Lab 1 Electrostatics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Electrostatics of Two Suspended Spheres (Eletrost´Atica De Duas Esferas Suspensas)
Revista Brasileira de Ensino de F´ısica, v. 34, n. 3, 3308 (2012) www.sbfisica.org.br Electrostatics of two suspended spheres (Eletrost´atica de duas esferas suspensas) Fernando Fuzinatto Dall'Agnol1, Victor P. Mammana and Daniel den Engelsen Centro de Tecnologia da Informa¸c~aoRenato Archer, Campinas, SP, Brasil Recebido em 25/2/2011; Aceito em 6/2/2012; Publicado em 21/11/2012 Although the working principle of a traditional electroscope with thin metal deflection foils is simple, one needs numerical methods to calculate its foil's deflection. If the electroscope is made of hanging spheres instead of foils, then it is possible to obtain an analytical solution. Since the separation of the charged spheres is of the order of their radius the spheres cannot be described as point charges. We apply the method of image charges to find the electrostatic force between the spheres and then we relate the voltage applied to their separation. We also discuss the similarity with the sphere-plane electrostatic problem. This approach can be used as an analytical solution for practical problems in the field of electrodynamics and its complexity is compatible with undergraduate courses. Keywords: electroscope, electrometer, method of image, image charge, electrostatic, sphere-sphere. Apesar da simplicidade do princ´ıpiode funcionamento do eletrosc´opiotradicional feito de folhas met´alicas finas, ´enecess´ariom´etodos num´ericospara calcular a deflex˜aodas folhas. Se o eletrosc´opiofor feito de esferas penduradas ao inv´esde folhas, ent~ao´eposs´ıvel obter uma solu¸c~aoanal´ıtica. Como a deflex˜aodas esferas car- regadas ´eda ordem dos seus raios, as esferas n~aopodem ser descritas como cargas pontuais. -
Electrostatic Van De Graaff Electron Accelerator
Engineering aspects of a 2MeV Electrostatic Van de Graaff Electron Accelerator. By: Ramiro G. Rivadeneira Texas A&M University Department of Biological and Agricultural Engineering Electrostatic Accelerator History Physicists developed machines capable of accelerating particles to study particle interactions from non-radioactive materials in the early 1900’s. R.J. Van de Graaff, an American scientist, in 1931 invented the electrostatic electron accelerator. Such an accelerator uses high-voltage to produce beams of electrons that can be directed to a target. Fundamentals of Charged Particle Acceleration The study of particle beams of any kind is called particle dynamics. This branch of physics will make it possible to understand the principles of accelerating electrons used by the Van de Graaff particle accelerator. How do we accelerate a particle? In order to accelerate a particle: Its kinetic energy E needs to increase. How? By change in its momentum P. Therefore a charged particle is accelerated when a change in its momentum occurs, produced by an electric field E. Then: dP [1] x = F = qE dt x x Now, consider an electron traveling between two parallel plates at a potential difference V. Uniform Electric Field, E KE , V KE , V 2 2 1 1 F=qE vx me , q Fig 1. Electron acceleration in a uniform electric field E between two parallel plates. The force Fx (Lorentz Force) experimented by the electron is given by: [2] F = q(v × B + E) Where E is a uniform electric field between plates, and B is a magnetic field. Change in Kinetic Energy As an electron moves from point 1 to point 2, its kinetic energy changes by: r 2 r 2 [3] ∆E = ∫ F ⋅ dr = q ∫ (v × B + E) ⋅ dr r1 r1 However, because of the uniform electric field E, the path velocity vector vx is parallel to the path vector dr, then the cross product (v x B) dr = 0 It can be seen that magnetic fields then do not change the particle energy E, thus particle acceleration depends only on the uniform electric field E. -
Unit 2 - Lecture 5B the Development of Accelerator Concepts
Unit 2 - Lecture 5b The development of accelerator concepts William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT US Particle Accelerator School The history of accelerators is a history of 100 years of invention Great principles of accelerator physics phase stability, strong focusing colliding beam storage rings; Dominant accelerator technologies superconducting magnets high power RF production normal & superconducting RF acceleration Substantial accomplishments in physics & technology non-linear dynamics, collective effects, beam diagnostics, etc.; Years of experience with operating colliders. Overcoming performance limits often requires development of sophisticated theories, experiments, or instrumentation From R. Siemann: SLAC-PUB-7394January 1997 US Particle Accelerator School Taxonomy of accelerators US Particle Accelerator School How do we get energy into the beam particles? US Particle Accelerator School Simple DC (electrostatic) accelerator Vacuum enclosure + + High Experiment voltage generator + Parallel plates - Electrical ground US Particle Accelerator School Crockroft Walton high voltage dc accelerator column beam Crockroft-Walton at FNAL accelerates H- to 750keV Eout = Nstage Eac US Particle Accelerator School Van de Graaff generators Van de Graaff’s generator a Round Hill MA US Particle Accelerator School Why do we need RF structures & fields? US Particle Accelerator School Possible DC accelerator? C B + V - US Particle Accelerator School Maxwell forbids this! C dB E = -
The Topic of Electricity (!)
hm C mfrts The Topic June 29 of Electricity 2016 Teachers’ Notes for the S1 Electricity Unit at Lockerbie Academy. This is a collection of the documents in the Resources files with a few additions from J A Hargreaves on how she teaches the material. This does not make it fixed that this is the only way to teach. This is the things I have taught the topic over the years. If we follow it to some extent, using the same terms etc. it will give all students a similar experience and give confidence to staff who may feel a little out of their depth with the physics. As usual this is an application and skills led course and it is as important for students to learn practical skills and confidence as they are to learn the content. Please do as little talk and chalk as possible. Try not to print! Version 1.2 Page 1 hm C mfrts Contents Contents .............................................................................................................................................................................................. 2 Prior to the course ............................................................................................................................................................................... 5 What is Physics? ............................................................................................................................................................................. 5 How Physics Works ........................................................................................................................................................................ -
Electric Charges Observations Observations
Welcome to PY106 Setting the Channel Number for Your Clicker -The syllabus is your guide to this course. It contains information about the discussions, labs., the class, lab. and 1. Press and release the “CH” button. exam. schedules and grading scheme, etc. 2. While the light is flashing red and green, enter the two digit - Discussion sessions begin today! channel code “41” for this class. - Labs. begin on Jan. 28. 3. After the second digit is entered, press and release the - Assignment 1 is a hand-in, and will be posted on Blackboard “CH” button. The light should flash green to confirm. soon. It is due on Tuesday (Jan. 28) 10:00pm. 4. Press and release the “1/A” button. The light should flash - Most other assignments are posted on WebAssign. To amber ONCE to confirm. If it flashes continuously, there is access the assignment, you need to acquire an access code probably an error and you should try it again. from WebAssign. Instructions for WebAssign can be found in the syllabus. - Lecture notes can be downloaded from http://physics.bu.edu/~okctsui/PY106.html. Note that the URL is case sensitive. 1 2 Electric charges There are two kinds of electric charge, positive and negative. Objects are generally charged by either acquiring extra electrons (a net negative charge), or giving up electrons (a net positive charge). Electric Charge Forces between charged objects can be very large. Such forces are really what stop us from falling through the floor. In other words, what we called the normal force is really associated with repulsive forces between electrons. -
Physics 42 Lab: Static Electricity
Physics 42 Lab: Static Electricity Charge can neither be created nor destroyed: it can only be moved around! The purpose of the lab is to play with static electricity by moving charge around. You will charge objects by friction, induction and polarization and determine the charge with an electroscope. You will draw cute pictures showing each step and how the charges distribute to result in a final charge. The following cartoon sketch is an example of showing how a metallic sphere is charged by induction using a ground. This is the type of sketch you will draw today for each activity, describing what is happening for each step and summarizing your results. I will grade your lab based on neatness and clear explanations! Sample: Charging a metal sphere by induction using a negatively charged rod (a) A neutral metallic sphere, with equal numbers of positive and negative charges. (b) The electrons on the neutral sphere are redistributed when a charged negatively charge rubber rod is placed near the sphere. (c) When the sphere is grounded, some of its electrons leave through the ground wire. (d) When the ground connection is removed while leaving the rod close to the sphere, the sphere has excess positive charge that is nonuniformly distributed. (e) When the rod is removed, the remaining electrons redistribute uniformly and there is a net uniform distribution of positive charge on the sphere. Summary: Charging a neutral metal sphere by induction using a negative rod results in a positive charged sphere! **************************************************************************************** -
Van De Graaff Generator Safety
Van de Graaff Generator Safety Introduction SCIENTIFIC Van de Graaff generators build up and maintain a high voltage static electric charge—some of SAFETYFAX! them up to 500,000 volts. Safely operating a Van de Graaff generator is essential if students are to have the opportunity to see the many exciting and memorable static electricity demonstrations performed with a Van de Graaff generator. Concepts • Van de Graaff generator safety • Static electricity Materials Van de Graaff generator Meter stick, wood (no metal), or 1-m wooden dowel (optional) Discharge electrode How a Van de Graaff Generator Works Most Van de Graaff generators build up a positive electric charge on their domes by separating negative electric charge from positive electric charge. This is accomplished by a rotating insulated belt. When two different materials are rubbed together, one object takes away electrons from the other object. The electron-removing object becomes negatively charged, leaving the second object with a positive charge. The tendency of an object to become positively or negatively charged is a property of the materials being rubbed together. In a Van de Graaff generator, the lower pulley connected to an electric motor rotates a rubber belt that is also looped over the upper metal pulley. The lower pulley and belt rub together causing electric charge transfer and separation. The lower pulley becomes negatively charged and the inside of the rubber belt becomes positively charged. Because the rubber belt is an insulator and not a very good conductor of electricity, the positive charge does not evenly distribute over the belt. Instead, the inside of the belt remains positively charged, while the Figure 1. -
Van De Graaff Generator
Van de Graaff Generator Mike Marchese H1 4/19/10 Introduction A Van de Graaff generator is an electrostatic device capable of producing very high voltages while maintaing a smaller, constant current. The first Van de Graaff generator was built in 1929 by Robert J. Van de Graaff, American physicist and inventor. This first model produced voltages of around 80,000V. Only two years later, Van de Graaff and his research partner Nicholas Burke constructed a larger generator capable of much higher voltages (about 7 million volts). This groundbreaking feat earned Van de Graaff a research fellowship at MIT, the position of director of the High Voltage Radiographic Project during World War II, and the T. Bonner Prize from the American Physical Society in 1965 (“History of the Van de Graff Generator”). Aside from its use in educating physics students about the properties of electrostatics, the Van de Graaff generator has been most frequently implemented as a power supply for particle accelerators. Van de Graaff-powered x-ray machines have been used for imaging and medical treatment (Beaty). Van de Graaff generators can also power the process of food sterilization with gamma radiation. Before the invention of more powerful, modern particle accelerators like the Linear Accelerator Ring and Cyclotron, the Van de Graaff generator played a central role in nuclear physics by powering proton collision for radioactivity research. The generator was also at the forefront of particle physics research before being rendered obsolete by the Pelletron VG generator, an improvement upon the original design that utilized a chain of conductors and dielectrics (“Van de Graaff Generator”). -
1) What Is Van De Graaff Accelerator?
Q1) What is Van de Graaff Accelerator? Answer: Type of high-voltage electrostatic generator that serves as a type of particle accelerator. This device has found widespread use not only in atomic research but has numerous applications in medicine and industry. Q2) Who was Van de Graaff? Answer: Robert Jemison Van de Graaff is an American Physicist who was born on December 20, 1901 in Tuscaloosa, Alabama. His mother was Minnie Cherokee Hargrove and his father was Adrian Sebastian Van de Graaff. Robert attended the Tuscaloosa public schools and then attended the University of Alabama where he received a BS degree in 1922 and an MS degree in 1923. Both degrees were in mechanical engineering. He studied at the Sorbonne in Paris from 1924 to 1925 and while there, attended lectures by Marie Curie on radiation. In 1925 he went to Oxford University in England as a Rhodes Scholar. At Oxford he received a BS in physics in 1926 and a Ph.D. in physics in 1928. While at Oxford, he became aware of the hope of nuclear experimenters such as Ernest Rutherford, that particles could someday be accelerated to speeds sufficient to disintegrate nuclei. By disintegrating atomic nuclei much could be learned about the nature of individual atoms. It is from these ideas that Robert Van de Graaff saw the need for a particle accelerator He invented the Van de Graaff generator back in October of 1929 at Princeton New Jersey. Q3) How would the Van de Graaff accelerator operate? Answer: A high potential difference is built up and maintained on a smooth conducting surface by the continuous transfer of positive static charges from a moving belt to the surface. -
Lightning Room Education Kit: Teacher Notes
Lightning Room Scienceworks Education Kit Victoria University High Voltage Theatre Proudly supported by: Victoria University, Department of Innovation, Industry and Regional Development, Telstra, AGL, Agility, SP AusNet, Olex Cables, Ed Bondarenko and Associates, TXU, Network Ten. Acknowledgments: This education kit is based on materials developed by staff at Scienceworks, Museum Victoria. Its production was made possible by a grant from the Department of Innovation, Industry and Regional Development. The support of the Department of Education and Early Childhood Development, and the Catholic Education Office is acknowledged. Writers: Peter Pentland, Pennie Stoyles, Patricia Christies, Rick Hammond Illustrators: Chris Hourigan, Richard Glover, Rodney Pike Designer: Luisa Laino Teachers may copy material in this program for classroom use. © Museum Victoria 2004; revised 2008 http://museumvictoria.com.au/scienceworks/Education/ 1 Lightning Room Contents Page Title page, acknowledgements 1 Contents 2 Teacher notes 3 Introduction 3 Essential preparation 3 Medical caution Curriculum links 5 High voltage FAQs 8 Safety in an electrical storm 10 Features of the Lightning Room 11 Faraday Cage Tesla Coil / Nikola Tesla timeline Van de Graaff Generator Glossary 14 Resources 17 Internet addresses Excursion ideas School-based activities 19 Static electricity Background information 19 Activity 1: Static experiences 20 Activity 2: Hundreds and thousands 20 Activity 3: Boat races 21 Activity 4: Shocking facts about lightning 21 Cells and batteries Background -
Electrostatics Lab Introductory Physics Lab Summer 2018
Washington University in St. Louis Electrostatics Lab Introductory Physics Lab Summer 2018 Electrostatics: The Shocking Truth STOP Important health warning for students with pacemakers or other electronic medical devices: This lab involves the use of a Van de Graaff generator, which produces small amounts of electrical charge. They are regularly used in elementary schools, high schools, colleges, and science centers. They pose no risk to health or safety, except to students with pacemakers or other electronic medical devices. If you use a pacemaker or other electronic medical device, please contact the Lab Manager, Merita Haxhia at [email protected], IMMEDIATELY to make other arrangements for lab. It is very unlikely that you will be affected, but safety is our top priority. As long as you do not have this type of medical device, you have absolutely nothing to worry about. However, it is not recommended that you bring sensitive electronic equipment to this experiment. Pre-Lab: The Van de Graaff Generator A Bit of History The Van de Graaff generator is an electrostatic generator, capable of producing constant electric potential differences reaching about 10 million volts. The model that you will use (thankfully) only achieves about 1% of that. The term Van de Graaff electrostatic generator may sound a little foreign, but there is one electrostatic generator that you are no doubt familiar with: earth’s atmosphere. In fact, some of the most famous experiments in the history of electrostatics were done using the atmosphere. In May of 1752, Benjamin Franklin performed his well-known kite experiment, an experiment which strongly suggested that lightning might not be so different from the sparks he produced using silk and glass.