The International Commission on Radiological Protection: Historical Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Radiation Risk in Perspective
PS010-1 RADIATION RISK IN PERSPECTIVE POSITION STATEMENT OF THE HEALTH HEALTH PHYSICS SOCIETY* PHYSICS SOCIETY Adopted: January 1996 Revised: August 2004 Contact: Richard J. Burk, Jr. Executive Secretary Health Physics Society Telephone: 703-790-1745 Fax: 703-790-2672 Email: [email protected] http://www.hps.org In accordance with current knowledge of radiation health risks, the Health Physics Society recommends against quantitative estimation of health risks below an individual dose of 5 rem1 in one year or a lifetime dose of 10 rem above that received from natural sources. Doses from natural background radiation in the United States average about 0.3 rem per year. A dose of 5 rem will be accumulated in the first 17 years of life and about 25 rem in a lifetime of 80 years. Estimation of health risk associated with radiation doses that are of similar magnitude as those received from natural sources should be strictly qualitative and encompass a range of hypothetical health outcomes, including the possibility of no adverse health effects at such low levels. There is substantial and convincing scientific evidence for health risks following high-dose exposures. However, below 5–10 rem (which includes occupational and environmental exposures), risks of health effects are either too small to be observed or are nonexistent. In part because of the insurmountable intrinsic and methodological difficulties in determining if the health effects that are demonstrated at high radiation doses are also present at low doses, current radiation protection standards and practices are based on the premise that any radiation dose, no matter how small, may result in detrimental health effects, such as cancer and hereditary genetic damage. -
Absorbed Dose in Radioactive Media Outline Introduction Radiation Equilibrium Charged-Particle Equilibrium Limiting Cases
Outline • General dose calculation considerations, Absorbed Dose in Radioactive absorbed fraction Media • Radioactive disintegration processes and associated dose deposition – Alpha disintegration Chapter 5 – Beta disintegration – Electron-capture transitions F.A. Attix, Introduction to Radiological – Internal conversion Physics and Radiation Dosimetry • Summary Introduction Radiation equilibrium • We are interested in calculating the absorbed dose in a. The atomic composition radioactive media, applicable to cases of of the medium is – Dose within a radioactive organ homogeneous – Dose in one organ due to radioactive source in another b. The density of the organ medium is • If conditions of CPE or RE are satisfied, dose homogeneous c. The radioactive source calculation is straightforward is uniformly distributed • Intermediate situation is more difficult but can be d. No external electric or handled at least in approximations magnetic fields are present Charged-particle equilibrium Limiting cases • Emitted radiation typically includes both • Each charged particle of a given type and photons (longer range) and charged energy leaving the volume is replaced by an particles (shorter range) identical particle of the same energy entering • Assume the conditions for RE are satisfied the volume • Consider two • Existence of RE is sufficient condition for CPE limited cases based • Even if RE does not exist CPE may still exist on the size of the (for a very large or a very small volume) radioactive object 1 Limiting cases: small object Limiting -
Nuclear Radiation 1. an Atom Contains Electrons, Protons and Neutrons
Nuclear Radiation 1. An atom contains electrons, protons and neutrons. Which of these particles a) are outside the nucleus b) are uncharged c) have a negative charge d) are nucleons e) are much lighter than the others? 2. Complete the table below. Name Symbol Charge What is it? Alpha particle β -1 Gamma ray An electromagnetic wave 3. How is an ionised material different from a material that is not ionised? National 5 Physics: Waves & Radiation 1 Absorption of Radiation 1. The figure below shows a Geiger tube used to detect radiation from a radioactive source. thick lead plate 0 4 2 5 start counter stop ON OFF reset Geiger tube radioactive source The following measurements were made using the apparatus above. Counts in 300 seconds Readings Average 1 No source present 102 94 110 2 Source present at fixed distance from tube a) No lead plate present 3466 3420 3410 b) Thick lead plate present 105 109 89 c) Aluminium sheet in place of the 1834 1787 1818 thick lead sheet a) Complete the table by calculating the average readings. b) Why are the readings on each line not the same? c) What can you say from the table about the effect on the radiation of: i. The lead plate? ii. The aluminium plate? d) Why is it possible to say from the readings that: i. gamma radiation is emitted by the source? ii. alpha and beta radiation might be emitted by the source? e) What further tests could you make using this arrangement to find out whether or not the source emits alpha radiation? National 5 Physics: Waves & Radiation 2 2. -
Copyright by Arthur Bryan Crawford 2004
Copyright by Arthur Bryan Crawford 2004 The Dissertation Committee for Arthur Bryan Crawford Certifies that this is the approved version of the following dissertation: Evaluation of the Impact of Non -Uniform Neutron Radiation Fields on the Do se Received by Glove Box Radiation Workers Committee: Steven Biegalski, Supervisor Sheldon Landsberger John Howell Ofodike Ezekoye Sukesh Aghara Evaluation of the Impact of Non -Uniform Neutron Radiation Fields on the Dose Received by Glove Box Radiation Workers by Arthur Bryan Crawford, B.S., M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin December, 2004 Dedication I was born to goodly parents Harvey E. Crawford and Johnnie Lee Young Crawford Acknowledgements I would like to express my gratitude to Dr. Sheldon Landsberger for his vision in starting a distance learning program at the University of Texas at Austin and for his support and encouragement on this quest. I would like to thank my advisor, Dr. Steven Biegalski, for his support and encouragement even though the topic area was new to him. I would like to thank the members of my dissertation committee for finding the time to review this dissertation. To the staff of the Nuclear Engineering Teaching Laboratory I say thank you for your kindness and support during those brief times that I was on cam pus. A special thanks to my past and present group leaders, David Seidel, Eric McNamara, and Bill Eisele and my Division Leader, Lee McAtee, at Los Alamos National Laboratory, for their support in being allowed to use time and material resources at the Lab oratory and for financial support in the form of tuition reimbursement and travel expenses. -
Occupational Radiation Protection Record-Keeping and Reporting Guide
DOE G 441.1-11 (formerly G-10 CFR 835/H1) 05-20-99 OCCUPATIONAL RADIATION PROTECTION RECORD-KEEPING AND REPORTING GUIDE for use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection Assistant Secretary for Environment, Safety and Health (THIS PAGE INTENTIONALLY LEFT BLANK) DOE G 441.1-11 i 05-20-99 CONTENTS CONTENTS PAGE 1. PURPOSE AND APPLICABILITY ........................................................ 1 2. DEFINITIONS ........................................................................ 2 3. DISCUSSION ........................................................................ 3 4. IMPLEMENTATION GUIDANCE ......................................................... 4 4.1 RECORDS TO BE GENERATED AND MAINTAINED ................................ 4 4.1.1 Individual Monitoring and Dose Records ........................................ 4 4.1.2 Monitoring and Workplace Records ............................................ 8 4.1.3 Administrative Records .................................................... 11 4.2 REPORTS ................................................................... 15 4.2.1 Reports to Individuals ...................................................... 16 4.2.2 Reports of Planned Special Exposures ......................................... 17 4.3 PRIVACY ACT CONSIDERATIONS .............................................. 17 4.3.1 Informing Individuals ...................................................... 17 4.3.2 Identifying Individuals ..................................................... 17 -
Development of Chemical Dosimeters Development Of
SUDANSUDAN ACADEMYAGADEMY OFOF SCIENCES(SAS)SGIENGES(SAS) ATOMICATOMIC ENERGYEhTERGYRESEARCHESRESEARCHES COORDINATIONCOORDII\rATI ON COUNCILCOUNCIL - Development of Chemical Dosimeters A dissertation Submitted in a partial Fulfillment of the Requirement forfbr Diploma Degree in Nuclear Science (Chemistry) By FareedFadl Alla MersaniMergani SupervisorDr K.S.Adam MurchMarch 2006 J - - - CONTENTS Subject Page -I - DedicationDedication........ ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... I Acknowledgement ... '" ... ... ... ... ... ... '" ... ... ... ... '" ... '" ....... .. 11II Abstract ... ... ... '" ... ... ... '" ... ... ... ... -..... ... ... ... ... ... ..... III -I Ch-lch-1 DosimetryDosimefry - 1-1t-l IntroductionLntroduction . 1I - 1-2t-2 Principle of Dosimetry '" '" . 2 1-3l-3 DosimetryDosimefiySystems . 3J 1-3-1l-3-l primary standard dosimeters '" . 4 - 1-3-2l-3-Z Reference standard dosimeters ... .. " . 4 1-3-3L-3-3 Transfer standard dosimeters ... ... '" . 4 1-3-4t-3-4 Routine dosimeters . 5 1-4I-4 Measurement of absorbed dose . 6 1-5l-5 Calibration of DosimetryDosimetrvsystemsvstem '" . 6 1-6l-6 Transit dose effects . 8 Ch-2ch-2 Requirements of chemical dosimeters 2-12-l Introduction ... ... ... .............................................. 111l 2-2 Developing of chemical dosimeters ... ... .. ....... ... .. ..... 12t2 2-3 Classification of Dosimetry methods.methods .......................... 14l4 2-4 RequirementsRequiremsnts of ideal chemical dosimeters ,. ... 15 2-5 Types of chemical system . -
MIRD Pamphlet No. 22 - Radiobiology and Dosimetry of Alpha- Particle Emitters for Targeted Radionuclide Therapy
Alpha-Particle Emitter Dosimetry MIRD Pamphlet No. 22 - Radiobiology and Dosimetry of Alpha- Particle Emitters for Targeted Radionuclide Therapy George Sgouros1, John C. Roeske2, Michael R. McDevitt3, Stig Palm4, Barry J. Allen5, Darrell R. Fisher6, A. Bertrand Brill7, Hong Song1, Roger W. Howell8, Gamal Akabani9 1Radiology and Radiological Science, Johns Hopkins University, Baltimore MD 2Radiation Oncology, Loyola University Medical Center, Maywood IL 3Medicine and Radiology, Memorial Sloan-Kettering Cancer Center, New York NY 4International Atomic Energy Agency, Vienna, Austria 5Centre for Experimental Radiation Oncology, St. George Cancer Centre, Kagarah, Australia 6Radioisotopes Program, Pacific Northwest National Laboratory, Richland WA 7Department of Radiology, Vanderbilt University, Nashville TN 8Division of Radiation Research, Department of Radiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark NJ 9Food and Drug Administration, Rockville MD In collaboration with the SNM MIRD Committee: Wesley E. Bolch, A Bertrand Brill, Darrell R. Fisher, Roger W. Howell, Ruby F. Meredith, George Sgouros (Chairman), Barry W. Wessels, Pat B. Zanzonico Correspondence and reprint requests to: George Sgouros, Ph.D. Department of Radiology and Radiological Science CRB II 4M61 / 1550 Orleans St Johns Hopkins University, School of Medicine Baltimore MD 21231 410 614 0116 (voice); 413 487-3753 (FAX) [email protected] (e-mail) - 1 - Alpha-Particle Emitter Dosimetry INDEX A B S T R A C T......................................................................................................................... -
Rapport Du Groupe De Travail N° 9 Du European Radiation Dosimetry Group (EURADOS) – Coordinated Network for Radiation Dosimetry (CONRAD – Contrat CE Fp6-12684)»
- Rapport CEA-R-6220 - CEA Saclay Direction de la Recherche Technologique Laboratoire d’Intégration des Systèmes et des Technologies Département des Technologies du Capteur et du Signal Laboratoire National Henri Becquerel RADIATION PROTECTION DOSIMETRY IN MEDECINE REPORT OF THE WORKING GROUP N° 9 OF THE EUROPEAN RADIATION DOSIMETRY GROUP (EURADOS) COORDINATED NETWORK FOR RADIATION DOSIMETRY (CONRAD – CONTRACT EC N° FP6-12684) - Juin 2009 - RAPPORT CEA-R-6220 – «Dosimétrie pour la radioprotection en milieu médical – Rapport du groupe de travail n° 9 du European Radiation Dosimetry group (EURADOS) – Coordinated Network for Radiation Dosimetry (CONRAD – contrat CE fp6-12684)» Résumé - Ce rapport présente les résultats obtenus dans le cadre des travaux du WP7 (dosimétrie en radioprotection du personnel médical) de l’action coordonnée CONRAD (Coordinated Network for Radiation Dosimetry) subventionné par la 6ème FP de la communauté européenne. Ce projet a été coordonné par EURADOS (European RadiationPortection group). EURADOS est une organisation fondée en 1981 pour promouvoir la compréhension scientifique et le développement des techniques de la dosimétrie des rayonnements ionisant dans les domaines de la radioprotection, de la radiobiologie, de la thérapie radiologique et du diagnostic médical ; cela en encourageant la collaboration entre les laboratoires européens. Le WP7 de CONRAD coordonne et favorise la recherche européenne pour l'évaluation des expositions professionnelles du personnel sur les lieux de travail de radiologie thérapeutique et diagnostique. La recherche est organisée en sous-groupes couvrant trois domaines spécifiques : 1. Dosimétrie d'extrémité en radiologie interventionnelle et médecine nucléaire : ce sous- groupe coordonne des investigations dans les domaines spécifiques des hôpitaux et des études de répartition des doses dans différentes parties des mains, des bras, des jambes et des pieds ; 2. -
Chapter 2 Radiation Safety Manual Revision 1 Principles of Radiation Safety 6/1/2018
The University of Georgia Chapter 2 Radiation Safety Manual Revision 1 Principles of Radiation Safety 6/1/2018 CHAPTER 2 PRINCIPLES OF RADIATION SAFETY 1.0 UNITS OF RADIATION DOSE 1.1 Historical Units In 1896, x-rays were discovered by Wilhelm Roentgen. The Roentgen is unit of measurement for the exposure of x-rays and gamma rays. It is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air. Radioactivity was discovered by Henri Becquerel. Radioactivity refers to the amount of radiation released when an element spontaneously emits energy as a result of the decay of its unstable atoms. The Becquerel is a unit used to measure radioactivity, and stands for 1 disintegration per second. The Curie is a unit of radioactivity equal to 3.7 X 1010 disintegrations per second and was first used, but being such a large unit was replaced by the Becquerel. The Curie is named for Pierre Curie, Marie Curie’s husband and co- discoverer of radium. After his accidental death, she continued their work. For some time, no one realized that radiation could cause harmful effects. It was recognized very soon that x-rays could be used in medical diagnosis, and early radiologists received large doses of radiation. Many of these radiologists later suffered severe injuries due to overexposure (radiation effects may appear years after exposure). The first unit of dose was the erythema dose. This was the amount of x-radiation which would barely cause reddening of the skin. It was not a very satisfactory unit of dose, but indicates the early recognition by some scientists that radiation exposure can be harmful and should be limited. -
Cost-Benefit Analysis and Radiation Protection* by J.U
Cost-Benefit Analysis and Radiation Protection* by J.U. Ahmed and H.T. Daw Cost-benefit analysis is a tool to find the best way of allocating resources. The International Commission on Radiological Protection (ICRP), in its publication No. 26, recommends this method in justifying radiation exposure practices and in keeping exposures as low as is reasonably achievable, economic and social considerations being taken into account 1. BASIC PHILOSOPHY A proposed practice involving radiation exposure can be justified by considering its benefits and its costs The aim is to ensure a net benefit. This can be expressed as: B = V-(P + X +Y) where: B is the net benefit; V is the gross benefit; P is the basic production cost, excluding protection; X is the cost of achieving the selected level of protection; and Y is the cost assigned to the detriment involved in the practice. If B is negative, the practice cannot be justified. The practice becomes increasingly justifiable at increasing positive values of B However, some of the benefits and detriments are intangible or subjective and not easily quantified. While P and X costs can be readily expressed in monetary terms, V may contain components difficult to quantify. The quantification of Y is the most problematic and probably the most controversial issue. Thus value judgements have to be introduced into the cost-benefit analysis. Such judgements should reflect the interests of society and therefore require the participation of competent authorities and governmental bodies as well as representative views of various sectors of the public. Once a practice has been justified by a cost-benefit analysis, the radiation exposure of individuals and populations resulting from that practice should be kept as low as reasonably achievable, economic and social factors being taken into account (i.e. -
Radiation Glossary
Radiation Glossary Activity The rate of disintegration (transformation) or decay of radioactive material. The units of activity are Curie (Ci) and the Becquerel (Bq). Agreement State Any state with which the U.S. Nuclear Regulatory Commission has entered into an effective agreement under subsection 274b. of the Atomic Energy Act of 1954, as amended. Under the agreement, the state regulates the use of by-product, source, and small quantities of special nuclear material within said state. Airborne Radioactive Material Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases. ALARA Acronym for "As Low As Reasonably Achievable". Making every reasonable effort to maintain exposures to ionizing radiation as far below the dose limits as practical, consistent with the purpose for which the licensed activity is undertaken. It takes into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, societal and socioeconomic considerations, and in relation to utilization of radioactive materials and licensed materials in the public interest. Alpha Particle A positively charged particle ejected spontaneously from the nuclei of some radioactive elements. It is identical to a helium nucleus, with a mass number of 4 and a charge of +2. Annual Limit on Intake (ALI) Annual intake of a given radionuclide by "Reference Man" which would result in either a committed effective dose equivalent of 5 rems or a committed dose equivalent of 50 rems to an organ or tissue. Attenuation The process by which radiation is reduced in intensity when passing through some material. -
External and Internal Dosimetry
Chapter 7 External and Internal Dosimetry H-117 – Introductory Health Physics Slide 1 Objectives ¾ Discuss factors influencing external and internal doses ¾ Define terms used in external dosimetry ¾ Discuss external dosimeters such as TLDs, film badges, OSL dosimeters, pocket chambers, and electronic dosimetry H-117 – Introductory Health Physics Slide 2 Objectives ¾ Define terms used in internal dosimetry ¾ Discuss dose units and limits ¾ Define the ALI, DAC and DAC-hr ¾ Discuss radiation signs and postings H-117 – Introductory Health Physics Slide 3 Objectives ¾ Discuss types of bioassays ¾ Describe internal dose measuring equipment and facilities ¾ Discuss principles of internal dose calculation and work sample problems H-117 – Introductory Health Physics Slide 4 External Dosimetry H-117 – Introductory Health Physics Slide 5 External Dosimetry Gamma, beta or neutron radiation emitted by radioactive material outside the body irradiates the skin, lens of the eye, extremities & the whole body (i.e. internal organs) H-117 – Introductory Health Physics Slide 6 External Dosimetry (cont.) ¾ Alpha particles cannot penetrate the dead layer of skin (0.007 cm) ¾ Beta particles are primarily a skin hazard. However, energetic betas can penetrate the lens of an eye (0.3 cm) and deeper tissue (1 cm) ¾ Beta sources can produce more penetrating radiation through bremsstrahlung ¾ Primary sources of external exposure are photons and neutrons ¾ External dose must be measured by means of appropriate dosimeters H-117 – Introductory Health Physics Slide 7