Arthropod Pests

Total Page:16

File Type:pdf, Size:1020Kb

Arthropod Pests IAEA-TECDOC-1082 XA9950282--W6 Irradiationa as quarantine treatmentof arthropod pests Proceedings finala of Research Co-ordination Meeting organizedthe by Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and held Honolulu,in Hawaii, November3-7 1997 INTERNATIONAL ATOMIC ENERGY AGENCY /A> 30- 22 199y Ma 9 J> The originating Section of this publication in the IAEA was: Food and Environmental Protection Section International Atomic Energy Agency Wagramer Strasse 5 0 10 x Bo P.O. A-1400 Vienna, Austria The IAEA does not normally maintain stocks of reports in this series However, copies of these reports on microfiche or in electronic form can be obtained from IMS Clearinghouse International Atomic Energy Agency Wagramer Strasse5 P.O.Box 100 A-1400 Vienna, Austria E-mail: CHOUSE® IAEA.ORG URL: http //www laea org/programmes/mis/inis.htm Orders shoul accompaniee db prepaymeny db f Austriao t n Schillings 100,- in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse IRRADIATIO QUARANTINA S NA E TREATMENF TO ARTHROPOD PESTS IAEA, VIENNA, 1999 IAEA-TECDOC-1082 ISSN 1011-4289 ©IAEA, 1999 Printe IAEe th AustriAn y i d b a May 1999 FOREWORD Fresh horticultural produce from tropical and sub-tropical areas often harbours insects and mites and are quarantined by importing countries. Such commodities cannot gain access to countries which have strict quarantine regulations suc Australias ha , Japan Zealanw Ne , d e Uniteth d dan State f Americo s a unless treaten approvea y b d d method/proceduro t e eliminate such pests. Current approved methods include fumigation by methyl bromide, hot water dip, vapour heat, dried head irradiationan t . Methyl bromid s beini e g phaset ou d globally under the Montreal Protocol in view of its strong ozone depleting properties. Europea e thosd th Countrie an f eo A n US Uniose sucth requiree s nar ha e phaso th dt t eou production of this chemical by the year 2005. Among other phytosanitary treatments, irradiation appears to have an edge as it is more versatile in controlling various pests and causes insignificant changes in quality of the treated products. Base datn do a generate Co-ordinatea y db d Research Project (CRP Irradiation o ) a s na Quarantine Treatment of Fresh Fruits and Vegetables, in operation between 1986 and 1990, irradiatio quarantina s na e treatmen fresf o t h fruit vegetabled an s s against tephretids i frui y fl t gaining wide acceptanc nationay eb internationad an l l authorities s beeha nt I .applie a n do small commercial scal fruitn eo s being exported fro mainlanS mU Hawaie th r d fo markei t since 1995. The scope for expansion of this application is high as the USD A has established a policy in 1996 to accept irradiation as a quarantine treatment against major species of tephretid fruit flies regardles f commoditieso s n additionI . e ASEAth , N countries have adopte unifieda d protoco thin o ls subject. The CRP on Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Flies operation i , n between 199 d 19972an ,f attempteo p ga e filo dt th l information on the effectiveness of irradiation against other quarantine pests. Significant data were generated by this CRP to demonstrate that a minimum dose of between 200 and 400 Gy would rende numbea r f non-fruio r insecty fl tmited an s s sterile, thus meeting quarantine requirements. However, only a limited species pf insects and mites were studied. Additional data are required to provide conclusive evidence that such a dose would render most, if not all, species of non-fruit fly insects and mites sterile. Plant parasitic nematodes appear to be resistant to irradiation as the dose required to render them sterile would cause damage to fresh horticultural commodities. Irradiation would be a useful quarantine treatment against this pest only for durable commodities such as pot soil, wood products, etc. This publication present e researcth s P presente e CR finahth e resultlt th a d f o s FAO/IAEA Research Co-ordination Meeting hosteCollege th y d b Tropicaf eo l Agriculturd ean Human Resources, University of Hawaii at Manoa, and Department of Agriculture, State of Hawaii, hel Honolulun di , Hawaii Novembe,7 froo t m3 r 1997. e ScientifiTh . LoaharancP Secretars e Joinwa th f P o f uthit o y CR FAO/IAEs A Division of Nuclear Techniques in Food and Agriculture. EDITORIAL NOTE In preparing this publication for press, staff of the IAEA have made up the pages from the original manuscripts submittedas authors.the viewsby The expressed necessarilynot do reflect IAEA, the thosegovernments the of nominatingthe of Member nominatingStatesthe or organizations. Throughout textthe names Memberof States retainedare theyas were when textthe was compiled. ofThe use particular designations of countries territoriesor does imply judgementnot any by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions delimitation ofthe or of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. CONTENTS SUMMAR CO-ORDINATEE TH F YO D RESEARCH PROJECT..........................................1 Irradiatio alternativn a s na methyo et l bromide Australiae :th n situation................................9 .1 N. W. Heather Gamma irradiatio quarantina s na e treatmen spider fo t r mites (Acarina: Tetranychidae) horticulturan i l products ............................................................29 Ignatowicz,S. Banasik-SolgalaK. Effectiveness of electron irradiation as a quarantine treatment of cut flowers .........................49 T. Hayashi, Todoriki,S. Nakakita,H. Dohino,T. TanabeK. Irradiation as a quarantine treatment of cut flowers, ginger and turmeric against mites, thrip nematodes...................................................................................d san 7 .5 A.D. Bhuiya, M.Z.R. Majumder, G. Hahar, R.M. Shahjahan, M. Khan Post harvest controlling of orchid thrips on cut flowers by irradiation..................................... 67 K. Bansiddhi, S. Siriphontangmun Irradiatio quarantina s na e treatmen ornamentals..............................................................r tfo 1 .8 E.G. Manoto, G.B. Obra, M.R. Reyes, S.S. Resilva Toleranc t flowercu f e o gamma-radiation.......................................................................... o st 3 .9 O.K. Kikuchi, P.M. Wiendl, V. Arthur Radiation disinfection or disinfestation of nematodes, aphids, mites, thrips othed an , r pest foon so d plant materials: Evaluation for effectiveness and product quality.............................................................. 105 J.H. May, Chinnasri,B. B.S. Sipes, D.P. Schmitt, R.T. Hamasaki, E.F. Mersino, R.M. Yamakawa Disinfestation of litchi stem-end borer Conopomorpha sinensis Bradley with irradiatio exporr nfo litchf to i fruits.........................................................................5 .11 Mei-Ying Xiu-QiongLiu,Hu, Ren-Huan Hou, Xiao-DongLi, Zhen-Wei Yao, Xue-meiLou, Qun-Fang Weng Developmen yelloe th f to w potato cyst nematode Globodera rostochieitsis (Woll.) on potatoes after gamma irradiatio cysts....................................................................f no 3 .12 W. Karnkowski, S. Ignatowicz Physiological marker insectn si s indicating treatment with ionizing radiation......................9 .12 J.L. Nation, B.J. Smittle, K.R. Milne Detection method irradiater sfo d mite insects...............................................................d san 1 .14 S. Ignatowicz An irradiation marker for mango seed weevil......................................................................... 163 N.W. Heather, E.G. Lescano, B.C. Congdon Phenoloxidas melanizatiod ean n tesmangr tfo o seed weevil................................................9 .16 N. W. Heather Lis Participants.................................................................................................................f o t 3 .17 SUMMARY OF THE CO-ORDINATED RESEARCH PROJECT INTRODUCTION The pasdecadew tfe s have seen increasin irradiatiof o ge interesus quarantina e s nth a n ti e treatmen f freso t h horticultural commodities. Increasing acceptanc d applicatioan e f o n irradiation as a quarantine treatment against fruit flies which was the subject of a co-ordinated research programme sponsored by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture from 1986 to 1990. In particular, the following positive developments on this subject have occurre recendn i t Uniteyeare th n si d State Americaf so , especiall Hawaiiyn i : (1) The issuing of the Notice of Policy by the USD A/APHIS in May 1996 which proposed regulation of irradiation as a quarantine treatment of fresh fruits and vegetables at specific minimum doses against major species of fruit flies regardless of commodities. publicatioe Th (2 Finae ) th f lno Rul USDA/APffly eb Juln i S y 199Irradiation o 7 a s na Phytosanitary Treatment of Carambola, Litchi, and Papaya from Hawaii at a minimum dose of 250 Gy against fruit flies in Hawaii. e markeTh t) acceptanc(3 increasind an f o e g deman r irradiatefo d d fruits from Hawaii,
Recommended publications
  • 1 1 DNA Barcodes Reveal Deeply Neglected Diversity and Numerous
    Page 1 of 57 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. 12 3Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, 13 CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France. 14 4 Landesmuseum für Kärnten, Abteilung Zoologie, Museumgasse 2, 9020 Klagenfurt, Austria 15 5 Department of Entomology, University of Antananarivo, Antananarivo 101, Madagascar 16 6 Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E., Guelph, ON 17 N1G2W1, Canada 18 7Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Genome Downloaded from www.nrcresearchpress.com by UNIV GUELPH on 10/03/18 19 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 20 Montpellier, France. 21 8Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, UK. 22 23 24 Email for correspondence: [email protected] For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 1 Page 2 of 57 25 26 Abstract 27 Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, 28 essentially from anthropogenic disturbance.
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 111 1960 Number 3429 A REVISION OF THE GENUS OGCODES LATREILLE WITH PARTICULAR REFERENCE TO SPECIES OF THE WESTERN HEMISPHERE By Evert I. Schlinger^ Introduction The cosmopolitan Ogcodes is the largest genus of the acrocerid or spider-parasite family. As the most highly evolved member of the subfamily Acrocerinae, I place it in the same general line of develop- ment as Holops Philippi, Villalus Cole, Thersitomyia Hunter, and a new South African genus.^ Ogcodes is most closely associated with the latter two genera . The Ogcodes species have never been treated from a world point of view, and this probably accounts for the considerable confusion that exists in the literature. However, several large regional works have been published that were found useful: Cole (1919, Nearctic), Brunetti (192G, miscellaneous species of the world, mostly from Africa and Australia), Pleske (1930, Palaearctic), Sack (1936. Palaearctic), and Sabrosky (1944, 1948, Nearctic). Up to this time 97 specific names have been applied to species and subspecies of this genus. Of these, 19 were considered synonyms, hence 78 species were assumed valid. With the description of 14 new species and the addition of one new name while finding onl}^ five new synonyms, 1 Department of Biological Control, University of California, Riverside, Calif. • This new genus, along with other new species and genera, is being described in forthcoming papers by the author. 227 228 PROCEEDINGS OF THE NATIONAL MUSEUM vol. m we find there are now 88 world species and subspecies. Thus, the total number of known forms is increased by 16 percent.
    [Show full text]
  • A New Leaf-Mining Moth from New Zealand, Sabulopteryx Botanica Sp
    A peer-reviewed open-access journal ZooKeys 865: 39–65A new (2019) leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. 39 doi: 10.3897/zookeys.865.34265 MONOGRAPH http://zookeys.pensoft.net Launched to accelerate biodiversity research A new leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae), feeding on the rare endemic shrub Teucrium parvifolium (Lamiaceae), with a revised checklist of New Zealand Gracillariidae Robert J.B. Hoare1, Brian H. Patrick2, Thomas R. Buckley1,3 1 New Zealand Arthropod Collection (NZAC), Manaaki Whenua–Landcare Research, Private Bag 92170, Auc- kland, New Zealand 2 Wildlands Consultants Ltd, PO Box 9276, Tower Junction, Christchurch 8149, New Ze- aland 3 School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand Corresponding author: Robert J.B. Hoare ([email protected]) Academic editor: E. van Nieukerken | Received 4 March 2019 | Accepted 3 May 2019 | Published 22 Jul 2019 http://zoobank.org/C1E51F7F-B5DF-4808-9C80-73A10D5746CD Citation: Hoare RJB, Patrick BH, Buckley TR (2019) A new leaf-mining moth from New Zealand, Sabulopteryx botanica sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae), feeding on the rare endemic shrub Teucrium parvifolium (Lamiaceae), with a revised checklist of New Zealand Gracillariidae. ZooKeys 965: 39–65. https://doi.org/10.3897/ zookeys.865.34265 Abstract Sabulopteryx botanica Hoare & Patrick, sp. nov. (Lepidoptera, Gracillariidae, Gracillariinae) is described as a new species from New Zealand. It is regarded as endemic, and represents the first record of its genus from the southern hemisphere. Though diverging in some morphological features from previously de- scribed species, it is placed in genus Sabulopteryx Triberti, based on wing venation, abdominal characters, male and female genitalia and hostplant choice; this placement is supported by phylogenetic analysis based on the COI mitochondrial gene.
    [Show full text]
  • AHFT EIA RT Vol I
    EDP – Gestão da Produção de Energia, S.A APROVEITAMENTOAPROVEITAMENTO HIDROELÉCTRICO HIDROELÉCTRICO DEDE FOZ FOZ TUA TUA ESTUDOESTUDO DE DE IMPACTE IMPACTE AMBIENTAL AMBIENTAL RelatórioRelatório Técnico Técnico - - Volume Volume I I Abril de 2008 ESTUDO DE IMPACTE AMBIENTAL DO APROVEITAMENTO HIDROELÉCTRICO DE FOZ TUA VOLUME I ÍNDICE Pág. 1. INTRODUÇÃO .................................................................................................................................................... 1 1.1 CONSIDERAÇÕES GERAIS ........................................................................................................................ 1 1.2 IDENTIFICAÇÃO DO PROJECTO................................................................................................................ 2 1.2.1 Identificação do Projecto e Fase Respectiva ......................................................................................... 2 1.2.2 O Proponente ........................................................................................................................................ 3 1.2.3 Entidade Licenciadora e Autoridade de AIA .......................................................................................... 3 1.3 EQUIPA TÉCNICA E PERÍODO DE ELABORAÇÃO ................................................................................... 3 1.3.1 Identificação dos Técnicos Responsáveis pela Execução do EIA ......................................................... 3 1.3.2 Período de Elaboração do EIA .............................................................................................................
    [Show full text]
  • Alien Invasive Species and International Trade
    Forest Research Institute Alien Invasive Species and International Trade Edited by Hugh Evans and Tomasz Oszako Warsaw 2007 Reviewers: Steve Woodward (University of Aberdeen, School of Biological Sciences, Scotland, UK) François Lefort (University of Applied Science in Lullier, Switzerland) © Copyright by Forest Research Institute, Warsaw 2007 ISBN 978-83-87647-64-3 Description of photographs on the covers: Alder decline in Poland – T. Oszako, Forest Research Institute, Poland ALB Brighton – Forest Research, UK; Anoplophora exit hole (example of wood packaging pathway) – R. Burgess, Forestry Commission, UK Cameraria adult Brussels – P. Roose, Belgium; Cameraria damage medium view – Forest Research, UK; other photographs description inside articles – see Belbahri et al. Language Editor: James Richards Layout: Gra¿yna Szujecka Print: Sowa–Print on Demand www.sowadruk.pl, phone: +48 022 431 81 40 Instytut Badawczy Leœnictwa 05-090 Raszyn, ul. Braci Leœnej 3, phone [+48 22] 715 06 16 e-mail: [email protected] CONTENTS Introduction .......................................6 Part I – EXTENDED ABSTRACTS Thomas Jung, Marla Downing, Markus Blaschke, Thomas Vernon Phytophthora root and collar rot of alders caused by the invasive Phytophthora alni: actual distribution, pathways, and modeled potential distribution in Bavaria ......................10 Tomasz Oszako, Leszek B. Orlikowski, Aleksandra Trzewik, Teresa Orlikowska Studies on the occurrence of Phytophthora ramorum in nurseries, forest stands and garden centers ..........................19 Lassaad Belbahri, Eduardo Moralejo, Gautier Calmin, François Lefort, Jose A. Garcia, Enrique Descals Reports of Phytophthora hedraiandra on Viburnum tinus and Rhododendron catawbiense in Spain ..................26 Leszek B. Orlikowski, Tomasz Oszako The influence of nursery-cultivated plants, as well as cereals, legumes and crucifers, on selected species of Phytophthopra ............30 Lassaad Belbahri, Gautier Calmin, Tomasz Oszako, Eduardo Moralejo, Jose A.
    [Show full text]
  • Evaluation of Wood and Cellulosic Materials As Fillers in Artificial Diets for Lyctus Africanus Lesne (Coleoptera: Bostrichidae)
    Insects 2015, 6, 696-703; doi:10.3390/insects6030696 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Evaluation of Wood and Cellulosic Materials as Fillers in Artificial Diets for Lyctus africanus Lesne (Coleoptera: Bostrichidae) Titik Kartika 1,2,†,*, and Tsuyoshi Yoshimura 1,† 1 Research Institute for Sustainable Humanosphere, Kyoto University, Uji Campus, Kyoto 6110011, Japan; E-Mail: [email protected] 2 Research Centre for Biomaterials, Indonesian Institute of Sciences, Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +81-744-38-3664; Fax: +81-744-38-3666. Academic Editor: Brian T. Forschler Received: 29 January 2015 / Accepted: 11 June 2015 / Published: 23 July 2015 Abstract: We studied the usefulness of wood- and cellulose-based diets for L. africanus Lesne. Three diets were prepared which differed on the base ingredients; wood particles (Diet 1), cellulose powder (Diet 2), and alpha-cellulose (Diet 3). The diets were provided to adult L. africanus and the number of larvae, as well as the number of adults that emerged sex ratio, and body weight of the progeny was determined. Findings indicated similar results for the number of larvae, sex ratio and body weight of the emerged L. africanus fed on each diet. However, the number of adult produced by L. africanus on Diet 3 was significantly lower. The results indicate that the amount of vital nutrients is not the only important factor in selecting a suitable diet for L.
    [Show full text]
  • Indian Meal Moth Plodia Interpunctella
    Indian Meal Moth Plodia interpunctella Description QUICK SCAN Adults: Up to 13 mm (0.5 inches) long with wings that have copper brown tips. The part of the wings closest to the head is off white. SIZE / LENGTH Eggs: Oval, ivory in color and 2 mm (0.08 inches) long Adult 0.5 inch (13 mm) Larvae: Creamy white, brown head capsule. Coloration varies from Eggs 0.08 inch (2 mm) cream to light pink color, sometimes pale green. Pupae: Pupal cases are whitish with a yellow to brownish colored pupa COLOR RANGE inside. Adult Long wings with copper tips Larvae Creamy white, brown head Life Cycle Adult moths live for 10-14 days. Mated females can lay 200-400 eggs LIFE CYCLE singly or in groups. Eggs hatch in 3-5 days in warmer months and up to 7 days in cooler months. Larvae feed and become mature in 21 days Adults Live 10-14 days or as long as 30 days depending on food quality, temperature and Eggs Hatch 3-7 days humidity. Larvae will wander and pupation will occur away from infested materials. Adults emerge from the pupae in 7 to 10 days depending on temperature. FEEDING HABITS Damage and Detection Larvae Prefer: woolens, furs, and materials made with hair and Granular frass the size of ground pepper can be found in, on food feathers. materials such as nuts, dried fruits, cereals and processed foods containing nuts or seeds and made from wheat, rice or corn. The use of pheromone traps and inspections can determine location and degree of INFESTATION SIGNS infestation.
    [Show full text]
  • Effects of Essential Oils from 24 Plant Species on Sitophilus Zeamais Motsch (Coleoptera, Curculionidae)
    insects Article Effects of Essential Oils from 24 Plant Species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae) William R. Patiño-Bayona 1, Leidy J. Nagles Galeano 1 , Jenifer J. Bustos Cortes 1 , Wilman A. Delgado Ávila 1, Eddy Herrera Daza 2, Luis E. Cuca Suárez 1, Juliet A. Prieto-Rodríguez 3 and Oscar J. Patiño-Ladino 1,* 1 Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia-Sede Bogotá, Bogotá 111321, Colombia; [email protected] (W.R.P.-B.); [email protected] (L.J.N.G.); [email protected] (J.J.B.C.); [email protected] (W.A.D.Á.); [email protected] (L.E.C.S.) 2 Department of Mathematics, Faculty of Engineering, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] 3 Department of Chemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] * Correspondence: [email protected] Simple Summary: The maize weevil (Sitophilus zeamais Motsch) is a major pest in stored grain, responsible for significant economic losses and having a negative impact on food security. Due to the harmful effects of traditional chemical controls, it has become necessary to find new insecticides that are both effective and safe. In this sense, plant-derived products such as essential oils (EOs) appear to be appropriate alternatives. Therefore, laboratory assays were carried out to determine the Citation: Patiño-Bayona, W.R.; chemical compositions, as well as the bioactivities, of various EOs extracted from aromatic plants on Nagles Galeano, L.J.; Bustos Cortes, the maize weevil. The results showed that the tested EOs were toxic by contact and/or fumigance, J.J.; Delgado Ávila, W.A.; Herrera and many of them had a strong repellent effect.
    [Show full text]
  • Grape Insects +6134
    Ann. Rev. Entomo! 1976. 22:355-76 Copyright © 1976 by Annual Reviews Inc. All rights reserved GRAPE INSECTS +6134 Alexandre Bournier Chaire de Zoologie, Ecole Nationale Superieure Agronornique, 9 Place Viala, 34060 Montpellier-Cedex, France The world's vineyards cover 10 million hectares and produce 250 million hectolitres of wine, 70 million hundredweight of table grapes, 9 million hundredweight of dried grapes, and 2.5 million hundredweight of concentrate. Thus, both in terms of quantities produced and the value of its products, the vine constitutes a particularly important cultivation. THE HOST PLANT AND ITS CULTIVATION The original area of distribution of the genus Vitis was broken up by the separation of the continents; although numerous species developed, Vitis vinifera has been cultivated from the beginning for its fruit and wine producing qualities (43, 75, 184). This cultivation commenced in Transcaucasia about 6000 B.C. Subsequent human migration spread its cultivation, at firstaround the Mediterranean coast; the Roman conquest led to the plant's progressive establishment in Europe, almost to its present extent. Much later, the WesternEuropeans planted the grape vine wherever cultiva­ tion was possible, i.e. throughout the temperate and warm temperate regions of the by NORTH CAROLINA STATE UNIVERSITY on 02/01/10. For personal use only. world: North America, particularly California;South America,North Africa, South Annu. Rev. Entomol. 1977.22:355-376. Downloaded from arjournals.annualreviews.org Africa, Australia, etc. Since the commencement of vine cultivation, man has attempted to increase its production, both in terms of quality and quantity, by various means including selection of mutations or hybridization.
    [Show full text]
  • Effects of Habitat Fragmentation and Disturbance on Biodiversity and Ecosystem Functions
    Effects of habitat fragmentation and disturbance on biodiversity and ecosystem functions Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Christof Schüepp von Eschlikon TG Leiter der Arbeit: Prof. Dr. M. H. Entling Institut für Ökologie und Evolution | downloaded: 13.3.2017 Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen. Bern, 14. Mai 2013 Der Dekan: Prof. Dr. S. Decurtins Originaldokument gespeichert auf dem Webserver der Universitätsbibliothek Bern Dieses Werk ist unter einem https://doi.org/10.7892/boris.54819 Creative Commons Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz Lizenzvertrag lizenziert. Um die Lizenz anzusehen, gehen Sie bitte zu http://creativecommons.org/licenses/by-nc-nd/2.5/ch/ oder schicken Sie einen Brief an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA. source: Effects of habitat fragmentation and disturbance on biodiversity and ecosystem functions Creative Commons Licence Urheberrechtlicher Hinweis Dieses Dokument steht unter einer Lizenz der Creative Commons Namensnennung- Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz. http://creativecommons.org/licenses/by-nc-nd/2.5/ch/ Sie dürfen: dieses Werk vervielfältigen, verbreiten und öffentlich zugänglich machen Zu den folgenden Bedingungen: Namensnennung. Sie müssen den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen (wodurch aber nicht der Eindruck entstehen darf, Sie oder die Nutzung des Werkes durch Sie würden entlohnt). Keine kommerzielle Nutzung. Dieses Werk darf nicht für kommerzielle Zwecke verwendet werden. Keine Bearbeitung. Dieses Werk darf nicht bearbeitet oder in anderer Weise verändert werden. Im Falle einer Verbreitung müssen Sie anderen die Lizenzbedingungen, unter welche dieses Werk fällt, mitteilen. Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die Einwilligung des Rechteinhabers dazu erhalten.
    [Show full text]
  • Lepidoptera, Noctuidae) with Descriptions of 5 New Species and 2 New Subspecies
    A peer-reviewed open-access journal ZooKeysRevision 9: 97-134of the (2009)New World Panthea Hübner with descriptions of 5 new species and 2 new subspecies 97 doi: 10.3897/zookeys.9.157 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Revision of the New World Panthea Hübner (Lepidoptera, Noctuidae) with descriptions of 5 new species and 2 new subspecies Gary G. Anweiler E.H. Strickland Entomological Museum, 218 Earth Sciences Building, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9 urn:lsid:zoobank.org:author:87B63195-32B4-4FAF-8732-54242BF1FAA9 Corresponding author: Gary G. Anweiler ([email protected]) Academic editor: B. Christian Schmidt | Received 12 January 2009 | Accepted 23 April 2009 | Published 12 May 2009 urn:lsid:zoobank.org:pub:20B00870-7416-4583-ADE0-4302E5571B66 Citation: Anweiler GG (2009) Revision of the New World Panthea Hübner (Lepidoptera, Noctuidae) with descriptions of 5 new species and 2 new subspecies. In: Schmidt BC, Lafontaine JD (Eds) Contributions to the Systematics of New World Macro-Moths. ZooKeys 9: 97-134. doi: 10.3897/zookeys.9.157 Abstract Th e New World species of Panthea Hübner are revised. Five species and two subspecies are described as new: Panthea apanthea sp. n., Panthea reducta sp. n., Panthea greyi sp. n., Panthea judyae sp. n., Panthea guatemala sp. n., Panthea furcilla australis ssp. n., and Panthea acronyctoides nigra ssp. n. Lectotypes are designated for Panthea leucomelana Morrison and Panthea furcilla (Packard), and a neotype is designated for Platycerura gigantea French. Panthea pallescens McDunnough, syn. n. is synonymized with P.
    [Show full text]
  • Wood-‐Destroying Organism Inspection
    InterNACHI Wood-Destroying Organism Inspection Student Course Materials InterNACHI free online course is at http://www.nachi.org/wdocourse.htm. Wood-Destroying Organism Inspection The purpose of the course is to define and teach good practice for: 1) conducting a wood-destroying organism inspection of a building; and 2) performing treatment applications for the control of wood-destroying organisms. This course provides information, instruction, and training for the wood-destroying organism inspector and commercial pesticide applicator studying to become certified. The student will learn how to identify and report infestation of wood-destroying organisms that may exist in a building using a visual examination. The student will learn the best practices for treatment applications to control infestation. The course is designed primarily for wood-destroying organism inspectors, building inspection professionals, and commercial treatment applicators. STUDENT VERIFICATION & INTERACTIVITY Student Verification By enrolling in this course, the student hereby attests that he or she is the person completing all course work. He or she understands that having another person complete the course work for him or her is fraudulent and will immediately result in expulsion from the course and being denied completion. The courser provider reserves the right to make contacts as necessary to verify the integrity of any information submitted or communicated by the student. The student agrees not to duplicate or distribute any part of this copyrighted work or provide other parties with the answers or copies of the assessments that are part of this course. Communications on the message board or forum shall be of the person completing all course work.
    [Show full text]