Chem 481 Lecture Material 3/13/09

Total Page:16

File Type:pdf, Size:1020Kb

Chem 481 Lecture Material 3/13/09 Chem 481 Lecture Material 3/13/09 Radiation Detection and Measurement When radiation interacts with matter electronic excitation and ionization occur. When de-excitation results in the emission of photons these can be detected by suitable light- sensitive devices. When charge carriers (ion pairs, electron/hole pairs) are produced these can be collected to generate an electrical signal. The dead time of a detector is the length of time between the formation of an output signal (pulse) and when the detector conditions are able to produce another output signal (see figure below). Initially this second output is insufficient in size to be recognized by the counting electronics (less than the discriminator level). The resolving time is the interval between the initial pulse and the formation of a detectable pulse (see figure below). The recovery time is the interval between two full-size pulses. Events that occur during the resolving time will not be recorded and are known as coincidence losses. Gas Ionization Detectors Imagine a gas-filled container with 2 electrodes of opposite charge (see figure below). As radiation enters the gas filling and ionizes the gas (creates primary cation-electron pairs), the cations will drift toward the negatively-charged electrode and the electrons Radiation Detection and Measurement 3/13/09 page 2 will be collected at the positive anode resulting in a current that can be measured. Some cations and electrons may recombine. As the electric potential across the electrodes is increased a voltage is reached where the electrode attraction is greater than the attraction between cations and electrons and all primary ion pairs are collected. Small increases in voltage beyond this continue to ensure collection of all primary ion pairs. The collected current depends on the number of primary ion pairs which depends on the specific ionization of the radiation. Thus, the output signal will be different for alpha, beta and gamma radiation. A gas-filled detector that operates at a voltage where all primary ion pairs are collected (saturation region) is called an ionization chamber (see figure below). Because there is a wide range of voltage associated with the saturation region, a well- regulated voltage supply is not needed. Also, the low voltage requirements allow for battery operation and portability. Air is often used for the gas filling. The small current or voltage that is produced often requires amplification using an electrometer. The quartz fiber dosimeter is an electroscope that operates on the same principles as an ionization chamber. As the potential is further increased between the electrodes the current collected increases because electrons produced in the primary ionization become energetic enough as they are drawn toward the anode to cause secondary ionization. This Radiation Detection and Measurement 3/13/09 page 3 increase in the number of electrons beyond that produced in primary ionization events is call gas amplification. In this voltage region the amount of gas amplification is constant for a given voltage. Thus, the collected current is proportional to the number of primary ionization events and the output signal will vary depending upon the type of radiation (α > β > γ - see figure above) and energy of the radiation. A gas-filled detector that operates at a voltage where there the gas amplification maintains a linear proportionality with the primary ionization is called a proportional counter. The proportionality of pulse height and primary ionization is maintained because gas amplification (Townsend avalanche) is confined to a very small distance (0.01 mm) from a fine wire anode (see figure below). Since only the electrons are collected for the output signal, the output pulse has a fast rise time and the detector has a short dead time (and short resolving time). This means that proportional counters can handle higher counting rates before coincidence losses become significant. A proportional counter also produces larger output signals that requires less amplification, but requires a well-regulated high voltage supply. Since the pulse height is proportional to the extent of primary ionization, alpha radiation will produce a pulse that can be passed by the discriminator at a lower gas amplification, and hence lower applied voltage, than will beta radiation. This means that for a source emitting both alpha and beta radiation, a plot of count rate versus applied voltage will exhibit 2 plateaus, first one produced by the alpha radiation and then a second one due to both the alpha and beta radiation (see figure below). Radiation Detection and Measurement 3/13/09 page 4 The operating characteristics of a proportional counter depend on its construction (size, shape, geometry of gas volume and electrodes) and on the type of gas filling. A common filling gas is a mix of 90% Ar and 10% CH4 (P-10 gas). The methane acts as quenching agent. It restricts the extent of the Townsend avalanche by removing energy from excited argon ions and then de-excites by dissociation instead of emitting photons that can trigger secondary avalanches. Air and water vapor should not be present because they attract electrons to form negative ions which will affect the output pulse size. A windowless counter for alpha and low-energy beta radiation positions the sample within the gas filling (see figure below). Nearly 2π counting geometry is achieved this way. As the applied voltage is increased further there is an increase in the gas amplification, but there is a limit based on the construction of the counter and gas filling. At some point the collected current is no longer proportional to the primary ionziation (limited proportional region). If the voltage is further increased eventually all radiation, regardless of the number of primary ionization events, produce the same size output pulse. This is known as the Geiger region and gas-filled detectors operating in this region are known as Geiger-Müller (G-M) counters (see Figure 8.2 on p.2). G-M counters operate where there is maximum gas amplification and the pulse amplitude is independent of the primary ionization. The amplification results from a Townsend avalanche that is propagated through the gas filling by UV photons emitted from excited atoms/ions (see figure below). These photons produce photoelectrons at other points in the gas filling until the build-up of a positive ion sheath reduces the electric field strength sufficiently to prevent further ionization. In order for the detector to again produce detectable output pulses, this extensive positive ion sheath must migrate to the cathode, a process that can take 100-300 microseconds. Thus, G-M counters have a much longer resolving time than proportional counters and coincidence Radiation Detection and Measurement 3/13/09 page 5 losses become significant at count rates below 10000 cpm. G-M cannot distinguish between different types of radiation, however, output pulse size is much larger so electronic amplification is usually unnecessary. As the positive ion sheath nears the cathode and cations become neutralized, the excited atoms can emit electrons or photons that can re-trigger the detector. This is prevented by adding a small amount of an organic compound or halogen to serve as a quenching agent. The noble gas ion transfers its charge to the molecule which gains an electron at the cathode. The energy acquired by neutralization is dissipated by dissociation rather than photon or electron emission. .
Recommended publications
  • Electrostatics of Two Suspended Spheres (Eletrost´Atica De Duas Esferas Suspensas)
    Revista Brasileira de Ensino de F´ısica, v. 34, n. 3, 3308 (2012) www.sbfisica.org.br Electrostatics of two suspended spheres (Eletrost´atica de duas esferas suspensas) Fernando Fuzinatto Dall'Agnol1, Victor P. Mammana and Daniel den Engelsen Centro de Tecnologia da Informa¸c~aoRenato Archer, Campinas, SP, Brasil Recebido em 25/2/2011; Aceito em 6/2/2012; Publicado em 21/11/2012 Although the working principle of a traditional electroscope with thin metal deflection foils is simple, one needs numerical methods to calculate its foil's deflection. If the electroscope is made of hanging spheres instead of foils, then it is possible to obtain an analytical solution. Since the separation of the charged spheres is of the order of their radius the spheres cannot be described as point charges. We apply the method of image charges to find the electrostatic force between the spheres and then we relate the voltage applied to their separation. We also discuss the similarity with the sphere-plane electrostatic problem. This approach can be used as an analytical solution for practical problems in the field of electrodynamics and its complexity is compatible with undergraduate courses. Keywords: electroscope, electrometer, method of image, image charge, electrostatic, sphere-sphere. Apesar da simplicidade do princ´ıpiode funcionamento do eletrosc´opiotradicional feito de folhas met´alicas finas, ´enecess´ariom´etodos num´ericospara calcular a deflex˜aodas folhas. Se o eletrosc´opiofor feito de esferas penduradas ao inv´esde folhas, ent~ao´eposs´ıvel obter uma solu¸c~aoanal´ıtica. Como a deflex˜aodas esferas car- regadas ´eda ordem dos seus raios, as esferas n~aopodem ser descritas como cargas pontuais.
    [Show full text]
  • Lab 1 Electrostatics
    Electrostatics Goal: To make observations of electrostatic phenomena and interpret the phenomena in terms of the behavior of electric charges. Lab Preparation Most of what you will see in this lab can be explained simply by the following: Like charges repel and unlike charges attract. These repelling and attracting forces that occur can be found using Coulomb’s law, which is stated as !! !! � = � !! where F is the electrostatic force, k is the Coulomb constant (8.99 x 109 Nm2/C2), q1 and q2 are the charges the objects carry, and r is how far apart the objects are. A neutral atom of a substance contains equal amounts of positive and negative charge. The positive charge resides in the nucleus, where each proton carries a charge of +1.602 x 10-19 C. The negative charge is provided by an equal number of electrons associated with and surrounding the nucleus, each carrying a charge of -1.602 x 10-19 C. Macroscopically sized samples of everyday materials usually contain very nearly equal numbers of positive and negative charges. When some dissimilar materials are rubbed together, some charges are transferred from one material to the other leaving each object with a small net charge. For example, when a glass rod is rubbed with silk, the rod usually ends up with a positive charge and the silk ends up with a negative charge. Materials can be cast into two electrical categories: insulators and conductors. The atomic or molecular structure of the material determines whether some charges are free to move (a conductor, such as metallic materials) or largely fixed in place (an insulator).
    [Show full text]
  • Electric Charges Observations Observations
    Welcome to PY106 Setting the Channel Number for Your Clicker -The syllabus is your guide to this course. It contains information about the discussions, labs., the class, lab. and 1. Press and release the “CH” button. exam. schedules and grading scheme, etc. 2. While the light is flashing red and green, enter the two digit - Discussion sessions begin today! channel code “41” for this class. - Labs. begin on Jan. 28. 3. After the second digit is entered, press and release the - Assignment 1 is a hand-in, and will be posted on Blackboard “CH” button. The light should flash green to confirm. soon. It is due on Tuesday (Jan. 28) 10:00pm. 4. Press and release the “1/A” button. The light should flash - Most other assignments are posted on WebAssign. To amber ONCE to confirm. If it flashes continuously, there is access the assignment, you need to acquire an access code probably an error and you should try it again. from WebAssign. Instructions for WebAssign can be found in the syllabus. - Lecture notes can be downloaded from http://physics.bu.edu/~okctsui/PY106.html. Note that the URL is case sensitive. 1 2 Electric charges There are two kinds of electric charge, positive and negative. Objects are generally charged by either acquiring extra electrons (a net negative charge), or giving up electrons (a net positive charge). Electric Charge Forces between charged objects can be very large. Such forces are really what stop us from falling through the floor. In other words, what we called the normal force is really associated with repulsive forces between electrons.
    [Show full text]
  • Physics 42 Lab: Static Electricity
    Physics 42 Lab: Static Electricity Charge can neither be created nor destroyed: it can only be moved around! The purpose of the lab is to play with static electricity by moving charge around. You will charge objects by friction, induction and polarization and determine the charge with an electroscope. You will draw cute pictures showing each step and how the charges distribute to result in a final charge. The following cartoon sketch is an example of showing how a metallic sphere is charged by induction using a ground. This is the type of sketch you will draw today for each activity, describing what is happening for each step and summarizing your results. I will grade your lab based on neatness and clear explanations! Sample: Charging a metal sphere by induction using a negatively charged rod (a) A neutral metallic sphere, with equal numbers of positive and negative charges. (b) The electrons on the neutral sphere are redistributed when a charged negatively charge rubber rod is placed near the sphere. (c) When the sphere is grounded, some of its electrons leave through the ground wire. (d) When the ground connection is removed while leaving the rod close to the sphere, the sphere has excess positive charge that is nonuniformly distributed. (e) When the rod is removed, the remaining electrons redistribute uniformly and there is a net uniform distribution of positive charge on the sphere. Summary: Charging a neutral metal sphere by induction using a negative rod results in a positive charged sphere! ****************************************************************************************
    [Show full text]
  • Ph 122 Stars%/Usr1/Manuals/Ph122/Elstat
    Electrostatics In this set of experiments, we separate electric charges by friction and explore the two different kinds of electric charge and how they interact. I. Theory Electric Charge We find two kinds of electric charge in nature • Positive (protons in the atomic nucleus all have positive electric charge) • Negative (electrons all have negative electric charge of the same size as protons) Atoms normally have equal numbers of protons and electrons and are thus electrically neutral, or uncharged. Likewise, larger objects usually have equal numbers of negative charges (electrons) and positive charges (protons) and are neutral. If there is a slight imbalance between the number of protons and the number of electrons, then the object is electrically charged. Electrons (usually the “outer” electrons) can be removed from an atom. For example, rubbing two different materials, say rubber and cloth, against each other can cause some electrons to move from one material to the other. Electrons are held more firmly in rubber (or plastic) than in cloth. Thus when a rubber rod is rubbed with cloth, the rubber rod does not want to give up its electrons to the cloth, so electrons transfer from cloth to the rubber, making the rubber rod negatively charged (more electrons than protons). The cloth now has a deficiency of electrons, so it is left positively charged (due to more protons than electrons). A glass rod, on the other hand, loses electrons easily compared to the cloth and is willing to give up its electrons to the cloth. If you rub the glass rod with the cloth, the glass becomes positively charged and the cloth gains electrons and becomes negatively charged.
    [Show full text]
  • Personnel Monitoring
    RADIOLOGICAL MONITORING, METHOD, INSTRUMENTATION AND TECHNIQUES: PERSONNEL MONITORING Agensi Nuklear Malaysia Contents Introduction Objective of Personnel Monitoring Personnel Monitoring Instrument for External Radiation Personnel Monitoring Instrument for Internal radiation Calibration and Quality Control Introduction Atomic Energy Licensing Regulations (BSS) 2010 (Act 304) require monitoring to be carried out on all personnel who work in controlled areas (and selectively in supervised areas). Occupational exposure can be delivered to personnel either by sources outside the body in the form of external radiation or by intake of radioactive contaminants. Atomic Energy Licensing Regulations (BSS) 2010 (Act 304) require the radiation exposures both from external and internal sources be evaluated to represent an individual dose in a year. A devices that is accepted by the AELB are required by all personnel to measure the radiation dose received while working with radiation sources or working in classified areas. Objective of Personnel Monitoring To provide information on radiation dose received by workers. To observe the trends of exposure histories of individuals or groups of workers in order to assess the need for improved standards of radiation protection. To provide information in the event of accidental over exposure. To provide information about the condition of radiation level at workplace. To improve the workers attitudes toward radiation protection in order to reduce future exposures as a results of information given to them. To demonstrate the adequacy of supervision, training and engineering standards. To provide a record of information which may be needed for legal or epidemiological purposes. Personal monitoring External monitoring Internal monitoring (the measurement of dose due to (the measurement of dose due to sources outside the body) sources inside the body) Whole body Partial body monitoring (extremity) 1.
    [Show full text]
  • Individual Monitoring Individual Monitoring Practical Radiation Technical Manual
    PRACTICAL RADIATION TECHNICAL MANUAL INDIVIDUAL MONITORING INDIVIDUAL MONITORING PRACTICAL RADIATION TECHNICAL MANUAL INDIVIDIAL MONITORING INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2004 INDIVIDUAL MONITORING IAEA, VIENNA, 2004 IAEA-PRTM-2 (Rev. 1) © IAEA, 2004 Permission to reproduce or translate the information in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Vienna April 2004 FOREWORD Occupational exposure to ionizing radiation can occur in a range of industries, such as mining and milling; medical institutions; educational and research establishments; and nuclear fuel facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. Guidance on meeting the requirements for occupational protection in accordance with the Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115) is provided in three interrelated Safety Guides (IAEA Safety Standards Series Nos. RS-G-1.1, 1.2 and 1.3) covering the general aspects of occupational radiation protection as well as the assessment of occupational exposure. These Safety Guides are in turn supplemented by Safety Reports providing practical information and technical details for a wide range of purposes, from methods for assessing intakes of radionuclides to optimization of radiation protection in the control of occupational exposure. Occupationally exposed workers need to have a basic awareness and understanding of the risks posed by exposure to radiation and the measures for managing these risks. To address this need, two series of publications, the Practical Radiation Safety Manuals (PRSMs) and the Practical Radiation Technical Manuals (PRTMs) were initiated in the 1990s.
    [Show full text]
  • Matls Licensing Package for Amend 9 to License 34-25957-01 For
    - k y$$f,$$$? u c A 2 1 1 eg 4 W 808 License number MATERIALS LICENSE j SUPPLEMENTARY SHEET 30 3073 I ( < Amendment No. 09 f>( l-i ' i M |4 (i Victoreen, Inc. (Delaware) j 6000 Cochran Road I q Solon, OH 44139-3395 In accordance with letter dated May 17, 1993,, license Number 34-25957-01 is amended as | Fj je follows: , ; [ [ t - - 4 y, ; . - i1" Conditions ll.C and 24. are amended *to read: k k(t , i < ~ ss j 11. C. The Radiation Saf(t) Officer for this license is B'arbara M. Kapsar. y C ~',f , , i |$ 24. Except as specifical.ly provided otherwise in this license, the licensee shall 4 conduct its program 5in accordance with the statementsr representations, and d procedures contain$d in the ddcu'ments, including ag 'ni;enclosuges,, listed below. The d U.S. Nuclear Regulatory Commission's regulatio'ns4 hall govern unless the statements, f representations,1and procedure's in'the' licensee q more restrictive than the regulations.'eJ. uj)ts:[ application'"and{ correspondence are A .. .x's e. N 4 A. Applications idated Jiarch 6,T.1985,1 Novemberf l6,1987, Augdit 3,1988 (with ,4 attachments),' August 331,1990;4Eeb'ruar' L6','1991'.(with attschments) and y ~ ,2; f October 8, 1991s (with" attachments)'; [inds , ,. .. D . ' h !q B. Letters dated 'J nuary 28,11983, Dec' W r -embe 16 ?)984, Mar'c5 6, 1985, May 31, 1985,. 4 March 12, 1986,-June 8, 1987, Decemberc9,*1987, January 13, 1988, March 11, k ~1988, March 28,1988, April 11, '1988,' -July 7,' 1988? August 3,1988, jj September 8,1988, Tune 9,1989, March 26,1996G{ebruary 25, 1991, May 17, g ! 1993 and June 15, 1993.
    [Show full text]
  • 1968 Technical Highlights of the National Bureau of Standards
    TECHNICAL HIGHLIGHTS 196B U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards UNITED STATES DEPARTMENT OF COMMERCE C. R. Smith, Secretary John F. Kincaid, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS A. V. Astin, Director 1968 Technical Highlights of the National Bureau of Standards Institute for Basic Standards Institute for Materials Research Institute for Applied Technology Center for Radiation Research Annual Report, Fiscal Year 1968 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.G. 20402 - Price $1 Library of Congress Catalog Card Number: 6-23979 CONTENTS INTRODUCTION 1 Management Progress 1 Center for Radiation Research Created. Reorganization of Boulder Laboratories. New Institute Directors Named. Special Programs 3 Research Associate Program. Foreign Scientist Visitation Program. Utilization of Federal Laboratories 5 Legislative Report 6 Flammable Fabrics Act. Fire Research and Safety Act. Standard Reference Data Act. TWO KEY STANDARDS PROGRAMS 9 The National Standard Reference Data System 9 History of the Program 10 Responsibilities of NBS. Operation of the System. General Status of the Program. The Standard Reference Data Act. International Cooperation. Current Data Project Activity 19 Nuclear Properties. Atomic and Molecular Properties. Thermodynamic and Transport Properties. Solid State Properties. Chemical Kinetics. Colloid and Surface Properties. Data Systems Design and Development 24 Information Services 25 The Standard Reference Materials Program 26 History of the Program 26 Current Activity 33 INSTITUTE FOR BASIC STANDARDS 39 Physical Quantities 39 International Base Units 40 Length. Time and Frequency. Temperature. Electric Cur- rent. Fundamental Physical Constants. Mechanical Quantities 47 Electrical Quantities—D.C and Low Frequency 49 Electrical Quantities—Radio Frequency 51 High Frequency Region.
    [Show full text]
  • Electric Charge
    Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction January 2014 Print Your Name Instructions Before the lab, read all sections of the ______________________________________ Introduction, and answer the Pre-Lab questions on the last page of this Print Your Partners' Names handout. Hand in your answers as you enter the general physics lab. ______________________________________ ______________________________________ You will return this handout to the instructor at the end of the lab period. Table of Contents 0. Introduction 1 1. Activity #1: Instructor demonstration of how to charge a rod 6 2. Activity #2: Instructor demonstration of charging by conduction using a proof plane 6 3. Activity #3: Observe the effect of induction on a neutral body 7 4. Activity #4: Observe the effect of induction on a charged body, Part I 7 5. Activity #5: Observe the effect of induction on a charged body, Part II 8 6. Activity #6: Determining the sign of an unknown charge 9 7. Activity #7: Observe permanent charging of a body by induction 10 8. Activity #8: Observe how a charged body acts on charged objects 11 9. Activity #9: Observe the motion of a charged body in an electric field 12 10. Activity #10: Observe the effect of induction on a divisible conductor 12 11. Activity #11: A paradox? 13 12. When you are done ... 14 0. Introduction We deal with electricity constantly in every aspect of life. Electric forces are holding our material world together by binding electrons and nuclei into atoms, and atoms into molecules. Of all the fundamental forces in nature, the interactions between electric charges are the best understood theoretically.
    [Show full text]
  • Radiation Measurements and Dosimetry – ASP 2021
    Radiation dosimetry, radiation protection and measurements Marco Silari CERN, Geneva, Switzerland [email protected] M. Silari – Radiation Measurements and Dosimetry – ASP 2021 1 Outline of the lecture ─ A very brief historical introduction ─ Directly and indirectly ionizing radiation ─ Radioactivity ─ Natural exposures ─ The effects of ionizing radiation ─ Deterministic and stochastic effects ─ Radiological quantities and units ─ physical, protection and operational quantities ─ Principles of radiation protection ─ Justification, optimization and dose limitation ─ The ALARA principle ─ Protection means ─ Instrumentation for measuring ionizing radiation M. Silari – Radiation Measurements and Dosimetry – ASP 2021 2 Outline of the lecture ─ A very brief historical introduction ─ Directly and indirectly ionizing radiation ─ Radioactivity ─ Natural exposures ─ The effects of ionizing radiation ─ Deterministic and stochastic effects ─ Radiological quantities and units ─ physical, protection and operational quantities ─ Principles of radiation protection ─ Justification, optimization and dose limitation ─ The ALARA principle ─ Protection means ─ Instrumentation for measuring ionizing radiation M. Silari – Radiation Measurements and Dosimetry – ASP 2021 3 The discovery of radiation 1895 Discovery of X rays Wilhelm C. Röntgen 1897 First treatment of tissue with X rays Leopold Freund J.J. Thompson 1897 “Discovery” of the electron M. Silari – Radiation Measurements and Dosimetry – ASP 2021 4 The discovery of radiation Henri Becquerel (1852-1908)
    [Show full text]
  • 16004479.Pdf
    LIST OF MILITARY AND CIVIL DEFENSE RADIAC DEVICES 1969 AUGUST 1969 "Each transmittal of this report outside the agencies of the U. S. Government must have prior approval of the Director, Defense Atomic Support Agency, Washington, D. C. 20305." Prepared * by Research and Development Liaison Directorate Field Command, Defense Atomic Support Agency Sandia Base, New Mexico 87l15 i ABSTRACT A compilation of radiac dwices currently available to the Department of Defense is presented. The list is separated into rate meters, dosimeters, miscellaneous radiac equipment for calibration and special purposes, and major research and devel- opment items. Each item includes nomenclature. classification, federal stock number, cost, sponsoring agency and a description of the item. ii Letter of Promulgation This "List of Military and Civil Defense Radiac Devices" is a compilation of information on radisc devices currently available to the Department of Defense. Information on major research and development items currently under investigation is also included. The radiac information included herein has been furnished * by the agencies sponsoring the various devices. It is intended for use as a convenient reference document for agencies associared with radiac developments. [ Brigadier (isnorel, USAP Deputy Mrector (Ops & Admin) iii -.., .. iv TABLE OF CONTENTS SECTION A - RATE METERS -PAGE A-1 Low Range Survey Meters A-2 High Range Survey Meters A-3 Alpha Detectors A-4 Neutron Detectors A-5 Special Purpose Rate Meters A-6 Training Devices SECTION B - DOSIMETERS
    [Show full text]