Radiological Worker II

Total Page:16

File Type:pdf, Size:1020Kb

Radiological Worker II RERS–A BO G A C L ★ ★ Radiological E D D U N C U A F T I G O I N N I N A N D T R A Worker II Developed by Laborers-AGC Education and Training Fund Under Grant #5-U45-ESO6174-02 from the National Institute of Environmental Health Sciences Laborers-AGC Education and Training Fund Board of Trustees Laborers’ International The Associated General Union of North America Contractors of America Jack Wilkinson Edwin S. Hulihee Carl E. Booker Fred L. Valentine Mike Quevedo, Jr. John F. Otto Tony Dionisio Anthony J. Samango, Jr. Edward M. Smith Brian Scroggs Chuck Barnes Robert D. Siess Arthur A. Coia, Co-Chairman Robert B. Fay, Sr., Co-Chairman James M. Warren, Executive Director LIUNA INNOVATION AT W RK 37 Deerfield Road, Pomfret Center, Connecticut 06259 (860) 974-0800 Fax (860) 974-1459 Copyright © 1995 Latest Revision August 1996 by Laborers-AGC Education and Training Fund All rights reserved. The reproduction or use of this document in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, and including republication as or in connection with instructional or training seminars, and in any information storage and retrieval system, is forbidden without the written permission of Laborers-AGC Education and Training Fund. The information in this manual does not necessarily reflect the views or policies of the Laborers-AGC Education and Training Fund, nor does the mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. Printed in the United States of America TABLE OF CONTENTS PAGE SECTION 301 - RADIOLOGICAL FUNDAMENTALS . 1 Learning Objectives . 1 Atomic Structure . 3 Definitions . 8 The Four Basic Types of Ionizing Radiation . 11 Units of Measure . 15 Assignment Sheet . 19 SECTION 302 - BIOLOGICAL EFFECTS . 23 Learning Objectives . 23 Introduction . 25 Sources of Radiation . 25 Effects of Radiation on Cells . 29 Acute and Chronic Radiation Dose . 31 Prenatal Radiation Exposure . 35 Risks in Perspective . 36 Assignment Sheet . 41 SECTION 303 - RADIATION LIMITS . 43 Learning Objectives . 43 Introduction . 45 DOE Dose Limits and Facility Administrative Control Levels . 45 Worker Responsibilities Regarding Dose Limits/ Control Levels . 47 Assignment Sheet . 49 SECTION 304 - ALARA PROGRAM . 51 Learning Objectives . 51 Introduction . 53 ALARA Program . 53 Responsibilities for the ALARA Program . 54 External and Internal Radiation Dose Reduction . 54 Internal Radiation Dose Reduction . 59 Radioactive Waste Minimization . 59 Assignment Sheet . 61 SECTION 305 - PERSONNEL MONITORING PROGRAMS . 63 Learning Objectives . 63 Introduction . 65 External Dosimetry . 65 Internal Monitoring . 68 Radiation Dose Records . 69 Assignment Sheet . 71 SECTION 306 - RADIOACTIVE CONTAMINATION CONTROLS . 75 Learning Objectives . 75 Introduction . 77 Comparison of Radiation and Radioactive Contamination . 77 Sources of Radioactive Contamination . 78 Contamination Control Methods . 79 Personal Protective Equipment . 81 Contamination Monitoring Equipment . 82 Decontamination . 84 Assignment Sheet . 85 SECTION 307 - RADIOLOGICAL POSTING AND CONTROLS . 91 Learning Objectives . 91 Introduction . 93 Radiological Work Permits . 93 Radiological Postings . 95 Responsibilities of the Worker Associated with Postings, Signs, and Labels . 96 Contamination/Airborne Radioactivity Areas . 103 Assignment Sheet . 109 SECTION 308 - RADIOLOGICAL EMERGENCIES . 111 Learning Objectives . 111 Introduction . 113 Emergency Alarms and Responses . 113 Disregard for Radiological Alarms . 114 Radiological Emergency Situations . 114 Considerations in Rescue and Recovery Operations . 115 Assignment Sheet . 117 GLOSSARY . 119 ABBREVIATIONS AND ACRONYMS . 127 SECTION 301 RADIOLOGICAL FUNDAMENTALS LEARNING OBJECTIVES Upon completion of this unit, the participant will be able to IDENTIFY the fundamentals of radiation, radioactive material, and radioactive contamination. The participant will be able to SELECT the correct response from a group of responses which verifies his/her ability to: E01 IDENTIFY the three basic particles of an atom. E02 DEFINE ionization. E03 DEFINE ionizing radiation, radioactive material, and radioactive contamination. E04 DISTINGUISH between ionizing radiation and non-ionizing radiation. E05 DEFINE radioactivity and radioactive half-life. E06 STATE the four basic types of ionizing radiation. E07 IDENTIFY the following for each of the four types of ionizing radiation: a. Physical Characteristics b. Range/Shielding c. Biological Hazard(s) E08 IDENTIFY the units used to measure radiation, contamination, and radioactivity. E09 CONVERT rem to millirem and millirem to rem. © August 1996 by Laborers-AGC 1 2 © August 1996 by Laborers-AGC SECTION 301 RADIOLOGICAL FUNDAMENTALS ATOMIC STRUCTURE The basic unit of matter is the atom. The three basic particles of the atom are protons, neutrons, and electrons. The central portion of the atom is the nucleus. The nucleus consists of protons and neutrons. Electrons orbit the nucleus similar to the way planets orbit our sun. About Atoms Historically, scientists believed that all substances were made of fundamental particles called atoms. Different types of atoms can combine in different patterns to form specific substances. This is the reason atoms are called the basic building blocks of matter. There are 108 different kinds of atoms, which are known as chemical elements. Atoms of the same element or different elements can combine to form molecules or compounds. Examples of chemical elements are: • Hydrogen • Oxygen • Carbon • Chlorine When these chemical elements combine together, they form compounds. Water is a compound made up of two hydrogen atoms and one oxygen atom. Gasoline is made up of many carbon and hydrogen atoms. The illustration pictured to the right, shows the chemical structure of water and gasoline. Atoms are held together like magnets by chemical bonds. If a water molecule is magnified, it would look like the molecule pictured to the left. © August 1996 by Laborers-AGC 3 Protons • Located in the nucleus of the atom. • Positive electrical charge. • Number of protons determines the element. Neutrons • Located in the nucleus of the atom. • No electrical charge. • Atoms of the same element have the same number.
Recommended publications
  • Personnel Monitoring
    RADIOLOGICAL MONITORING, METHOD, INSTRUMENTATION AND TECHNIQUES: PERSONNEL MONITORING Agensi Nuklear Malaysia Contents Introduction Objective of Personnel Monitoring Personnel Monitoring Instrument for External Radiation Personnel Monitoring Instrument for Internal radiation Calibration and Quality Control Introduction Atomic Energy Licensing Regulations (BSS) 2010 (Act 304) require monitoring to be carried out on all personnel who work in controlled areas (and selectively in supervised areas). Occupational exposure can be delivered to personnel either by sources outside the body in the form of external radiation or by intake of radioactive contaminants. Atomic Energy Licensing Regulations (BSS) 2010 (Act 304) require the radiation exposures both from external and internal sources be evaluated to represent an individual dose in a year. A devices that is accepted by the AELB are required by all personnel to measure the radiation dose received while working with radiation sources or working in classified areas. Objective of Personnel Monitoring To provide information on radiation dose received by workers. To observe the trends of exposure histories of individuals or groups of workers in order to assess the need for improved standards of radiation protection. To provide information in the event of accidental over exposure. To provide information about the condition of radiation level at workplace. To improve the workers attitudes toward radiation protection in order to reduce future exposures as a results of information given to them. To demonstrate the adequacy of supervision, training and engineering standards. To provide a record of information which may be needed for legal or epidemiological purposes. Personal monitoring External monitoring Internal monitoring (the measurement of dose due to (the measurement of dose due to sources outside the body) sources inside the body) Whole body Partial body monitoring (extremity) 1.
    [Show full text]
  • Matls Licensing Package for Amend 9 to License 34-25957-01 For
    - k y$$f,$$$? u c A 2 1 1 eg 4 W 808 License number MATERIALS LICENSE j SUPPLEMENTARY SHEET 30 3073 I ( < Amendment No. 09 f>( l-i ' i M |4 (i Victoreen, Inc. (Delaware) j 6000 Cochran Road I q Solon, OH 44139-3395 In accordance with letter dated May 17, 1993,, license Number 34-25957-01 is amended as | Fj je follows: , ; [ [ t - - 4 y, ; . - i1" Conditions ll.C and 24. are amended *to read: k k(t , i < ~ ss j 11. C. The Radiation Saf(t) Officer for this license is B'arbara M. Kapsar. y C ~',f , , i |$ 24. Except as specifical.ly provided otherwise in this license, the licensee shall 4 conduct its program 5in accordance with the statementsr representations, and d procedures contain$d in the ddcu'ments, including ag 'ni;enclosuges,, listed below. The d U.S. Nuclear Regulatory Commission's regulatio'ns4 hall govern unless the statements, f representations,1and procedure's in'the' licensee q more restrictive than the regulations.'eJ. uj)ts:[ application'"and{ correspondence are A .. .x's e. N 4 A. Applications idated Jiarch 6,T.1985,1 Novemberf l6,1987, Augdit 3,1988 (with ,4 attachments),' August 331,1990;4Eeb'ruar' L6','1991'.(with attschments) and y ~ ,2; f October 8, 1991s (with" attachments)'; [inds , ,. .. D . ' h !q B. Letters dated 'J nuary 28,11983, Dec' W r -embe 16 ?)984, Mar'c5 6, 1985, May 31, 1985,. 4 March 12, 1986,-June 8, 1987, Decemberc9,*1987, January 13, 1988, March 11, k ~1988, March 28,1988, April 11, '1988,' -July 7,' 1988? August 3,1988, jj September 8,1988, Tune 9,1989, March 26,1996G{ebruary 25, 1991, May 17, g ! 1993 and June 15, 1993.
    [Show full text]
  • 1968 Technical Highlights of the National Bureau of Standards
    TECHNICAL HIGHLIGHTS 196B U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards UNITED STATES DEPARTMENT OF COMMERCE C. R. Smith, Secretary John F. Kincaid, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS A. V. Astin, Director 1968 Technical Highlights of the National Bureau of Standards Institute for Basic Standards Institute for Materials Research Institute for Applied Technology Center for Radiation Research Annual Report, Fiscal Year 1968 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.G. 20402 - Price $1 Library of Congress Catalog Card Number: 6-23979 CONTENTS INTRODUCTION 1 Management Progress 1 Center for Radiation Research Created. Reorganization of Boulder Laboratories. New Institute Directors Named. Special Programs 3 Research Associate Program. Foreign Scientist Visitation Program. Utilization of Federal Laboratories 5 Legislative Report 6 Flammable Fabrics Act. Fire Research and Safety Act. Standard Reference Data Act. TWO KEY STANDARDS PROGRAMS 9 The National Standard Reference Data System 9 History of the Program 10 Responsibilities of NBS. Operation of the System. General Status of the Program. The Standard Reference Data Act. International Cooperation. Current Data Project Activity 19 Nuclear Properties. Atomic and Molecular Properties. Thermodynamic and Transport Properties. Solid State Properties. Chemical Kinetics. Colloid and Surface Properties. Data Systems Design and Development 24 Information Services 25 The Standard Reference Materials Program 26 History of the Program 26 Current Activity 33 INSTITUTE FOR BASIC STANDARDS 39 Physical Quantities 39 International Base Units 40 Length. Time and Frequency. Temperature. Electric Cur- rent. Fundamental Physical Constants. Mechanical Quantities 47 Electrical Quantities—D.C and Low Frequency 49 Electrical Quantities—Radio Frequency 51 High Frequency Region.
    [Show full text]
  • Radiation Measurements and Dosimetry – ASP 2021
    Radiation dosimetry, radiation protection and measurements Marco Silari CERN, Geneva, Switzerland [email protected] M. Silari – Radiation Measurements and Dosimetry – ASP 2021 1 Outline of the lecture ─ A very brief historical introduction ─ Directly and indirectly ionizing radiation ─ Radioactivity ─ Natural exposures ─ The effects of ionizing radiation ─ Deterministic and stochastic effects ─ Radiological quantities and units ─ physical, protection and operational quantities ─ Principles of radiation protection ─ Justification, optimization and dose limitation ─ The ALARA principle ─ Protection means ─ Instrumentation for measuring ionizing radiation M. Silari – Radiation Measurements and Dosimetry – ASP 2021 2 Outline of the lecture ─ A very brief historical introduction ─ Directly and indirectly ionizing radiation ─ Radioactivity ─ Natural exposures ─ The effects of ionizing radiation ─ Deterministic and stochastic effects ─ Radiological quantities and units ─ physical, protection and operational quantities ─ Principles of radiation protection ─ Justification, optimization and dose limitation ─ The ALARA principle ─ Protection means ─ Instrumentation for measuring ionizing radiation M. Silari – Radiation Measurements and Dosimetry – ASP 2021 3 The discovery of radiation 1895 Discovery of X rays Wilhelm C. Röntgen 1897 First treatment of tissue with X rays Leopold Freund J.J. Thompson 1897 “Discovery” of the electron M. Silari – Radiation Measurements and Dosimetry – ASP 2021 4 The discovery of radiation Henri Becquerel (1852-1908)
    [Show full text]
  • 16004479.Pdf
    LIST OF MILITARY AND CIVIL DEFENSE RADIAC DEVICES 1969 AUGUST 1969 "Each transmittal of this report outside the agencies of the U. S. Government must have prior approval of the Director, Defense Atomic Support Agency, Washington, D. C. 20305." Prepared * by Research and Development Liaison Directorate Field Command, Defense Atomic Support Agency Sandia Base, New Mexico 87l15 i ABSTRACT A compilation of radiac dwices currently available to the Department of Defense is presented. The list is separated into rate meters, dosimeters, miscellaneous radiac equipment for calibration and special purposes, and major research and devel- opment items. Each item includes nomenclature. classification, federal stock number, cost, sponsoring agency and a description of the item. ii Letter of Promulgation This "List of Military and Civil Defense Radiac Devices" is a compilation of information on radisc devices currently available to the Department of Defense. Information on major research and development items currently under investigation is also included. The radiac information included herein has been furnished * by the agencies sponsoring the various devices. It is intended for use as a convenient reference document for agencies associared with radiac developments. [ Brigadier (isnorel, USAP Deputy Mrector (Ops & Admin) iii -.., .. iv TABLE OF CONTENTS SECTION A - RATE METERS -PAGE A-1 Low Range Survey Meters A-2 High Range Survey Meters A-3 Alpha Detectors A-4 Neutron Detectors A-5 Special Purpose Rate Meters A-6 Training Devices SECTION B - DOSIMETERS
    [Show full text]
  • Chem 481 Lecture Material 3/13/09
    Chem 481 Lecture Material 3/13/09 Radiation Detection and Measurement When radiation interacts with matter electronic excitation and ionization occur. When de-excitation results in the emission of photons these can be detected by suitable light- sensitive devices. When charge carriers (ion pairs, electron/hole pairs) are produced these can be collected to generate an electrical signal. The dead time of a detector is the length of time between the formation of an output signal (pulse) and when the detector conditions are able to produce another output signal (see figure below). Initially this second output is insufficient in size to be recognized by the counting electronics (less than the discriminator level). The resolving time is the interval between the initial pulse and the formation of a detectable pulse (see figure below). The recovery time is the interval between two full-size pulses. Events that occur during the resolving time will not be recorded and are known as coincidence losses. Gas Ionization Detectors Imagine a gas-filled container with 2 electrodes of opposite charge (see figure below). As radiation enters the gas filling and ionizes the gas (creates primary cation-electron pairs), the cations will drift toward the negatively-charged electrode and the electrons Radiation Detection and Measurement 3/13/09 page 2 will be collected at the positive anode resulting in a current that can be measured. Some cations and electrons may recombine. As the electric potential across the electrodes is increased a voltage is reached where the electrode attraction is greater than the attraction between cations and electrons and all primary ion pairs are collected.
    [Show full text]
  • Radiation Safety Review Course Syllabus
    Radiation Safety Review Course Outline Module I: Content Pertaining to a RAM Licenses Nuclear Medicine and PET Terminology…………………....... Lecture 1 120 min Basic Math Skills for Nuclear Medicine Technologists I…….. Lecture 2 60 min Basic Math Skills for Nuclear Medicine Technologists II……. Lecture 3 60 min Introduction to Dose Calibrators………………………………. Lecture 4 60 min Introduction to Survey Meters…………………………………. Lecture 5 60 min Introduction to ScintillatorDetectors………………………....... Lecture 6 60 min The Electronics of Scintigraphy………………………………… Lecture 7 60 min Radiation Detection and Measurements…………………....... Lecture 8 90 min Gaseous Detectors Used in the PET Lab…………………….. Lecture 9 60 min Alpha & Beta Decay…………………………………………….. Lecture 10 60 min Atomic Structure and Nuclear Stability………………………… Lecture 11.1 60 min Atomic and Nuclear Structure………………………………….. Lecture 11.2 60 min Background Radiation…………………………………………… Lecture 12 45 min Gamma Decay, Positron Decay, and Electron Capture……... Lecture 13 60 min Radionuclide Production………………………………………… Lecture 14 90 min Production of Radionuclides……………………………………. Lecture 15 60 min PET Radiopharmaceuticals…………………………………….. Lecture 16 60 min PET Quality Control……………………………………………… Lecture 17 60 min The Nuclear Pharmacy………………………………………….. Lecture 18 60 min Radioactive Receipt……………………………………………... Lecture 19 60 min Radioactive Waste Disposal……………………………………. Lecture 20 60 min Radiation Physics & Instruments………………………………. Lecture 21 90 min Radiation Dosimetry and Units…………………………………. Lecture
    [Show full text]
  • Radiation Measurements and Dosimetry.Pdf
    Radiation dosimetry, radiation protection and measurements Marco Silari CERN, Geneva, Switzerland [email protected] M. Silari – Radiation Measurements and Dosimetry – ASP 2018 1 Outline of the lecture ─ A very brief historical introduction ─ Directly and indirectly ionizing radiation ─ Radioactivity ─ Natural exposures ─ The effects of ionizing radiation ─ Deterministic and stochastic effects ─ Radiological quantities and units ─ physical, protection and operational quantities ─ Principles of radiation protection ─ Justification, optimization and dose limitation ─ The ALARA principle ─ Protection means ─ Instrumentation for measuring ionizing radiation M. Silari – Radiation Measurements and Dosimetry – ASP 2018 2 The discovery of radiation 1895 Discovery of X rays Wilhelm C. Röntgen 1897 First treatment of tissue with X rays Leopold Freund J.J. Thompson 1897 “Discovery” of the electron M. Silari – Radiation Measurements and Dosimetry – ASP 2018 3 The discovery of radiation Henri Becquerel (1852-1908) 1896 Discovery of natural radioactivity Thesis of Mme. Curie – 1904 α, β, γ in magnetic field 1898 Discovery of polonium and radium Marie Curie Pierre Curie Hundred years ago (1867 – 1934) (1859 – 1906) M. Silari – Radiation Measurements and Dosimetry – ASP 2018 4 Outline of the lecture ─ A very brief historical introduction ─ Directly and indirectly ionizing radiation ─ Radioactivity ─ Natural exposures ─ The effects of ionizing radiation ─ Deterministic and stochastic effects ─ Radiological quantities and units ─ physical, protection and operational quantities ─ Principles of radiation protection ─ Justification, optimization and dose limitation ─ The ALARA principle ─ Protection means ─ Instrumentation for measuring ionizing radiation M. Silari – Radiation Measurements and Dosimetry – ASP 2018 5 Periodic table of elements M. Silari – Radiation Measurements and Dosimetry – ASP 2018 6 Chart of nuclides Unstable (=radioactive) nuclides ~ 3000 α-decay β- : n -> p+ + e- β+ : p+ -> n + e+ protons α : AX -> A-4Y + 4He2+ Stable nuclides ~ 250 neutrons M.
    [Show full text]
  • Dosimeter 1 Dosimeter
    Dosimeter 1 Dosimeter Dosimeters measure an individual's or an object's[1] exposure to something in the environment — particularly to a hazard inflicting cumulative impact over long periods of time, or over a lifetime. This article concentrates on the radiation dosimeter, which measures Fiber dosimeter exposure to ionizing radiation, but other dosimeters also exist, such as sound dosimeters, ultraviolet dosimeters, and electromagnetic field dosimeters. Ionizing radiation, such as X-rays, alpha rays, beta rays, and gamma rays, remains undetectable by the senses, and the damage it causes to the body is cumulative, related to the total dose received. Therefore, workers who are exposed to radiation, such as radiographers, nuclear power plant workers, doctors using radiotherapy, workers in laboratories using radionuclides, and some HAZMAT teams are required to wear dosimeters so their employers can keep a record of their exposure, to verify that it is below legally prescribed limits. Common types of wearable dosimeters for ionizing radiation include: • Quartz fiber dosimeter • Film badge dosimeter • Thermoluminescent dosimeter • Solid state (MOSFET or silicon diode) dosimeter The quartz fiber dosimeters have to be prepared, usually daily, with a positive charge from either a hand-wound or battery-powered charging unit. As the dosimeter is affected by nuclear radiation the charge leaks away causing the fiber indicator to rise up the graduated scale. Factories prepare film-badge dosimeters for one-time use. The level of radiation absorption is indicated by a change of color on the film badge's surface, which is compared to an indicator chart. Manufacturing processes that treat products with ionizing radiation, such as food irradiation, use dosimeters to calibrate doses.
    [Show full text]
  • INFO-0718,Radiation Safety Officers Handbook
    Advisory Committee on Radiological Protection Radiation Safety Officers Handbook Part A INFO-0718 October 2000 On May 31, 2000, the Atomic Energy Control Board became the Canadian Nuclear Safety Commission. In this document, references to the Atomic Energy Control Board or to the AECB should be read — unless the context requires otherwise — as references to the Canadian Nuclear Safety commission (CNSC). The Canadian Nuclear Safety Commission (CNSC), and its predecessor the Atomic Energy Control Board, has made use of advisory committees of independent experts to assist it in its decision making process. The Commission has two senior level scientific committees charged with providing independent advice on principles, standards and general practices related to radiation protection and the safety of nuclear facilities. The two committees are the Advisory Committee on Nuclear Safety (ACNS) and the Advisory Committee on Radiation Protection (ACNS). The Canadian Nuclear Safety Commission publishes many of the reports of its advisory committees. Publication by the CNSC does not imply endorsement of the content, nor acceptance of any recommendations made therein. Advisory Committee on Radiological Protection Radiation Safety Officers Handbook Part A INFO-0718 October 2000 For Information on the indepedent advisory committees contact: Advisory Committees of the Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5SP. RADIATION SAFETY OFFICER'S HANDBOOK PART A TABLE OF CONTENTS CHAPTER Al RADIOACTIVITY .........................................Al-l
    [Show full text]
  • Materials Not Availabiofrom Other Sources. ERIC Makes Every Effort * * to Obtain the Best Copy Available
    DOCUMENT RESUME ED 115 466 SE 018 841 TITLE Radiological Defense. Planning and Operations Guide. Revised. INSTITUTION Office of Civil Defense (DOD), Washington, D.C. REPORT-NO SM-11.23.2 PUB DATE Mar 67 NOTE 400p.; Occasional Small Print Used in Examples EDRS PRICE MF-$0.76 HC-$19.67 Plus Postage DESCRIPTORS *Educational Programs;.*Emergency Programs; *Instructional Materials; *National Defense; Radiation; *Radiation Effects; Safety; Science Education IDENTIFIERS Department of Defense; DOD ABSTRACT This guide is a reprint' of published and draft materials from the Federal Civil Defense Guide. This .guide is intended to assist the student in planning, developing, implementing and operating a local, county, or state radiological defense (RADEF) system. The state and local radiological defense program objectives are to create an effective and operationally ready radiological monitoring, reporting and evaluating system required to provide accurate and 'timely information on the extent, intensity and duration of radiological fallout hazards that could result from a nuclear attack. The guide contains the following chapters: (1)RADEF fundamentals (knowledge concerning fallout;(2) RADEF plans and organizations;(3) Implementation of RADEF plans including emergency operating center functions; (4) Monitoring and survey procedures; (5) Radiological reporting procedures;(6) AppliCation of meteorological data to RADEF;(7) Instrumentation, maintenance and calibration; (8) Radiological equipment available to states fOr civil defense purposes;(9) Handbook
    [Show full text]
  • Introduction to Emergency Response Devices Contents
    2018 Joint IAEA-KINS Workshop Introduction to emergency response devices Contents I Radiation Detectors II Types of Radiation Detectors III Radiation Source Searching IV Contamination Survey V Mistakes of Radionuclide Identification Radiation Detectors What is a Radiation Detector? - Device for measurement of radiation effect, quantity, etc. - Check the fact of existence or nonexistence Characteristics of Radiation : No color, No taste, No smell - Interactions between material and radiation : ionization, excitation - Can’t recognize effects of radiation exposure (for low dose) - No prompt symptom (later few weeks) - Therefore, quantitative measurement of radiation is required Selection of detector is important, with consideration of radiation type and accident scene characteristics - There is NO BEST DETECTOR, but OPTIMIZED DETECTOR Radiation Detectors Principles of Radiation Detection and Measurements Detection Radiation Materials Weak Electric Signal Interactions (Ionization, Excitation) Signal Processing Readable - Amplification Measured Value - Analysis of Pulse Height - Statistics of Signals Types of Radiation Detectors Radiation Interactions and Detectors Interactions Detector Radiations Ionization Chamber Beta, Gamma Gas Ionization Proportional Chamber Alpha, Beta, Gamma Geiger-Muller(GM) Counter Beta, Gamma Ionization High Purity Germanium X-ray, Gamma Si(Li) X-ray, Gamma Solid Ionization Surface Barrier Alpha CdTe, HgI2, GaAs X-ray, Gamma NaI(Tl), CsI(Tl) X-ray, Gamma Inorganic Scintillation ZnS(Ag) Alpha LiI(Eu) Neutron
    [Show full text]