Generalist and Specialist Mite Herbivores Induce Similar Defense Responses in Maize and Barley but Differ in Susceptibility to Benzoxazinoids

Total Page:16

File Type:pdf, Size:1020Kb

Generalist and Specialist Mite Herbivores Induce Similar Defense Responses in Maize and Barley but Differ in Susceptibility to Benzoxazinoids fpls-09-01222 August 18, 2018 Time: 18:56 # 1 ORIGINAL RESEARCH published: 21 August 2018 doi: 10.3389/fpls.2018.01222 Generalist and Specialist Mite Herbivores Induce Similar Defense Responses in Maize and Barley but Differ in Susceptibility to Benzoxazinoids Huyen Bui1†, Robert Greenhalgh1†, Alice Ruckert2, Gunbharpur S. Gill2, Sarah Lee1, Ricardo A. Ramirez2 and Richard M. Clark1,3* 1 School of Biological Sciences, University of Utah, Salt Lake City, UT, United States, 2 Department of Biology, Utah State University, Logan, UT, United States, 3 Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, United States Edited by: While substantial progress has been made in understanding defense responses of Raul Antonio Sperotto, cereals to insect herbivores, comparatively little is known about responses to feeding University of Taquari Valley, Brazil by spider mites. Nevertheless, several spider mite species, including the generalist Reviewed by: Mercedes Diaz-Mendoza, Tetranychus urticae and the grass specialist Oligonychus pratensis, cause damage on Centre for Plant Biotechnology cereals such as maize and wheat, especially during drought stress. To understand and Genomics, Spain Vasileios Fotopoulos, defense responses of cereals to spider mites, we characterized the transcriptomic Cyprus University of Technology, responses of maize and barley to herbivory by both mite species, and included a Cyprus wounding control against which modulation of defenses could be tested. T. urticae and *Correspondence: O. pratensis induced highly correlated changes in gene expression on both maize and Richard M. Clark [email protected] barley. Within 2 h, hundreds of genes were upregulated, and thousands of genes were †These authors have contributed up- or downregulated after 24 h. In general, expression changes were similar to those equally to this work induced by wounding, including for genes associated with jasmonic acid biosynthesis Specialty section: and signaling. Many genes encoding proteins involved in direct defenses, or those This article was submitted to required for herbivore-induced plant volatiles, were strongly upregulated in response Plant Microbe Interactions, to mite herbivory. Further, biosynthesis genes for benzoxazinoids, which are specialized a section of the journal Frontiers in Plant Science compounds of Poaceae with known roles in deterring insect herbivores, were induced Received: 28 May 2018 in maize. Compared to chewing insects, spider mites are cell content feeders and Accepted: 31 July 2018 cause grossly different patterns of tissue damage. Nonetheless, the gene expression Published: 21 August 2018 responses of maize to both mite herbivores, including for phytohormone signaling Citation: Bui H, Greenhalgh R, Ruckert A, pathways and for the synthesis of the benzoxazinoid 2-hydroxy-4,7-dimethoxy- Gill GS, Lee S, Ramirez RA and 1,4-benzoxazin-3-one glucoside, a known defensive metabolite against caterpillars, Clark RM (2018) Generalist resembled those reported for a generalist chewing insect, Spodoptera exigua. On and Specialist Mite Herbivores Induce Similar Defense Responses in Maize maize plants harboring mutations in several benzoxazinoid biosynthesis genes, T. urticae and Barley but Differ in Susceptibility performance dramatically increased compared to wild-type plants. In contrast, no to Benzoxazinoids. Front. Plant Sci. 9:1222. difference in performance was observed between mutant and wild-type plants for the doi: 10.3389/fpls.2018.01222 specialist O. pratensis. Collectively, our data provide little evidence that maize and barley Frontiers in Plant Science| www.frontiersin.org 1 August 2018| Volume 9| Article 1222 fpls-09-01222 August 18, 2018 Time: 18:56 # 2 Bui et al. Maize and Barley Responses to Spider Mite Herbivores defense responses differentiate herbivory between T. urticae and O. pratensis. Further, our work suggests that the likely route to specialization for O. pratensis involved the evolution of a robust mechanism to cope with the benzoxazinoid defenses of its cereal hosts. Keywords: Maize (Zea mays L.), Hordeum vulgare, Tetranychus urticae, Oligonychus pratensis, benzoxazinoid, spider mite, herbivore, HDMBOA INTRODUCTION or to potentially suppress plant defense responses that are broadly conserved (Ali and Agrawal, 2012). Alternatively, some Cereal crops of the grass family (Poaceae) account for the specialists have evolved the ability to suppress or otherwise majority of human calories, and reductions in their yield circumvent plant defenses, potentially ameliorating the role dramatically impact human welfare. Abiotic factors, such as of detoxification, or instead have evolved highly specialized drought, are a major source of unrealized yield (Boyer, 1982), detoxification abilities to cope with the toxins they encounter in while another well-characterized source of loss is from herbivory their preferred plant hosts (Dobler et al., 2012; Glas et al., 2014; by insects (Oerke, 2006). Spider mites (Acari: Tetranychidae) Maag et al., 2014; Wouters et al., 2014). belong to the Chelicerata, an arthropod lineage that diverged Like dicots, monocots, including grasses, are attacked by more than 450 million years ago (Dunlop, 2010), and hence generalist and specialist herbivores of diverse feeding guilds, evolved herbivory independently from insects. Crops including including leaf-chewing (e.g., caterpillars) and piercing-sucking maize (Zea mays) and wheat (Triticum sp.) are susceptible not (e.g., aphids and whiteflies). As for dicots, JA signaling and only to insects but also to spider mites, especially during drought the production of specialized compounds feature prominently conditions (Al-Kaisi et al., 2013), where yield losses as high in monocot responses to insect herbivory (Meihls et al., 2012; as 47.2% for maize have been reported (Bacon et al., 1962). Tzin et al., 2015a, 2017). Of the downstream specialized Nevertheless, relatively little is known about the molecular nature compounds in grasses, the best studied are benzoxazinoids, of the defenses plants use to deter spider mites, especially for which are 1,4-benzoxazin-3-one derivatives produced by cereals grasses. including maize, wheat, and rye (Zúñiga et al., 1983; Niemeyer, As shown by molecular studies of plant–herbivore 2009). In maize, levels of benzoxazinoids are highest in interactions, largely with insects and dicots such as Arabidopsis seedlings (Cambier et al., 2000), but can be locally induced thaliana and tomato (Solanum lycopersicum), many plants at feeding sites in the leaves of older plants (Köhler et al., complement constitutive defenses (like trichomes) with rapid, 2015; Maag et al., 2016). The most studied benzoxazinoid, inducible ones that negatively impact herbivores (Howe and 4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), is Jander, 2008). For instance, herbivore-associated triggers stored in vacuoles as an inactive glucoside (Glc) conjugate. like physical damage, oral secretions, or frass, alone or in Upon tissue damage by herbivores, DIMBOA-Glc, as well as combination, lead to changes in the production of specialized derivatives such as 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3- metabolites or defensive proteins that deter herbivores (Howe one glucoside (HDMBOA-Glc), are exposed to glucosidases in and Jander, 2008; Ray et al., 2015). In dicots, molecular responses plastids (Meihls et al., 2012). This leads to the release of the to insect herbivores are mediated largely by phytohormones, aglucones, which are toxic to herbivores, potentially by several especially jasmonates (jasmonic acid, or JA, and its derivatives or modes of action (Wouters et al., 2016). conjugates), which induce transcriptomic reprogramming within Several spider mite species are significant field pests on cereals. hours (Howe and Jander, 2008). Some defenses act directly, These include Tetranychus urticae (the two-spotted spider mite) such as toxic compounds or protease inhibitors that retard on maize, and Oligonychus pratensis (the Banks grass mite) on digestion in an herbivore’s gut. Others act indirectly, like plant both maize and distant relatives including wheat (Figure 1A; volatiles, which can serve as olfactory cues for predators to locate Brandenburg and Kennedy, 1982; Mansour and Bar-Zur, 1992; herbivores at feeding sites (Turlings and Erb, 2018). Archer and Bynum, 1993; Tadmor et al., 1999; Blasi et al., 2015). The type and magnitude of inducible defenses is influenced by T. urticae is an extreme generalist that has been documented on several factors. One of these is feeding guild. Chewing insects like more than 100 plant families (Grbic´ et al., 2011). In contrast, caterpillars, for instance, cause extensive tissue damage and elicit O. pratensis is a specialist on plants in the Poaceae, though different defense responses compared to phloem-feeding insects it has been reported on a few non-grass hosts including date like aphids, which cause minimal loss of plant tissue (Howe palm (which is also a monocot) (Ward et al., 1972; Foster et al., and Jander, 2008). Additionally, plant responses to generalist 1977; Chandler et al., 1979; Holtzer et al., 1984; Archer and herbivores, to which ∼10% of plant-feeding insects belong (Ali Bynum, 1993; Bynum et al., 2015; Negm et al., 2015). As cell- and Agrawal, 2012), can differ from those induced by specialists. content feeders, spider mites belong to a different feeding guild Generalist herbivores feed on hosts in many plant families. They than the best studied insect herbivores
Recommended publications
  • Data Sheets on Quarantine Pests
    EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Oligonychus perditus IDENTITY Name: Oligonychus perditus Pritchard & Baker Synonyms: Oligonychus chamaecyparisae Ma & Yuan Taxonomic position:Arachnida: Acarina: Prostigmata: Tetranychidae Common names: Byakushin-hadani (Japanese) Notes on taxonomy and nomenclature: O. perditus is very closely related to the cosmopolitan and morphologically variable O. ununguis (Jacobi), but Mitrofanov et al. (1975) did not regard it as part of the "ununguis complex". Bayer computer code: OLIGPD EPPO A1 list: No. 217 EU Annex designation: II/A1 HOSTS All known host plants are conifers, mainly of the family Cupressaceae: Chamaecyparis pisifera, Juniperus chinensis, J. formosana, Thuja orientalis. Taxus cuspidata and Cryptomeria japonica have also been recorded as hosts. In a glasshouse environment, the mite was successfully reared on J. communis, J. x media, J. sabina, J. virginiana and Thuja orientalis. GEOGRAPHICAL DISTRIBUTION EPPO region: Netherlands (intercepted only). Asia: China (Ma & Yuan, 1976), Hong Kong, Japan (Hokkaido, Honshu), Korea Republic (Lee et al., 1989), Taiwan (Lo & Ho, 1989). North America: USA (intercepted only). The species was described on intercepted material by Pritchard & Baker (1955). EU: Absent. BIOLOGY No research has been done on biological or ecological features of O. perditus such as reproduction rate, predators or overwintering capacity. These are most likely to be comparable with those of O. ununguis. On intercepted bonsai material of J. chinensis in the Netherlands, O. perditus overwintered in the egg stage, as O. ununguis does also. In Japan, diapause was induced in O. ununguis by the influence of two factors: day length and food supply.
    [Show full text]
  • A Preliminary Assessment of Amblyseius Andersoni (Chant) As a Potential Biocontrol Agent Against Phytophagous Mites Occurring on Coniferous Plants
    insects Article A Preliminary Assessment of Amblyseius andersoni (Chant) as a Potential Biocontrol Agent against Phytophagous Mites Occurring on Coniferous Plants Ewa Puchalska 1,* , Stanisław Kamil Zagrodzki 1, Marcin Kozak 2, Brian G. Rector 3 and Anna Mauer 1 1 Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland; [email protected] (S.K.Z.); [email protected] (A.M.) 2 Department of Media, Journalism and Social Communication, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland; [email protected] 3 USDA-ARS, Great Basin Rangelands Research Unit, 920 Valley Rd., Reno, NV 89512, USA; [email protected] * Correspondence: [email protected] Simple Summary: Amblyseius andersoni (Chant) is a predatory mite frequently used as a biocontrol agent against phytophagous mites in greenhouses, orchards and vineyards. In Europe, it is an indige- nous species, commonly found on various plants, including conifers. The present study examined whether A. andersoni can develop and reproduce while feeding on two key pests of ornamental coniferous plants, i.e., Oligonychus ununguis (Jacobi) and Pentamerismus taxi (Haller). Pinus sylvestris L. pollen was also tested as an alternative food source for the predator. Both prey species and pine pollen were suitable food sources for A. andersoni. Although higher values of population parameters Citation: Puchalska, E.; were observed when the predator fed on mites compared to the pollen alternative, we conclude that Zagrodzki, S.K.; Kozak, M.; pine pollen may provide adequate sustenance for A.
    [Show full text]
  • Spruce Spider Mite
    2/16/2021 Spruce Spider Mite HOME | SPRUCE SPIDER MITE Spruce Spider Mite The spruce spider mite attacks spruce, arborvitae, juniper, hemlock, pine, Douglas-fir, and occasionally other conifers. ARTICLES | UPDATED: MARCH 23, 2017 Oligonychus ununguis (Jacobi) Introduction The spruce spider mite is considered one of the most destructive spider mites in the United States. It injures the foliage of spruce, arborvitae, juniper, hemlock, pine, Douglas-fir, and occasionally other USDA Forest Service - Region 4 - Intermountain, USDA conifers. Dwarf Alberta Forest Service, Bugwood.org spruce, Picea glauca 'Conica', is one of this pest's preferred host plants. Description After hatching, the young, pale green mites called larvae resemble adults except they are smaller and have only three pairs of legs. As the mites mature, they shed their skins three times before becoming adults. Adults and nymphs have four pairs of legs and are dark green to nearly black with the body surface clothed with salmon pink-colored spines (Fig. 1). The adult's legs are also salmon pink. https://extension.psu.edu/spruce-spider-mite 1/3 2/16/2021 Spruce Spider Mite Life History This key pest overwinters as brown eggs tucked in and around bud scales and at the base of needles. These hatch in the spring, usually before new growth starts. A generation from egg to adult may require 15-20 days and generations frequently overlap so that all stages may be found on host plants during late spring and early summer. There are 7-10 generations produced each year. Damage This species damages host plants by sucking plant fluid from needles as they feed.
    [Show full text]
  • Arthropod Pests
    IAEA-TECDOC-1082 XA9950282--W6 Irradiationa as quarantine treatmentof arthropod pests Proceedings finala of Research Co-ordination Meeting organizedthe by Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and held Honolulu,in Hawaii, November3-7 1997 INTERNATIONAL ATOMIC ENERGY AGENCY /A> 30- 22 199y Ma 9 J> The originating Section of this publication in the IAEA was: Food and Environmental Protection Section International Atomic Energy Agency Wagramer Strasse 5 0 10 x Bo P.O. A-1400 Vienna, Austria The IAEA does not normally maintain stocks of reports in this series However, copies of these reports on microfiche or in electronic form can be obtained from IMS Clearinghouse International Atomic Energy Agency Wagramer Strasse5 P.O.Box 100 A-1400 Vienna, Austria E-mail: CHOUSE® IAEA.ORG URL: http //www laea org/programmes/mis/inis.htm Orders shoul accompaniee db prepaymeny db f Austriao t n Schillings 100,- in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse IRRADIATIO QUARANTINA S NA E TREATMENF TO ARTHROPOD PESTS IAEA, VIENNA, 1999 IAEA-TECDOC-1082 ISSN 1011-4289 ©IAEA, 1999 Printe IAEe th AustriAn y i d b a May 1999 FOREWORD Fresh horticultural produce from tropical and sub-tropical areas often harbours insects and mites and are quarantined by importing countries. Such commodities cannot gain access to countries which have strict quarantine regulations suc Australias ha , Japan Zealanw Ne , d e Uniteth d dan State f Americo s a unless treaten approvea y b d d method/proceduro t e eliminate such pests.
    [Show full text]
  • Badr El-Sabah A. Fetoh 1, 2 and Kholoud A. Al-Shammery2
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND ENGINEERING (IJESE) Vol. 2: 45-52 http://www.pvamu.edu/texged Prairie View A&M University, Texas, USA Acaricidal ovicial and repellent activities of some plant extracts on the date palm dust mite, Oligonychus afrasiaticus Meg. (acari: tetranychidae) Badr El-Sabah A. Fetoh 1, 2 and Kholoud A. Al-Shammery2 1- Plant Protection Research Institute, Dokki, Giza, Egypt 2-Department of Biology, College of Science, Hail University,1441 Hail, Saudi Arabia ARTICLE INFO ABSTRACT Article History The ethanolic extracts of Demsisa, Duranta and Cumin plants were Received: April 11, 2011 tested on the adult females of the date palm dust mite, Oligonychus Accepted: July 20, 2011 afrasiaticus Meg. (Acari: Tetranychidae). The recorded results Available online: September 2011 showed that all the tested plant extracts were effective on O. ________________ afrasiaticus, however Demsisa extract was the most virulent one. Keywords 1 Biological control The concentration 1x10 p.p.m. gave the lowest mortality percent of O. afrasiaticus 39.00%, 33.33% and 12.00%, while the Plant extracts 5 Acaricides concentration 1x10 p.p.m. resulted in the highest mortality percent Ovicides 93.33%, 69.00% and 64.67% for Demsisa, Duranta and Cumin Repellents extracts, respectively. The LC50 values were 47.16, 1102 and 5 8 Date palm 8433.2 p.p.m. The LC90 values were 3.5x10 , 2.47x10 and Mites 1.30x109 p.p.m., respectively. Also, Demsisa plant extract showed Oligonychus afrasiaticus the highest toxicity index being 100%. The slope values of the toxicity lines were 0.445, 0.240 and 0.402 for Demsisa, Duranta and Cumin extracts, respectively.
    [Show full text]
  • Assessing Potential Biological Control of the Invasive Plant, Tree-Of-Heaven, Ailanthus Altissima
    This article was downloaded by: [USDA National Agricultural Library] On: 11 August 2009 Access details: Access Details: [subscription number 741288003] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 Assessing potential biological control of the invasive plant, tree-of-heaven, Ailanthus altissima Jianqing Ding a; Yun Wu b; Hao Zheng a; Weidong Fu a; Richard Reardon b; Min Liu a a Institute of Biological Control, Chinese Academy of Agricultural Sciences, Beijing, P.R. China b Forest Health Technology Enterprise Team, USDA Forest Service, Morgantown, USA Online Publication Date: 01 June 2006 To cite this Article Ding, Jianqing, Wu, Yun, Zheng, Hao, Fu, Weidong, Reardon, Richard and Liu, Min(2006)'Assessing potential biological control of the invasive plant, tree-of-heaven, Ailanthus altissima',Biocontrol Science and Technology,16:6,547 — 566 To link to this Article: DOI: 10.1080/09583150500531909 URL: http://dx.doi.org/10.1080/09583150500531909 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date.
    [Show full text]
  • Development Durations, Colonization and Insecticide Efficacy of Leaf Mite, Oligonychus Oryzae Hirst on Rice
    Tropical Agricultural Research Vol. 21(1): 30 - 38 (2009) Development Durations, Colonization and Insecticide Efficacy of Leaf Mite, Oligonychus oryzae Hirst on Rice V. Radhakrishnan and K. Ramaraju Department of Agricultural Entomology Tamil Nadu Agricultural University Coimbatore 641 003, Tamil Nadu India ABSTRACT. Oligonychus oryzae is an economic mite pest infesting rice crops in India and other Asian countries. This study examined the duration of development instars at 20 °C – 35 °C , level of colonization of mites in eight commercial rice varieties viz., ADT 36, ADT 43, ADT 45, IR 50, CO 47, ASD 16, ADTRH 1 and TN 1 and assessment of efficacy of five insecticides against O. oryzae during 2005 and 2006. The duration of development from egg to adult lasted 8.33±0.20 days at 35 °C. ASD 16, ADTRH 1 and CO 47 were moderately resistant to leaf mite; ADT 45, TN 1, IR 50 and ADT 36 were moderately susceptible; ADT 43 was the most susceptible variety. Among the chemicals tested, Abamectin 1.8 EC was found to be the most effective. INTRODUCTION Rice, Oryza sativa L., supplies food for nearly half of the world’s population. The crop is extensively cultivated in South and South East Asian countries. Rice crop is the foundation of national stability and economic growth in many developing countries including India. In India, the average productivity of rice is 2.11 tonnes per hectare (Viraktamath and Shobha 2008). Among the arthropod pests, insects are considered as the major pest group threatening rice production. In recent years, mites have become a greater concern to the successful cultivation of rice in India, particularly South India.
    [Show full text]
  • Spruce Spider Mites
    Spruce Spider Mites TREE DOCTOR TIPS Spruce Spider Mites (Oligonychus unuguis) description: Ranging in color from green to orange-red, spruce spider mites are conifer-loving pests that overwinter as orange eggs at the base of needles and twigs. After hatching and molting several times, the adults mate and lay eggs. There can be six to eight generations each season, depending on temperature. The spruce spider mite is most active during the cooler temperatures of spring and fall, and may discontinue its feeding and reproductive activity when temperatures rise during the summer months. hosts: a Spruce spider mites feed on more than 40 different types of conifers, especially Alberta spruce, as well as arborvitae, fir, hemlock, juniper and other spruce species. biology and symptoms: These sap-sucking pests deprive trees of nutrients, causing their needles to fleck and turn yellow. Signs of a worsening infestation include remnants of silk webbing and shed skins, as well as brown needles, premature needle drop, and branch or tree death. management: b Unless treating sensitive dwarf Alberta spruce or Colorado figure a. spruce spider mites, webbing on spruce spruce, apply an appropriate miticide before bud break to figure b. eggs of the spruce spider mite, close-up reduce overall populations and again in late fall if necessary. Talk with a certified arborist about alternative treatments when miticides cannot be used. The scientists at The Davey Institute laboratory and research facility support our arborists and technicians in diagnosing and prescribing based on the latest arboricultural science. For specific treatment and application details, your arborist may consult The Davey Institute PHC Handbook.
    [Show full text]
  • Pathways for Non-Native Species in Denmark
    department of geosciences and natural resource management university of copenhagen department of geosciences and natural resource management universitety of copenhagen rolighedsvej 23 DK-1958 frederiksberg c tel. +45 3533 1500 www.ign.ku.dk Pathways for non-native species in Denmark Corrie Lynne Madsen, Christina Marita Dahl, Karen Bruun Thirslund, Fabienne Grousset, Vivian Kvist Johannsen and Hans Peter Ravn IGN Report April 2014 Title Pathways for non-native species in Denmark Authors Corrie Lynne Madsen, Christina Marita Dahl, Karen Bruun Thirslund, Fabienne Grousset, Vivian Kvist Johannsen and Hans Peter Ravn Citation Madsen, C. L., Dahl, C. M., Thirslund, K. B., Grousset, F., Johannsen, V. K. and Ravn, H. P. (2014): Pathways for non-native species in Denmark. Department of Geosciences and Natural Resource Management, University of Copenha- gen, Frederiksberg. 131 pp. Publisher Department of Geosciences and Natural Resource Management University of Copenhagen Rolighedsvej 23 DK-1958 Frederiksberg C Tel. +45 3533 1500 [email protected] www.ign.ku.dk Responsible under the press law Niels Elers Koch ISBN 978-87-7903-656-7 Cover Karin Kristensen Cover Photos Hans Ulrik Riisgård Hans Peter Ravn Jonas Roulund Published This report is only published at www.ign.ku.dk Citation allowed with clear source indication Written permission is required if you wish to use the name of the institute and/or part of this report for sales and advertising purposes 1. Preface This report is a collaboration between the Danish Nature Agency and Department for Geosciences and Natural Resource Management, University of Copenhagen. It is an update and analysis of knowledge on introduction pathways for non‐native species into Denmark in order to meet the demands for common efforts addressing challenges from alien invasive species.
    [Show full text]
  • Fossils – Adriano Kury’S Harvestman Overviews and the Third Edition of the Manual of Acarology for Mites
    1 A summary list of fossil spiders and their relatives compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) with additional contributions from Lyall I. Anderson, Simon J. Braddy, James C. Lamsdell, Paul A. Selden & O. Erik Tetlie Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2011. A summary list of fossil spiders and their relatives. In Platnick, N. I. (ed.) The world spider catalog, version 11.5 American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2010 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the fossil record of spiders – and other arachnids – and numerous new taxa have been described. Spiders remain the single largest fossil group, but our aim here is to offer a summary list of all fossil Chelicerata in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list for Araneae follows the names and sequence of families adopted in the Platnick Catalog. For this reason some of the family groups proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities.
    [Show full text]
  • On Lychee Valter Arthur1,2,*, and André R
    Development of phytosanitary irradiation against Aceria litchii (Trombidiformes: Eriophyidae) on lychee Valter Arthur1,2,*, and André R. Machi1,2 Abstract The lychee erinose mite, Aceria litchii (Keifer) (Trombidiformes: Eriophyidae), is the most important pest of lychee (Litchi chinensis Sonn. (Sapindales: Sapindaceae) in parts of China, India, Southeast Asia, South Africa and Brazil. This study sought to develop the basis for phytosanitary irradiation of lychee to provide quarantine security against this pest. New methodology had to be devised for this purpose because the adult, the largest life stage—about 200 µ long—cannot be seen without magnification, and because this species does not survive more than a few d even on detached young lychee leaves, or under other artificial conditions. Initially we adapted a method devised by Azevedo et al. (2013) for keeping the adults alive long enough to evaluate the lethal effects of candidate acaricides for at 48 h post treatment. We collected infested leaves from a lychee orchard and irradiated then with doses increasing by increments of 200 Gy in the range 0–2,000 Gy. Each infested leaf had 30 to 40 adult mites. Each of 3 replicates involved ~816 adult mites and ~2,450 adult mites per treatment. Because of the presence of predators hidden within the erinea, we col- lected 30 adult mites per replicate immediately after irradiation, and placed them in a 14-cm-diam petri dish with a new young lychee leaf and moist cotton. We covered each petri dish with parafilm® to prevent escape of mites and loss humidity. At 24, 36, and 48 h post irradiation, we counted the numbers of live and dead mites.
    [Show full text]
  • Oligonychus) Ununguis (Jacobi
    AN ABSTRACT OF THE THESIS OF James D. Calkin for the degree of Master of Science in Entomoloav presented on February 20. 1991. Title: Distribution of OliRonvchus (OliRonvchus) ununzuis (Jacobi) (Acari: Tetranvchidae) and Predator Mite Snecies (Acari: Phvtoseiidae) on Field-Grown Douelas-Fir (Pseudotsura menziesii [Mirb.l Franco) Christmas Trees Redactedfor Privacy Abstract approved. Jack DeAngelis Redacted for Privacy Abstract approved_ I/Glenn Fisher The shake and wash technique (samples placed in a jar with alcohol added and shaken to remove the mites) was effective in removing 100% of the predator mites, and adult spruce spider mites from Douglas-fir foliage and 98% of the spruce spider mite nymphs. Eighty-eight percent of the spruce spider mite eggs was removed. This technique was considered efficient for removal of spruce spider mite and its predators from Douglas-fir foliage. Sodium hypochlorite (0.84%) added to the alcohol did not increase the number of spruce spider mites or phytoseiid mites removed from the foliage. The intracanopy distribution of spruce spider mite and its predator mites was studied on Douglas-fir Christmas trees in the Willamette Valley, Oregon. When overwintering spruce spider mite egg densities populations were low (<5 eggs/19 cm of stem), significantly more eggs were found on the current season's growth. No significant differences were found between top and bottom halves of the tree or between compass directions. Differences between current and previous season's growth were not found when egg densities were high (>40 eggs/19 cm of stem), but significant differences were found between levels for current season's growth with more eggs found in the upper portion of the canopy.Quadri-directional differences did not exist with either low or high mite populations.
    [Show full text]