔﺮﻓﺘﻪ اﺳﺖ . واژه ﻫﺎي ﻛﻠﻴﺪي: ﻛﻨﻪ زرد و ﭘﻬﻦ، ﮔﻴﺎﻫﺎن ﻣﻴﺰﺑﺎن، ﺗﻮزﻳﻊ، ﭘﺮاﻛﻨﺶ، ﺧﺴﺎرت، ﻛﻨﺘﺮل * ﻧﻮﻳﺴﻨﺪه راﺑﻂ، ﭘﺴﺖ اﻟﻜﺘﺮوﻧﻴﻜﻲ: [email protected] ﺗﺎرﻳﺦ درﻳﺎﻓﺖ ﻣﻘﺎﻟﻪ ( /1/25 94 -) ﺗﺎرﻳﺦ ﭘﺬﻳﺮ ش ﻣﻘﺎﻟﻪ ( /30/3 )94 29 29 Baker. et.al., : The Broad mite, Polyphagotarsonemus latus (Banks), a résumé… References Arbabi, M., Namvar, P., Karmi, S. and Farokhi, M. 2001. First damage of Polyphagotarsonemus latus (Banks, 1906) (Acari: Tarsonomidae) on potato cultivated in Jhiroft of Iran. Applied Entomology and Phytopathology 69(1): 41-42. Baker, R. A. 2012. 'Plastrons and adhesive organs' – the functional morphology of surface sructures in the Broad mite, Polyphagotarsonemus latus (Banks, 1904). Acta Biologica, 19: 89- 96.
    [Show full text]
  • Thesis, University of Amsterdam, the Netherlands
    UvA-DARE (Digital Academic Repository) Consequences of russet mite-induced tomato defenses for community interactions Glas, J.J. Publication date 2014 Document Version Final published version Link to publication Citation for published version (APA): Glas, J. J. (2014). Consequences of russet mite-induced tomato defenses for community interactions. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 Consequences of russet mite-induced tomato defenses for community interactions Uitnodiging Consequences of russet mite-induced Tot het bijwonen van de openbare tomato defenses for community verdediging van het proefschrift interactions Consequences of russet mite-induced
    [Show full text]
  • Russet and Spider Mites on Tomatoes
    2016 Organic, Fresh Market Tomato Production February 24, 2016 Woodland, CA Russet and Spider Mites on Tomatoes Frank Zalom Dept. of Entomology and Nematology UC Davis What are mites? Not insects, but also members of the Phylum Arthropoda “jointed feet” • One or more pairs of jointed appendages • Segmented body • Hardened exoskeleton Mites are members of the Class Arachnida – includes spiders, scorpions, ticks, etc. Insects are members of the Class Insecta How do mites differ from insects? Mites Insects • Two body regions • Three body regions • Lack antennae • Antennae present in adults • Lack wings • Most have wings as adults • Body segments • 3-segmented thorax fused & multi-segmented abdomen Families of mites Tetranychidae – spider mites • Plant feeders • ~0.6 mm long • Oval abdomen • Feed by puncturing leaf tissue with needle-like chelicerae; pharyngeal pump sucks up cell contents Life stages - egg, larva, protonymph, deutonymph and adult; many nymphal molts Families of mites Eriophyidae – rust, blister and gall mites • Second to Tetranychidae as plant feeders • < 0.25 mm long • Body annulate and long • Two pairs of legs • A few are vectors of plant viruses Life stages – egg, 2 nymphal stages and adult Families of mites Phytoseiidae – predatory mites • Most important predators on spider mites • May also feed on pollen, honeydew, and fungi depending on species • ~1 mm long • Usually shiny • Moves quickly Life stages – egg, larva, protonymph, deutonymph and adult; larva does not feed Tomato Russet Mite - Eriophyidae Aculops lycopersici
    [Show full text]
  • Mites and Endosymbionts – Towards Improved Biological Control
    Mites and endosymbionts – towards improved biological control Thèse de doctorat présentée par Renate Zindel Université de Neuchâtel, Suisse, 16.12.2012 Cover photo: Hypoaspis miles (Stratiolaelaps scimitus) • FACULTE DES SCIENCES • Secrétariat-Décanat de la faculté U11 Rue Emile-Argand 11 CH-2000 NeuchAtel UNIVERSIT~ DE NEUCHÂTEL IMPRIMATUR POUR LA THESE Mites and endosymbionts- towards improved biological control Renate ZINDEL UNIVERSITE DE NEUCHATEL FACULTE DES SCIENCES La Faculté des sciences de l'Université de Neuchâtel autorise l'impression de la présente thèse sur le rapport des membres du jury: Prof. Ted Turlings, Université de Neuchâtel, directeur de thèse Dr Alexandre Aebi (co-directeur de thèse), Université de Neuchâtel Prof. Pilar Junier (Université de Neuchâtel) Prof. Christoph Vorburger (ETH Zürich, EAWAG, Dübendorf) Le doyen Prof. Peter Kropf Neuchâtel, le 18 décembre 2012 Téléphone : +41 32 718 21 00 E-mail : [email protected] www.unine.ch/sciences Index Foreword ..................................................................................................................................... 1 Summary ..................................................................................................................................... 3 Zusammenfassung ........................................................................................................................ 5 Résumé .......................................................................................................................................
    [Show full text]
  • General Introduction
    UvA-DARE (Digital Academic Repository) Consequences of russet mite-induced tomato defenses for community interactions Glas, J.J. Publication date 2014 Link to publication Citation for published version (APA): Glas, J. J. (2014). Consequences of russet mite-induced tomato defenses for community interactions. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 JorisGlas-chap1_Gerben-chap2.qxd 26/05/2014 00:16 Page 7 1 General introduction n nature and agriculture plants are attacked by a suite of different plant parasites, Iincluding insects, mites and plant pathogens. For insects, it is estimated that of the approximately 1 million described species ca. 45% are phytophagous (Schoonhoven et al., 2005). Therefore, it is not surprising that plant-herbivore interactions are among the most ubiquitous of all ecological interactions (Jander & Howe, 2008).
    [Show full text]
  • A Catalog of Acari of the Hawaiian Islands
    The Library of Congress has catalogued this serial publication as follows: Research extension series / Hawaii Institute of Tropical Agri­ culture and Human Resources.-OOl--[Honolulu, Hawaii]: The Institute, [1980- v. : ill. ; 22 cm. Irregular. Title from cover. Separately catalogued and classified in LC before and including no. 044. ISSN 0271-9916 = Research extension series - Hawaii Institute of Tropical Agriculture and Human Resources. 1. Agriculture-Hawaii-Collected works. 2. Agricul­ ture-Research-Hawaii-Collected works. I. Hawaii Institute of Tropical Agriculture and Human Resources. II. Title: Research extension series - Hawaii Institute of Tropical Agriculture and Human Resources S52.5.R47 630'.5-dcI9 85-645281 AACR 2 MARC-S Library of Congress [8506] ACKNOWLEDGMENTS Any work of this type is not the product of a single author, but rather the compilation of the efforts of many individuals over an extended period of time. Particular assistance has been given by a number of individuals in the form of identifications of specimens, loans of type or determined material, or advice. I wish to thank Drs. W. T. Atyeo, E. W. Baker, A. Fain, U. Gerson, G. W. Krantz, D. C. Lee, E. E. Lindquist, B. M. O'Con­ nor, H. L. Sengbusch, J. M. Tenorio, and N. Wilson for their assistance in various forms during the com­ pletion of this work. THE AUTHOR M. Lee Goff is an assistant entomologist, Department of Entomology, College of Tropical Agriculture and Human Resources, University of Hawaii. Cover illustration is reprinted from Ectoparasites of Hawaiian Rodents (Siphonaptera, Anoplura and Acari) by 1. M. Tenorio and M. L.
    [Show full text]
  • An Illustrated Guide to Plant Abnormalities Caused by Eriophyid Mites in North America by Hartford H
    /«-J /3-7.-7 5¿>'^ Ln/ij.? r^ /^«% United states '« »JM Department of Agriculture An Illustrated Guide A*a«r«* Agricultural Research Service to Plant Abnormalities Agriculture Handbook Number 573 Caused by Eriophyid IVIites in North America United States Department of Agriculture An Illustrated Guide Agricultural to Plant Abnonnalities Research Service Caused by Eriophyid Agriculture Handbook Number 573 Mites in North America By Hartford H. Keifer, Edward W. Baker, Tokuwo Kono, Mercedes Delfinado, and William E. Styer Abstract Acknowledgment Keifer, Hartford H., Baker, Edward W., Kono, Tokuwo, Without the cooperation of several individuals, this manual Delfinado, Mercedes, and Styer, William E. 1982. An illus- could not have been completed. We thank them all for their trated guide to plant abnormalities caused by eriophyid mites advice and assistance. We particularly thank the following in North America. U.S. Department of Agriculture, Agricul- persons for providing color slides of certain eriophyid mite- ture Handbook No. 573, 178 pp. plant injuries: H. A. Denmark, Florida Department of Agri- culture, Gainesville; E. Doreste, Facultad de Agronomía, This guide includes taxonomic descriptions of eriophyid mites Universidad de Venezuela, Maracay; F. P. Freitez, CI ARCO, (Eriophyoidea: Acari), their life histories, distribution, and Estación Experimental de Araure, Acarigua, Venezuela; P. host data. Characteristic plant injuries, such as galls, erineum, Genty, Industrial Agraria la Palma, Bucaramanga, Colombia; big bud, and witches'-broom, that are caused by these mites F. H. Haramoto, Entomology Department, University of are illustrated with color photographs. Selected references are Hawaii, Honolulu; F. Osman Hassan, Faculty of Agriculture, given. This guide will assist in mite identification and mite- University of Kartoum, Sudan; L.
    [Show full text]
  • Hemp Russet Mite (Aculops Cannibicola)
    Pest Management of Hemp in Enclosed Production Hemp Russet Mite (Aculops cannibicola) Damage and Diagnosis. Hemp russet mites feed on the surface layer of plant cells, piercing them with their minute mouthparts and feeding on the cell fluids. No visible symptoms are produced when russet mites are in low populations, but a range of subtle symptoms develop during outbreaks. A slight upward curling along the edges of leaves is the most easily observed symptom (Fig. 2), but this is not a consistently produced and may only develop on some cultivars. Plants often respond by having a Figure 1. Three hemp russet mites on the underside general dullness of leaves (russetting) of a hemp leaf, near a leaf vein. and as infestations progress small areas of leaves may have visible yellow or brown spotting. Foliage also may become more brittle and may sometimes break at the leaf petiole. Russet mites also develop on stems, which may cause stems to have a slight bronze/golden color. Heavy infestations on developing flower buds may suppress bud growth and size. The hemp russet mite is extremely small – much smaller than the twospotted spider mite - and individual mites cannot be observed without substantial magnification (15-20X) (Fig. 1, 3). They have an elongate body and pale color, typical of most eriophyid mites (the mite family Eriophyidae). (An excellent photograph of hemp russet mite on a very heavily infested leaf petiole can be viewed here.) The most serious damage reported Figure 2. A slight upward rolling along the leaf edge is to hemp in Colorado involves the a symptom hemp russet mite can produce in some hemp maturing buds/flowers of all- cultivars.
    [Show full text]
  • Amblyseius Swirskii
    1 Living on an unfriendly plant host: impact of tomato on the predatory mite Amblyseius swirskii ANGELIKI PASPATI Supervisors Alberto Urbaneja Joel González-Cabrera November 2019 2 3 Doctoral Programme in Sciences Universitat Jaume I Doctoral School Living on an unfriendly plant host: impact of tomato on the predatory mite Amblyseius swirskii Report submitted by ANGELIKI PASPATI in order to be eligible for a doctoral degree awarded by the Universitat Jaume I Angeliki Paspati Supervisors Alberto Urbaneja Joel González-Cabrera Castelló de la Plana, November 2019 4 Funding This work was funded by the European Union‟s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641456. 5 To the ones that inspire us 6 7 Acknowledgments First of all, I would like to express my gratitude to my supervisors Alberto Urbaneja and Joel González-Cabrera for giving me the opportunity to do this PhD and guiding me and encouraging me during this long journey. Many thanks to Dr. Antonio Granell, Dr. José Luis Rambla and Dr. María Pilar Lopez Gresa from the Institute for Plant Molecular and Cellular Biology “IBMCP” for their support during our collaboration on the identification of acyl sugars. Also, I am very thankful to Jóse, Miquel, Carolina, Maria and Giorgos for their technical support and their valuable help with experiments. Also, I am very grateful that I had the opportunity to be part of the Entomology Group of IVIA, a group of wonderful colleagues to make research with, discuss ideas, receive advice and gain knowledge. Special thanks to Milena Chinchilla, a very good companion and friend the past four years, with whom, I was more than lucky to participate in the same project and share the most exciting experiences of this journey.
    [Show full text]
  • First Report of Aculops Lycopersici (Tryon, 1917) (Acari: Eriophyidae) on Pepino in Turkey R
    JournalJournal of ofEntomological Entomological and and Acarological Acarological Research Research 2012; 2012; volume volume 44:e20 44:e First report of Aculops lycopersici (Tryon, 1917) (Acari: Eriophyidae) on Pepino in Turkey R. Akyazi University of Ordu, Faculty of Agriculture, Department of Plant Protection, Ordu, Turkey Neotropical North African region (not including the Sinai Peninsula), Abstract oriental regions (de Lillo, 2004; Anonymous, 2012a). Aculops lycoper- sici occurs on some Solanaceae (Jeppson et al., 1975; Özman-Sullivan The tomato russet mite, Aculops lycopersici (Tryon, 1917) (Acari: & Öcal, 2005), few Convolvulaceae and Rosaceae. It is mostly known as Eriophyidae) is reported for the first time on Pepino (Solanum muri- a pest of tomatoes, but also damages potato (Solanum tuberosum L.), catum Aiton) in Ordu and Samsun provinces in Turkey. eggplant (brinjal) (Solanum melongena L.), tobacco (Nicotiana tabacum L.), bell pepper (Capsicum annuum L.), Jerusalem cherry (Solanum pseudocapsicum L.), petunia (Petunia hybrida L.), tomatillo (Physalis philadelphica Lam.), cherry pepper (Capsicum annuum var. Short paper annuum L.), hairy nightshade (Solanum sarrachoides (Sendtner)), black nightshade (nightshade) (Solanum nigrum L.), small flowered nightshade (Solanum nodiflorumonly Jacq.), popolo (Solanum nelsonii Aculops lycopersici (Tryon, 1917) (Acari: Eriophyidae) is known as Dunal.), horse nettle (Solanum carolinense L.), jimson weed (Datura tomato russet mite or tomato rust mite. It was described as stramonium L.), tolguacha (Datura meteloides Dunal.), Chinese thorn Phyllocoptes lycopersici Tryon in 1917 from samples collected in apple (Datura quercifolia Kunth), amethyst (Browallia speciosa Queensland, Australia. The same mite was later described as a new Hook.), pohause (cape gooseberry) (Physalis peruviana L.) (Perring, species by Massee (1937) with the same name, and later by Keifer 1996; Duso et al., 2010), hot pepper (Capsicum frutescens L.), sweet (1940) as Phyllocoptes destructor (synonymized by Keifer, 1952).
    [Show full text]
  • Life Table Parameters of Tomato Russet Mite Aculops Lycopersici (Acari: Eriophyidae) at Different Temperatures in Egypt Metwally, A
    Egypt. J. Plant Prot. Res. Inst. (2020), 3 (3): 816-822 Egyptian Journal of Plant Protection Research Institute www.ejppri.eg.net Life table parameters of tomato russet mite Aculops lycopersici (Acari: Eriophyidae) at different temperatures in Egypt Metwally, A. M.1 ; Abou-Awad, B. A.2 ; Hussein, A. M.3 and Farahat, B. M.3 ¹Department of Agricultural Zoology and Nematology, Faculty of Agriculture, Al-Azhar, University. ²Pests and Plant Protection Dept., National Research Center, Dokki, Cairo. ³Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt. ARTICLE INFO Abstract: Article History The tomato russet mite Aculops lycopersici (Massee) (Acari: Received: 1 /7 /2020 Eriophyidae) successfully developed from egg to adult stage when Accepted: 24/8 /2020 reared on safeera tomato cultivar at different constant temperatures _______________ and 45 % RH. The effect of temperature on the development, Keywords reproduction and population growth was investigated. At least of Life table, tomato, 21.50 % of generation time was spent in the egg stage at 31 ˚C. tomato russet mite, Fecundity was highest at 31 ˚C with 64.2 eggs per female. Life Aculops lycopersici, table parameters showed that the population of A. lycopersici on temperature and safeera tomato cultivar leaves multiplied 41.18 times in a Egypt. generation time of 15.17 days at 31 ˚C and multiplied 25.53 times in a generation time of 24.22 days at 18 ˚C under the same conditions. Introduction Tomato russet mite (TRM) the brooder head end and two long hairs Aculops lycopersici (Massee) (Acari: on the tapered, posterior end. Generally, Eriophyidae) is an important pest of translucent and yellowish, or pink in tomato Solanum lycopersicum Mill and color.
    [Show full text]