A Historical Study of Chemical Dosimetry (1902-1962)

Total Page:16

File Type:pdf, Size:1020Kb

A Historical Study of Chemical Dosimetry (1902-1962) AN ABSTRACT OF THE THESIS OF Sister Mary And/4 Chorzernpafor the Doctor of Philosophy (Name) (Degree) in General Science presented on 7/","/9>vii (Major) (Dte) Title: IONIZING RADIATION AND ITS CHEMICAL EFFECTS: A HISTORICAL STUDY OFCHEIOgNI/DIMETRY/(1902-1962) Redacted for privacy Abstract approved: RobeVJ. Morris Chemical dosimetry developed in response to needs created by developments in the field of high-energy radiation.Shortly after the discovery of X-rays in 1895 and of radioactivity in 1896, the deleterious effects of ionizing radiation were recognized. To guard against the injurious effects of radiation in medical application, dose-measuring methods were considered necessary. The early dosimetric methods were based on what at the time were taken to be the chemical effects of ionizing radiation.In 1902, Guido Holzknecht (1872-1931), a Viennese physician, suggested a method of dosimetry which was based on the coloration of a salt due to irradiation.His proposal, the first of its kind, was followed within about five years by a number of others which were made by other physicians and radiologists and which were based on some visible chemical change.Subsequent developments in chemical dosimetry until about 1915 were concerned mainly with the calibrated scales used to relate the chemical change to dose, the problem being a lack of a radiation unit of dose. Further investigations of chemical systems for dosimetry were not made, however, until in the 1920's.In the meantime ionization methods of dosimetry became popular, although some of the earlier- proposed chemical dosimeters were widely in use.The renewal of interest in the chemical effects of ionizing radiation in the 1920's stemmed from the extensive radiobiological research that was con- ducted owing to the expanded application of higher-energy X-ray units in medicine and in industry. From the research done to understand better the mechanisms underlying biochemical processes, there pro- ceeded several dosimetric systems.The one that proved most reliable was the ferrous sulfate system recommended in 1927 by the biophysicist Hugo Fricke (b.1892).This renewed research on the chemical effects of ionizing radiation also made some significant contributions for future developments in chemical dosimetry. Most fundamental, both to the developing theories of radiation chemistry as well as to the formula- tion of many dosimetric systems in the post-World War II period, was the observation made by Fricke and associates that the primary action of the radiation was on the solvent rather than the solute. The discovery of the neutron and of artificial radioactivity and the development of accelerating devices in the 1930's provided for still further application of ionizing radiation in medicine and in industry which increased the number of persons whose occupation was a source of radiation exposure. A growing concern for the protection of person- nel contributed to attempts at standardizing dosage measurements. Although formal standardization began in 1928 when the roentgen was officially defined as a radiation unit by the International Commission on Radiological Units, it was not until 1962 that the rad was officially restricted as a unit of dose and the roentgen as a unit of exposure.The precision of the terminology contributed to more reliable dosimetry. The development of reactor technology in the 1940's gave rise to new problems in radiation protection.To monitor the mixed radiation fields present in the vicinity of nuclear reactors, film badges had to be modified for the detection of various forms of radiation.Also, various filter assemblies were introduced into the badge to reduce the energy dependence of photographic emulsions, thus to improve the accuracy of the film dosimeter. Research in radiation chemistry and in nuclear technology in the post-war period called for dosimetric methods useful over a wide range of dosage and not necessarily as sensitive as those requ,ired by research in medicine and radiobiology. As a result, chemical dosimetric sys- tems effective over a range from about 10 to1010rads were made available.Although many of the systems were formulated on the basis of the indirect action of the radiation on the solute via the solvent, not every system had a comparable reliability nor did each meet all the requirements desirable of a dosimetric system. Ionizing Radiation and Its. Chemical Effects: A Historical Study of Chemical Dosimetry (1902-1962) by Sister Mary Andre Chorzempa A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 1971 APPROVED:Redactedfor privacy Associate Professor of 1-listioryof-Scienceg icharge of majtr Redacted for privacy Chairman of Department of General Science Redacted for privacy Dean of Graduate School Date thesis is presented 4'/4/92e Typed by Gwendolyn Hansen for Sister Mary Andre Chorzempa ACKNOWLEDGEMENT I wish to express my appreciation to all who have helped me in the completion of this study: To the members of my doctoral committee for their willing assistance whenever problems arose, especially to Dr. Robert J. Morris for the helpful discussions in the course of this study and for his critical evaluation of it. To Dr. E. Dale Trout and his staff for the generous use of the library facilities at the X-ray Science and Engineering Laboratory at Oregon State University. To the various radiation laboratories for their ready response with pertinent information, specifically the Health Physics Division at Oak Ridge National Laboratory, the Radiation Protection Staff at Richland, Washington, and the Health Physics Department at the Lawrence Radiation Laboratory in Berkeley. To the staff at the Institute for the History of Medicine at the University of Vienna for supplying significant data about the founda- tions of chemical dosimetry. To Dr. Milton Burton of the Radiation. Laboratory at the University of Notre Dame for his valuable comments about certain aspects of this study. Finally, I wish to extend a special word of thanks to the Sisters of St. Francis of Sylvania, Ohio, who have granted me the financial sponsorship and the required leave-of-absence from the teaching apostolate to make this study. Note: The various units used throughout this treatise are represented by the symbols which were used by the writers whose works have been studied.These symbols do not always conform with modern accepted usage. TABLE OF CONTENTS Chapter Page I.IONIZING RADIATION PRIOR TO 1925 1 X-radiation: Discovery and Application 3 Radioactivity: Discovery and Application 15 II,CHEMICAL DOSIMETRY (1902-1925) 25 Dosimetry Based on Colorimetry 30 Dosimetry Not Based on Colorimetry, 44 Chemical Dosimetry in Developmental Perspective 47 III.IONIZING RADIATION (1925-1942) 50 The Discovery of Neutrons 51 The Early Development of Particle Accelerators 55 The Cyclotron in Medicine 60 Neutron Beams 60 Radioisotope s 65 Developments in Medical Radiology 67 Developments in Industrial Radiology 69 Ionizing Radiation, in Development Perspective 72 IV. CHEMICAL DOSIMETRY (1925-1942) 75 Developments in Radiation Protection 75 Recommendations of the ICRU 77 Recommendations of the ICRP 78 Chemical Dosimetry and Stray Radiation 80 Chemical Dosimetry and. Therapeutics. 83 Chemical Dosimetry in Development Perspective 107 V. IONIZING RADIATION (1942-1962) 111 Prelude to the Manhattan Project 112 The Manhattan Project and the Development of a Reactor 116 The Atomic Pile: Peacetime Applications 126 Source of Useful Power 126 Source of Radioactive Isotopes 129 Ionizing Radiation in Developmental Perspective 142 Chapter Page VI. CHEMICAL DOSIMETRY IN PERSONNEL: MONITORING (1942-1962) 147 Developments in Radiation Protection 148 Conceptual Developments Regarding Dose 149 Changes in Levels of Tolerance Dose 153 Absorbed Dose Determination 155 Developments in Personnel Monitoring 158 X- and Gamma-radiation 158 Mixed Radiation Fields 172 Photographic Dosimetry in Developmental Perspective 179 VII. CHEMICAL DOSIMETRY (1942-1962) - PART I 187 Aqueous Systems 191 Chlorinated Hydrocarbon Systems 207 VIII.CHEMICAL DOSIMETRY (1942-1962) - PART II 229 Dye Systems 229 Monomer-Polymer Systems 242 Gas Systems 261 Chemical Dosimetry in Developmental Perspective 265 IX. SUMMARY AND CONCLUSIONS 268 BIBLIOGRAPHY 277 LIST OF TABLES Table Page 1.Final NTA-film packet. 176 2.G Values for the Fricke Dosimeter._ 195 3.Color changes in four series of mixed, indicator solutions. 227 4.Summary of reversible yields of an air-free methylene blue dosimeter under various conditions. 236 5.Gel doses of several monomers at 3000 rads/min. 247 LIST OF FIGURES -Figure Page 1.The action of different doses of X-rays on 0. 00033 M ferrosulfate in 0.8<N sulfuric acid. 89 2.The action of different doses of X-rays on 0.00100 M ferrosulfate in 0.8 N sulfuric acid. 89 3.Weights of HgC1 obtained by irradiating for different periods of time an Eder's solution of convenient strength. 95 4.Curve showing relation between amount of precipitate and time of irradiation--all other factors remaining constant--in an Eder's solution dosimetric system. 97 5.Decomposition of methylene blue by roentgen irradiation. 102 6.Life history of 100 neutrons in an atomic pile. 123 7.Absorbance at 5950 X (lower co-ordinates) and 6500 X (upper co-ordinates) as a function of phenol concentration in an irradiated aqueous benzene system. 205 8.Reduction of rate dependency in acid production from chloroform by varying concentrations of resorcinol in a two-phase
Recommended publications
  • Harry Moseley: Numbering the Elements
    MYSTERY OF MATTER: SEARCH FOR THE ELEMENTS 5. Harry Moseley: Numbering the Elements Dmitri Mendeleev (identified on screen) works on the Periodic Table, writes down the atomic weights of the elements. NARR: Previously on The Mystery of Matter… HISTORIAN MICHAEL GORDIN VO He figures out something rather extraordinary about the elements. DMITRI MENDELEEV, partly in VO The eye is immediately struck by a pattern within the horizontal rows and the vertical columns. Mendeleev’s first table morphs into the familiar modern Periodic Table. AUTHOR ERIC SCERRI VO He found an absolutely fundamental principle of nature. Humphry Davy (identified on screen) performs an experiment with his voltaic pile. HISTORIAN DAVID KNIGHT VO Somehow the particles of matter have to be glued together to form molecules. What Davy has had is a big idea. Perhaps electricity could be this kind of glue. Marie Curie (identified on screen) sits down at the spectroscope and peers into the eyepiece. NARR: The spectroscope kicked off a whole new round in the discovery of elements. The spectra of four elements appear on screen, along with their names. PHYSICIST DAVID KAISER VO It’s almost like each element has its own bar code. Marie and Pierre enter their lab at night and see vials of radium glowing on the shelves. MARIE TO PIERRE Don’t light the lamps! Look! 1 MYSTERY OF MATTER: SEARCH FOR THE ELEMENTS PHYSICIST DAVID KAISER VO Radioactivity was a sign that the atom itself was unstable. It could break apart. Marie and Pierre look in wonder at their radiant element. NARR: Scientists now had a pressing new question to answer: What’s inside the atom? Fade to black ANNOUNCER: Major funding for The Mystery of Matter: Search for the Elements was provided by the National Science Foundation, where discoveries begin.
    [Show full text]
  • Radiation and Radioactivity Quantified? Do You Think of These “People” When I Say RADIATION? Do You Think of These Things As Well?
    Welcome To RadTown USA •Click to Explore RadTown USA • Click on any location in RadTown USA and find out about radiation sources or uses at that location. The Alpha, Beta, Gammas of Nuclear Education March 2nd, 2014 Fundamentals of Ionizing Radiation Debra N Thrall, PhD Executive Director Albert I Pierce Foundation Radiation Fundamentals What is radiation? Where does it come from? How does it interact with matter? What is radioactivity? What are fission and fusion? How are radiation and radioactivity quantified? Do you think of these “people” when I say RADIATION? Do you think of these things as well? • Food • Space • Utilities • Consumer Products • Medicine Brief History of the Atom • 500 BC Democritus Atom • Long time (Romans Dark Ages) • 1808 AD Dalton Plum Pudding • 1911 Rutherford Nucleus • 1913 Bohr Orbits • 1920’s Many People Quantum Mechanics Rutherford’s Gold Foil Experiment The Design 1. Bombard positively charged alpha particles into thin gold foil. 2. Use fluorescent screen to detect particles as they exit the gold foil. 3. Use angle of deflection to determine interior of the atom. So, What is an Atom? • Atoms are made up of protons, neutrons & electrons • Protons: + charge p+ • Neutrons: no charge n0 • Electrons: - charge e- • Atoms want to have a stable energy level • This translates to having no net charge • # protons = # electrons Mass of an Atom • Masses • Proton: 1.000000 amu • Neutron: 1.000000 amu • Electron: 0.000549 amu (Translates to 1.2 lbs/1 ton ~ a kitten on an elephant!) • The mass of an atom is approximately
    [Show full text]
  • The International Commission on Radiological Protection: Historical Overview
    Topical report The International Commission on Radiological Protection: Historical overview The ICRP is revising its basic recommendations by Dr H. Smith Within a few weeks of Roentgen's discovery of gamma rays; 1.5 roentgen per working week for radia- X-rays, the potential of the technique for diagnosing tion, affecting only superficial tissues; and 0.03 roentgen fractures became apparent, but acute adverse effects per working week for neutrons. (such as hair loss, erythema, and dermatitis) made hospital personnel aware of the need to avoid over- Recommendations in the 1950s exposure. Similar undesirable acute effects were By then, it was accepted that the roentgen was reported shortly after the discovery of radium and its inappropriate as a measure of exposure. In 1953, the medical applications. Notwithstanding these observa- ICRU recommended that limits of exposure should be tions, protection of staff exposed to X-rays and gamma based on consideration of the energy absorbed in tissues rays from radium was poorly co-ordinated. and introduced the rad (radiation absorbed dose) as a The British X-ray and Radium Protection Committee unit of absorbed dose (that is, energy imparted by radia- and the American Roentgen Ray Society proposed tion to a unit mass of tissue). In 1954, the ICRP general radiation protection recommendations in the introduced the rem (roentgen equivalent man) as a unit early 1920s. In 1925, at the First International Congress of absorbed dose weighted for the way different types of of Radiology, the need for quantifying exposure was radiation distribute energy in tissue (called the dose recognized. As a result, in 1928 the roentgen was equivalent in 1966).
    [Show full text]
  • MIRD Pamphlet No. 22 - Radiobiology and Dosimetry of Alpha- Particle Emitters for Targeted Radionuclide Therapy
    Alpha-Particle Emitter Dosimetry MIRD Pamphlet No. 22 - Radiobiology and Dosimetry of Alpha- Particle Emitters for Targeted Radionuclide Therapy George Sgouros1, John C. Roeske2, Michael R. McDevitt3, Stig Palm4, Barry J. Allen5, Darrell R. Fisher6, A. Bertrand Brill7, Hong Song1, Roger W. Howell8, Gamal Akabani9 1Radiology and Radiological Science, Johns Hopkins University, Baltimore MD 2Radiation Oncology, Loyola University Medical Center, Maywood IL 3Medicine and Radiology, Memorial Sloan-Kettering Cancer Center, New York NY 4International Atomic Energy Agency, Vienna, Austria 5Centre for Experimental Radiation Oncology, St. George Cancer Centre, Kagarah, Australia 6Radioisotopes Program, Pacific Northwest National Laboratory, Richland WA 7Department of Radiology, Vanderbilt University, Nashville TN 8Division of Radiation Research, Department of Radiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark NJ 9Food and Drug Administration, Rockville MD In collaboration with the SNM MIRD Committee: Wesley E. Bolch, A Bertrand Brill, Darrell R. Fisher, Roger W. Howell, Ruby F. Meredith, George Sgouros (Chairman), Barry W. Wessels, Pat B. Zanzonico Correspondence and reprint requests to: George Sgouros, Ph.D. Department of Radiology and Radiological Science CRB II 4M61 / 1550 Orleans St Johns Hopkins University, School of Medicine Baltimore MD 21231 410 614 0116 (voice); 413 487-3753 (FAX) [email protected] (e-mail) - 1 - Alpha-Particle Emitter Dosimetry INDEX A B S T R A C T.........................................................................................................................
    [Show full text]
  • Nuclear Glossary
    NUCLEAR GLOSSARY A ABSORBED DOSE The amount of energy deposited in a unit weight of biological tissue. The units of absorbed dose are rad and gray. ALPHA DECAY Type of radioactive decay in which an alpha ( α) particle (two protons and two neutrons) is emitted from the nucleus of an atom. ALPHA (ααα) PARTICLE. Alpha particles consist of two protons and two neutrons bound together into a particle identical to a helium nucleus. They are a highly ionizing form of particle radiation, and have low penetration. Alpha particles are emitted by radioactive nuclei such as uranium or radium in a process known as alpha decay. Owing to their charge and large mass, alpha particles are easily absorbed by materials and can travel only a few centimetres in air. They can be absorbed by tissue paper or the outer layers of human skin (about 40 µm, equivalent to a few cells deep) and so are not generally dangerous to life unless the source is ingested or inhaled. Because of this high mass and strong absorption, however, if alpha radiation does enter the body through inhalation or ingestion, it is the most destructive form of ionizing radiation, and with large enough dosage, can cause all of the symptoms of radiation poisoning. It is estimated that chromosome damage from α particles is 100 times greater than that caused by an equivalent amount of other radiation. ANNUAL LIMIT ON The intake in to the body by inhalation, ingestion or through the skin of a INTAKE (ALI) given radionuclide in a year that would result in a committed dose equal to the relevant dose limit .
    [Show full text]
  • Chapter 2 Radiation Safety Manual Revision 1 Principles of Radiation Safety 6/1/2018
    The University of Georgia Chapter 2 Radiation Safety Manual Revision 1 Principles of Radiation Safety 6/1/2018 CHAPTER 2 PRINCIPLES OF RADIATION SAFETY 1.0 UNITS OF RADIATION DOSE 1.1 Historical Units In 1896, x-rays were discovered by Wilhelm Roentgen. The Roentgen is unit of measurement for the exposure of x-rays and gamma rays. It is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air. Radioactivity was discovered by Henri Becquerel. Radioactivity refers to the amount of radiation released when an element spontaneously emits energy as a result of the decay of its unstable atoms. The Becquerel is a unit used to measure radioactivity, and stands for 1 disintegration per second. The Curie is a unit of radioactivity equal to 3.7 X 1010 disintegrations per second and was first used, but being such a large unit was replaced by the Becquerel. The Curie is named for Pierre Curie, Marie Curie’s husband and co- discoverer of radium. After his accidental death, she continued their work. For some time, no one realized that radiation could cause harmful effects. It was recognized very soon that x-rays could be used in medical diagnosis, and early radiologists received large doses of radiation. Many of these radiologists later suffered severe injuries due to overexposure (radiation effects may appear years after exposure). The first unit of dose was the erythema dose. This was the amount of x-radiation which would barely cause reddening of the skin. It was not a very satisfactory unit of dose, but indicates the early recognition by some scientists that radiation exposure can be harmful and should be limited.
    [Show full text]
  • Radiation Glossary
    Radiation Glossary Activity The rate of disintegration (transformation) or decay of radioactive material. The units of activity are Curie (Ci) and the Becquerel (Bq). Agreement State Any state with which the U.S. Nuclear Regulatory Commission has entered into an effective agreement under subsection 274b. of the Atomic Energy Act of 1954, as amended. Under the agreement, the state regulates the use of by-product, source, and small quantities of special nuclear material within said state. Airborne Radioactive Material Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases. ALARA Acronym for "As Low As Reasonably Achievable". Making every reasonable effort to maintain exposures to ionizing radiation as far below the dose limits as practical, consistent with the purpose for which the licensed activity is undertaken. It takes into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, societal and socioeconomic considerations, and in relation to utilization of radioactive materials and licensed materials in the public interest. Alpha Particle A positively charged particle ejected spontaneously from the nuclei of some radioactive elements. It is identical to a helium nucleus, with a mass number of 4 and a charge of +2. Annual Limit on Intake (ALI) Annual intake of a given radionuclide by "Reference Man" which would result in either a committed effective dose equivalent of 5 rems or a committed dose equivalent of 50 rems to an organ or tissue. Attenuation The process by which radiation is reduced in intensity when passing through some material.
    [Show full text]
  • External and Internal Dosimetry
    Chapter 7 External and Internal Dosimetry H-117 – Introductory Health Physics Slide 1 Objectives ¾ Discuss factors influencing external and internal doses ¾ Define terms used in external dosimetry ¾ Discuss external dosimeters such as TLDs, film badges, OSL dosimeters, pocket chambers, and electronic dosimetry H-117 – Introductory Health Physics Slide 2 Objectives ¾ Define terms used in internal dosimetry ¾ Discuss dose units and limits ¾ Define the ALI, DAC and DAC-hr ¾ Discuss radiation signs and postings H-117 – Introductory Health Physics Slide 3 Objectives ¾ Discuss types of bioassays ¾ Describe internal dose measuring equipment and facilities ¾ Discuss principles of internal dose calculation and work sample problems H-117 – Introductory Health Physics Slide 4 External Dosimetry H-117 – Introductory Health Physics Slide 5 External Dosimetry Gamma, beta or neutron radiation emitted by radioactive material outside the body irradiates the skin, lens of the eye, extremities & the whole body (i.e. internal organs) H-117 – Introductory Health Physics Slide 6 External Dosimetry (cont.) ¾ Alpha particles cannot penetrate the dead layer of skin (0.007 cm) ¾ Beta particles are primarily a skin hazard. However, energetic betas can penetrate the lens of an eye (0.3 cm) and deeper tissue (1 cm) ¾ Beta sources can produce more penetrating radiation through bremsstrahlung ¾ Primary sources of external exposure are photons and neutrons ¾ External dose must be measured by means of appropriate dosimeters H-117 – Introductory Health Physics Slide 7
    [Show full text]
  • Evaluation of Fernald
    Draft ADVISORY BOARD ON RADIATION AND WORKER HEALTH National Institute for Occupational Safety and Health Review of the General Steel Industries Special Exposure Cohort (SEC) Petition-00105 and the NIOSH SEC Petition Evaluation Report Contract No. 200-2009-28555 SCA-SEC-TASK5-0005 Prepared by S. Cohen & Associates 1608 Spring Hill Road, Suite 400 Vienna, Virginia 22182 July 2009 [Redacted version – October 2, 2009] Disclaimer This document is made available in accordance with the unanimous desire of the Advisory Board on Radiation and Worker Health (ABRWH) to maintain all possible openness in its deliberations. However, the ABRWH and its contractor, SC&A, caution the reader that at the time of its release, this report is pre-decisional and has not been reviewed by the Board for factual accuracy or applicability within the requirements of 42 CFR 82. This implies that once reviewed by the ABRWH, the Board’s position may differ from the report’s conclusions. Thus, the reader should be cautioned that this report is for information only and that premature interpretations regarding its conclusions are unwarranted. Effective Date: Revision No.: Document No.: Page No.: July 24, 2009 0 SCA-SEC-TASK5-0005 Page 2 of 50 S. COHEN & ASSOCIATES: Document No. SCA-SEC-TASK5-0005 Technical Support for the Advisory Board on Effective Date: Radiation & Worker Health Review of July 24, 2009 – Draft NIOSH Dose Reconstruction Program Redacted version – October 2, 2009 Revision No. 0 Review of the General Steel Industries Special Exposure Cohort (SEC) Petition-00105
    [Show full text]
  • A Standard Complex-Wide Methodology for Overestimating External Doses Effective Date: 06/05/2006 Measured with Film Badge Dosimeters Type of Document: OTIB
    ORAU TEAM Dose Reconstruction Project for NIOSH Oak Ridge Associated Universities I Dade Moeller & Associates I MJW Corporation Page 1 of 19 Document Title: Document Number: ORAUT-OTIB-0010 Revision: 01 A Standard Complex-Wide Methodology for Overestimating External Doses Effective Date: 06/05/2006 Measured with Film Badge Dosimeters Type of Document: OTIB Supersedes: Revision 00 Subject Experts: Donald N. Stewart and Jack J. Fix Document Owner Approval: Signature on File Approval Date: 05/17/2006 James P. Griffin, Deputy Project Director Concurrence: Signature on File Concurrence Date: 05/22/2006 Kate Kimpan, Project Director Approval: Signature on File Approval Date: 06/05/2006 James W. Neton, Associate Director for Science New Total Rewrite Revision Page Change FOR DOCUMENTS MARKED AS A TOTAL REWRITE, REVISION, OR PAGE CHANGE, REPLACE THE PRIOR REVISION AND DISCARD / DESTROY ALL COPIES OF THE PRIOR REVISION. Document No. ORAUT-OTIB-0010 Revision No. 01 Effective Date: 06/05/2006 Page 2 of 19 PUBLICATION RECORD EFFECTIVE REVISION DATE NUMBER DESCRIPTION 01/12/2004 00 New Technical Information Bulletin for a Standard Complex-Wide Correction Factor for Overestimating External Doses Measured with Film Badge Dosimeters. First approved issue. Initiated by Donald N. Stewart. 06/05/2006 01 Constitutes rewrite of document as a result of biennial review. Incorporates resolution of S. Cohen & Associates final draft comments contained in “The Review of NIOSH/ORAUT Procedures and Methods used for Dose Reconstruction” (ref: letter from John Mauro to David Staudt, dated January 17, 2005). Approved issue of Revision 01. This revision results in no change to the assigned dose and no PER is required.
    [Show full text]
  • 11. Dosimetry Fundamentals
    Outline • Introduction Dosimetry Fundamentals • Dosimeter model • Interpretation of dosimeter measurements Chapter 11 – Photons and neutrons – Charged particles • General characteristics of dosimeters F.A. Attix, Introduction to Radiological Physics and Radiation Dosimetry • Summary Introduction Dosimeter • Radiation dosimetry deals with the determination • A dosimeter can be generally defined as (i.e., by measurement or calculation) of the any device that is capable of providing a absorbed dose or dose rate resulting from the interaction of ionizing radiation with matter reading R that is a measure of the absorbed • Other radiologically relevant quantities are dose Dg deposited in its sensitive volume V exposure, kerma, fluence, dose equivalent, energy by ionizing radiation imparted, etc. can be determined • If the dose is not homogeneous • Measuring one quantity (usually the absorbed dose) another one can be derived through throughout the sensitive calculations based on the defined relationships volume, then R is a measure of mean value Dg Dosimeter Simple dosimeter model • Ordinarily one is not interested in measuring • A dosimeter can generally be considered as the absorbed dose in a dosimeter’s sensitive consisting of a sensitive volume V filled with a volume itself, but rather as a means of medium g, surrounded by a wall (or envelope, determining the dose (or a related quantity) for container, etc.) of another medium w having a another medium in which direct measurements thickness t 0 are not feasible • A simple dosimeter can be
    [Show full text]
  • Q: What's the Difference Between Roentgen, Rad and Rem Radiation Measurements?
    www.JICReadiness.com Q: What's the Difference Between Roentgen, Rad and Rem Radiation Measurements? A: Since nuclear radiation affects people, we must be able to measure its presence. We also need to relate the amount of radiation received by the body to its physiological effects. Two terms used to relate the amount of radiation received by the body are exposure and dose. When you are exposed to radiation, your body absorbs a dose of radiation. As in most measurement quantities, certain units are used to properly express the measurement. For radiation measurements they are... Roentgen: The roentgen measures the energy produced by gamma radiation in a cubic centimeter of air. It is usually abbreviated with the capital letter "R". A milliroentgen, or "mR", is equal to one one-thousandth of a roentgen. An exposure of 50 roentgens would be written "50 R". Rad: Or, Radiation Absorbed Dose recognizes that different materials that receive the same exposure may not absorb the same amount of energy. A rad measures the amount of radiation energy transferred to some mass of material, typically humans. One roentgen of gamma radiation exposure results in about one rad of absorbed dose. Rem: Or, Roentgen Equivalent Man is a unit that relates the dose of any radiation to the biological effect of that dose. To relate the absorbed dose of specific types of radiation to their biological effect, a "quality factor" must be multiplied by the dose in rad, which then shows the dose in rems. For gamma rays and beta particles, 1 rad of exposure results in 1 rem of dose.
    [Show full text]