Chapter 2. Tomato (Solanum Lycopersicum)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sharon J. Collman WSU Snohomish County Extension Green Gardening Workshop October 21, 2015 Definition
Sharon J. Collman WSU Snohomish County Extension Green Gardening Workshop October 21, 2015 Definition AKA exotic, alien, non-native, introduced, non-indigenous, or foreign sp. National Invasive Species Council definition: (1) “a non-native (alien) to the ecosystem” (2) “a species likely to cause economic or harm to human health or environment” Not all invasive species are foreign origin (Spartina, bullfrog) Not all foreign species are invasive (Most US ag species are not native) Definition increasingly includes exotic diseases (West Nile virus, anthrax etc.) Can include genetically modified/ engineered and transgenic organisms Executive Order 13112 (1999) Directed Federal agencies to make IS a priority, and: “Identify any actions which could affect the status of invasive species; use their respective programs & authorities to prevent introductions; detect & respond rapidly to invasions; monitor populations restore native species & habitats in invaded ecosystems conduct research; and promote public education.” Not authorize, fund, or carry out actions that cause/promote IS intro/spread Political, Social, Habitat, Ecological, Environmental, Economic, Health, Trade & Commerce, & Climate Change Considerations Historical Perspective Native Americans – Early explorers – Plant explorers in Europe Pioneers moving across the US Food - Plants – Stored products – Crops – renegade seed Animals – Insects – ants, slugs Travelers – gardeners exchanging plants with friends Invasive Species… …can also be moved by • Household goods • Vehicles -
Genome Skimming for Phylogenomics
Genome skimming for phylogenomics Steven Andrew Dodsworth School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK. Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy November 2015 1 Statement of originality I, Steven Andrew Dodsworth, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged and my contribution indicated. Previously published material is also acknowledged and a full list of publications is given in the Appendix. Details of collaboration and publications are given at the start of each chapter, as appropriate. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Signature: Date: 16th November 2015 2 Frontispiece: Nicotiana burbidgeae Symon at Dalhousie Springs, South Australia. 2014. Photo: S. Dodsworth. 3 Acknowledgements Firstly, I would like to thank my PhD supervisors, Professor Andrew Leitch and Professor Mark Chase. -
Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2
Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) by Boris C. Kondratieff, Paul A. Opler, Matthew C. Garhart, and Jason P. Schmidt C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 March 15, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration (top to bottom): Widow Skimmer (Libellula luctuosa) [photo ©Robert Behrstock], Stonefly (Perlesta species) [photo © David H. Funk, White- lined Sphinx (Hyles lineata) [photo © Matthew C. Garhart] ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences, Colorado State University, Fort Collins, Colorado 80523 Copyrighted 2004 Table of Contents EXECUTIVE SUMMARY……………………………………………………………………………….…1 INTRODUCTION…………………………………………..…………………………………………….…3 OBJECTIVE………………………………………………………………………………………….………5 Site Descriptions………………………………………….. METHODS AND MATERIALS…………………………………………………………………………….5 RESULTS AND DISCUSSION………………………………………………………………………..…...11 Dragonflies………………………………………………………………………………….……..11 -
Integrated Pest Management: Current and Future Strategies
Integrated Pest Management: Current and Future Strategies Council for Agricultural Science and Technology, Ames, Iowa, USA Printed in the United States of America Cover design by Lynn Ekblad, Different Angles, Ames, Iowa Graphics and layout by Richard Beachler, Instructional Technology Center, Iowa State University, Ames ISBN 1-887383-23-9 ISSN 0194-4088 06 05 04 03 4 3 2 1 Library of Congress Cataloging–in–Publication Data Integrated Pest Management: Current and Future Strategies. p. cm. -- (Task force report, ISSN 0194-4088 ; no. 140) Includes bibliographical references and index. ISBN 1-887383-23-9 (alk. paper) 1. Pests--Integrated control. I. Council for Agricultural Science and Technology. II. Series: Task force report (Council for Agricultural Science and Technology) ; no. 140. SB950.I4573 2003 632'.9--dc21 2003006389 Task Force Report No. 140 June 2003 Council for Agricultural Science and Technology Ames, Iowa, USA Task Force Members Kenneth R. Barker (Chair), Department of Plant Pathology, North Carolina State University, Raleigh Esther Day, American Farmland Trust, DeKalb, Illinois Timothy J. Gibb, Department of Entomology, Purdue University, West Lafayette, Indiana Maud A. Hinchee, ArborGen, Summerville, South Carolina Nancy C. Hinkle, Department of Entomology, University of Georgia, Athens Barry J. Jacobsen, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman James Knight, Department of Animal and Range Science, Montana State University, Bozeman Kenneth A. Langeland, Department of Agronomy, University of Florida, Institute of Food and Agricultural Sciences, Gainesville Evan Nebeker, Department of Entomology and Plant Pathology, Mississippi State University, Mississippi State David A. Rosenberger, Plant Pathology Department, Cornell University–Hudson Valley Laboratory, High- land, New York Donald P. -
The Natural History of Reproduction in Solanum and Lycianthes (Solanaceae) in a Subtropical Moist Forest
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 11-28-2002 The Natural History of Reproduction in Solanum and Lycianthes (Solanaceae) in a Subtropical Moist Forest Stacey DeWitt Smith University of Nebraska - Lincoln, [email protected] Sandra Knapp Natural History Museum, London Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Life Sciences Commons Smith, Stacey DeWitt and Knapp, Sandra, "The Natural History of Reproduction in Solanum and Lycianthes (Solanaceae) in a Subtropical Moist Forest" (2002). Faculty Publications in the Biological Sciences. 104. https://digitalcommons.unl.edu/bioscifacpub/104 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Bull. nat. Hist. Mus. Lond. (Bot.) 32(2): 125–136 Issued 28 November 2002 The natural history of reproduction in Solanum and Lycianthes (Solanaceae) in a subtropical moist forest STACEY D. SMITH Department of Botany, 132 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison WI 53706-1381, U.S.A. SANDRA KNAPP Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD CONTENTS Introduction ............................................................................................................................................................................ -
Of Physalis Longifolia in the U.S
The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review1 ,2 3 2 2 KELLY KINDSCHER* ,QUINN LONG ,STEVE CORBETT ,KIRSTEN BOSNAK , 2 4 5 HILLARY LORING ,MARK COHEN , AND BARBARA N. TIMMERMANN 2Kansas Biological Survey, University of Kansas, Lawrence, KS, USA 3Missouri Botanical Garden, St. Louis, MO, USA 4Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA 5Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA *Corresponding author; e-mail: [email protected] The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review. The wild tomatillo, Physalis longifolia Nutt., and related species have been important wild-harvested foods and medicinal plants. This paper reviews their traditional use as food and medicine; it also discusses taxonomic difficulties and provides information on recent medicinal chemistry discoveries within this and related species. Subtle morphological differences recognized by taxonomists to distinguish this species from closely related taxa can be confusing to botanists and ethnobotanists, and many of these differences are not considered to be important by indigenous people. Therefore, the food and medicinal uses reported here include information for P. longifolia, as well as uses for several related taxa found north of Mexico. The importance of wild Physalis species as food is reported by many tribes, and its long history of use is evidenced by frequent discovery in archaeological sites. These plants may have been cultivated, or “tended,” by Pueblo farmers and other tribes. The importance of this plant as medicine is made evident through its historical ethnobotanical use, information in recent literature on Physalis species pharmacology, and our Native Medicinal Plant Research Program’s recent discovery of 14 new natural products, some of which have potent anti-cancer activity. -
Nightshade”—A Hierarchical Classification Approach to T Identification of Hallucinogenic Solanaceae Spp
Talanta 204 (2019) 739–746 Contents lists available at ScienceDirect Talanta journal homepage: www.elsevier.com/locate/talanta Call it a “nightshade”—A hierarchical classification approach to T identification of hallucinogenic Solanaceae spp. using DART-HRMS-derived chemical signatures ∗ Samira Beyramysoltan, Nana-Hawwa Abdul-Rahman, Rabi A. Musah Department of Chemistry, State University of New York at Albany, 1400 Washington Ave, Albany, NY, 12222, USA ARTICLE INFO ABSTRACT Keywords: Plants that produce atropine and scopolamine fall under several genera within the nightshade family. Both Hierarchical classification atropine and scopolamine are used clinically, but they are also important in a forensics context because they are Psychoactive plants abused recreationally for their psychoactive properties. The accurate species attribution of these plants, which Seed species identifiction are related taxonomically, and which all contain the same characteristic biomarkers, is a challenging problem in Metabolome profiling both forensics and horticulture, as the plants are not only mind-altering, but are also important in landscaping as Direct analysis in real time-mass spectrometry ornamentals. Ambient ionization mass spectrometry in combination with a hierarchical classification workflow Chemometrics is shown to enable species identification of these plants. The hierarchical classification simplifies the classifi- cation problem to primarily consider the subset of models that account for the hierarchy taxonomy, instead of having it be based on discrimination between species using a single flat classification model. Accordingly, the seeds of 24 nightshade plant species spanning 5 genera (i.e. Atropa, Brugmansia, Datura, Hyocyamus and Mandragora), were analyzed by direct analysis in real time-high resolution mass spectrometry (DART-HRMS) with minimal sample preparation required. -
Population Dynamics of Tomato Russet Mite, Aculops Lycopersici (Massee) and Its Natural Enemy, Homeopronematus Anconai (Baker)
JARQ 38 (3), 161 – 166 (2004) http://www.jircas.affrc.go.jp REVIEW Population Dynamics of Tomato Russet Mite, Aculops lycopersici (Massee) and Its Natural Enemy, Homeopronematus anconai (Baker) Akira KAWAI1* and Mohd. Mainul HAQUE2 Department of Fruit Vegetables, National Institute of Vegetables and Tea Science (Ano, Mie 514–2392, Japan) Abstract Developmental rates of Aculops lycopersici increased linearly as rearing temperature increased. A total of 81.2 degree-days above a developmental zero of 10.5°C were required to complete develop- ment from egg to adult emergence. Adult longevity decreased with increasing temperature. The high- est intrinsic rate of natural increase was observed at 25°C as 0.253 per day. The population increased exponentially on greenhouse tomato plants and the intrinsic rate of natural increase was estimated to be 0.175 per day. A. lycopersici first reproduced on the released leaves then moved upward. The infesta- tion caused great injury to the plants, with a large number of leaves turning brown and then drying up. The number of leaves, the plant height and the diameter of the main stem of the plants all decreased. Homeopronematus anconai naturally occurred on tomato plants. After the rapid population increase of H. anconai, the A. lycopersici population decreased sharply. An adult H. anconai consumed an aver- age of 69.3 A. lycopersici deutonymphs per day in the laboratory. H. anconai was thought to be a pro- spective natural enemy of A. lycopersici. Discipline: Insect pest Additional key words: population growth, injury, developmental zero, thermal constant, biological control presents results of the studies on the population dynamics Introduction of A. -
ECO-Ssls for Pahs
Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final OSWER Directive 9285.7-78 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 June 2007 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR PAHs......................................1 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................4 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................8 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE..................................8 6.1 Mammalian TRV ...................................................8 6.2 Estimation of Dose and Calculation of the Eco-SSL ........................9 7.0 REFERENCES .........................................................16 7.1 General PAH References ............................................16 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......17 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................18 7.4 References Used in Derivation of Wildlife TRVs .........................25 7.5 References Rejected for Use in Derivation of Wildlife TRV ................28 i LIST OF TABLES Table 2.1 PAH Eco-SSLs (mg/kg dry weight in soil) ..............................4 Table 3.1 Plant Toxicity Data - PAHs ..........................................5 Table 4.1 -
People of Maize”: Maize Protein Composition and Farmer Practices in the Q’Eqchi’ Maya Milpa
Nourishing the “People of Maize”: Maize Protein Composition and Farmer Practices in the Q’eqchi’ Maya Milpa An honors thesis for the Department of Environmental Studies. Anne Elise Stratton Tufts University, 2015. TABLE OF CONTENTS 1 CHAPTER 1 The Q’eqchi’ Milpa in Context Introducing the Milpa The Maize People and the Milpa Forced Migration and Agroecological Adaptation “Grabbed” Land and the Milpa in Transition Milpa in Modernity 23 CHAPTER 2 Linking Biodiversity, Nutrition, and Resilience in the Multispecies Milpa Multispecies Milpa Milpa: Origins and Ideals Today’s Milpa The Milpa as a System 39 CHAPTER 3 Farmer Practices and Maize Nutritional Traits in Sarstún Abstract Introduction Materials and Methods Results Discussion Figures 62 CHAPTER 4 Future Directions 64 LITERATURE CITED ii CHAPTER 1: THE Q’EQCHI MAYA MILPA IN CONTEXT INTRODUCING THE MILPA Nestled along the mangrove-bound border between Belize and Guatemala, in the region called Sarstún, are the clusters of palm-thatch or tin-roofed wooden huts where Q’eqchi’ Maya (henceforth Q’eqchi’) farmers spend their lives. Q’eqchi’ communities can consist of as few as a dozen and as many as 150 families, with an average family size of nine (Grandia 2012: 208). What the casual onlooker may not observe in visiting a village are the communal milpas, or “cornfields,” which physically surround and culturally underlie Q’eqchi’ societies (Grandia 2012: 191). The Q’eqchi’ have traditionally raised maize using swidden (slash-and-burn) techniques, in which they fell a field-sized area of forest, burn the organic matter to release a nutrient pulse into the soil, and then raise their crops on the freshly-cleared land. -
Tropical Insect Chemical Ecology - Edi A
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world. -
Appl. Entomol. Zool. 38 (1): 97–101 (2003)
Appl. Entomol. Zool. 38 (1): 97–101 (2003) Effect of temperature on development and reproduction of the tomato russet mite, Aculops lycopersici (Massee) (Acari: Eriophyidae) Mohd. Mainul HAQUE† and Akira KAWA I* National Institute of Vegetables and Tea Science, National Agricultural Research Organization; Ano, Mie 514–2392, Japan (Received 12 July 2002; Accepted 18 November 2002) Abstract The effect of constant temperature on the development, reproduction and population growth of Aculops lycopersici reared on a tomato leaflet was investigated. Survival rates from egg to adult were more than 69% at temperatures be- tween 15°C and 27.5°C, but only 53% at 30°C. Developmental rates increased linearly as rearing temperature in- creased from 15°C to 27.5°C. A total of 81.2 degree-days above a developmental zero of 10.5°C were required to complete development from egg to adult emergence. Adult longevity decreased with increasing temperature. Fecun- dity was highest at 25°C with 51.7 eggs per female. The highest intrinsic rate of natural increase was observed at 25°C as 0.253 per day. Key words: Aculops lycopersici; developmental zero; thermal constant; population growth; tomato INTRODUCTION MATERIALS AND METHODS The tomato russet mite, Aculops lycopersici Mites. A stock culture of A. lycopersici was col- Massee is an important pest of tomato, Lycopersi- lected from tomato plants in Mie Pref. in Novem- con esculentum Mill. It was first described in Aus- ber 1999. Mites were then cultured on potted tralia (Massee, 1937) but is now cosmopolitan tomato plants at 2565°C in the laboratory of the (Perring and Farrar, 1986).