Logics Lost Genius

Total Page:16

File Type:pdf, Size:1020Kb

Logics Lost Genius HISTORY OF MATHEMATICS « VOLUME 33 Logics Lost Genius The Life of Gerhard Gentzen Eckart Menzler-Trott Translated by Craig Smoryiiski and Edward Griffor The London \P^D ®AMS Mathematical <? J> Ambrican Mathbmaxical Society Society r\xf Contents Preface to the English Edition xiii Introduction xvii 1. Gentzen's Accomplishments xvii 2. Aims of My Life Story of Gerhard Gentzen xviii 3. Mathematical Logic and National Socialism: The Political Field xix Chapter 1. Early Youth and Abitur 1 1. Gerhard Gentzen's Birth 1 2. Gentzen's Mother: Melanie Gentzen (1873-1968) 1 3. Gentzen's Paternal Grandparents and His Father: The Attorney and Court Official Dr. jur. Hans Gentzen (1870-1919) 2 4. Youth and Student Days of Hans Gentzen 3 5. Gentzen's Maternal Grandparents: The-Physician Alfons Bilharz and Adele Bilharz 4 6. The Shining Example in Gentzen's Family Tree: The Great, Successful Physician and Natural Scientist Maximilian Theodor Bilharz (1823-1862) 9 7. Gentzen's Sister: Waltraut Sophie Margaret Gentzen (*1911) 10 8. The Schoolchild Gerhard Gentzen 11 9. The Death of the Father Means a Move and a New School 12 10. The Beginning of Gentzen's Intellectual Activity 12 11. Gentzen's Success at School 15 12. The Abitur on 29 February 1928 16 Chapter 2. 1928-1938—Weimar Republic and National Socialism in Peace. From the Beginning of Studies to the Extension of the Unscheduled Assistantship for Another Year in Effect from 1 October 1938 21 1. Beginning of Studies in Greifswald 21 2. Continuation of Study in Gottingen 22 3. Is Gottingen the Centre of Mathematics for Gentzen? 23 4. Continuing Studies in Munich 23 5. A Semester in Berlin: Winter Semester 1930/31 26 6. Back in Gottingen: Saunders Mac Lane and Gentzen as the "Type of a Scientifically Oriented Man" (Richard Courant) 27 7. The Decision: Gentzen's First Publication, "Uber die Existenz unabhangiger Axiomensysteme zu unendlichen Satzsystemen" and His Programme for 1932 30 ,i CONTENTS 8. What Do Gentzen's Intellectual Interests and Attitude in 1931 and 1932 Appear to Be? 33 9. Political Language in Mathematics in 1918 34 10. Political Language by Hermann Weyl and David Hilbert 34 11. Whom Did Gentzen Know in Gottingen and What Did He Read? 37 12. Gentzen's Life in the Early Nazi Period. The Withdrawn Manuscript "Uber das Verhaltnis zwischen intuitionistischer und klassischer Arithmetik" of 15 March 1933 38 13. Gerhard Gentzen's Dissertation "Untersuchungen iiber das logische Schliefien" of 12 July 1933 41 14. The Penetration of the Nazis into Mathematical Research at the University in Gottingen 1933 and 1934—Or, Vahlen and Bieberbach vs. Weber and Wegner 46 15. The State Examination with "Elektronenbahnen in axialsymmetrischen Feldern unter Anwendung auf kosmische Probleme" on 16 November 1933 51 16. Why Did Gentzen Join the SA? 52 17. Gentzen's Political Position: A Conjecture 53 18. Gentzen in Financial Difficulties 54 19. Financial Straits and Job Hunting 55 20. Consistency Proof for Number Theory in Discussion with Paul Bernays 57 21. "Widerspruchsfreiheit der reinen Zahlentheorie" Mirrored in the Correspondence of Bernays and Weyl 58 22. Difficulties with the "Widerspruchsfreiheit der reinen Zahlentheorie" of 11 August 1935 59 23. The Unscheduled Assistantship under Hilbert from 1 November 1935: A Productive Period for Foundational Research Begins 62 24. Consistency of Type Theory 63 25. Revising the Proof of the "Widerspruchsfreiheit der reinen Zahlentheorie" 64 26. "Die Widerspruchsfreiheit der reinen Zahlentheorie" 65 27. Gentzen Was an Intellectual Independent 69 28. Gentzen Expresses His Thanks to Turing 71 29. Correspondence between Bernays and Ackermann 1936 to 1940 72 30. The Correspondence between Bernays and Gentzen Merrily Continues 75 31. Invitation to the Parisian Descartes Congress in August 1937. The Invitation to Lecture to the DMV Conference in Bad Kreuznach on 21 September 1937: "Die gegenwartige Lage in der mathematischen Grundlagenforschung". The Extension of the Tenure of the Unscheduled Assistantship on 1 October 1937 for a Year 77 32. Jean Cavailles and Gerhard Gentzen 82 33. Gentzen Becomes an "Associate" of the Publication of Scholz's Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften 84 34. "Die gegenwartige Lage in der mathematischen Grundlagenforschung" 86 35. "Neue Fassung des Widerspruchsfreiheitsbeweises der reinen Zahlentheorie" 1938 »« CONTENTS ix 36. Bernays' View of Gentzen's Programme (Second Consistency Proof) 89 37. Correspondence with Paul Bernays 93 38. Extension of the Unscheduled Position for Another Year Taking Effect 1 October 1938 97 39. Bernays' Views of Hilbert's Programme and Gentzen's Place in It 100 40. Closing Thoughts on Paul Bernays 101 41. Longer Notes 102 Chapter 3. 1939-1942—From the Beginning of the War to Dismissal from the Wehrmacht and the Wartime Habilitation under Helmut Hasse 117 1. 1939: At the Highpoint of Reputation 117 2. The Second Volume of Grundlagen der Mathematik of Hilbert and Bernays Appears 119 3. Active Military Service at the Homefront as Radio Operator by the Flugwachkommando 125 4. 1939/40: Preparation for Habilitation. "Beweisbarkeit und Unbeweisbarkeit von Anfangsfallen der transfmiten Induktion in der reinen Zahlentheorie" 128 5. 1941: Encouragement from Hellmuth Kneser 135 6. 1942: Discharge from Military Service 139 Chapter 4. The Fight over "German Logic" from 1940 to 1945: A Battle between Amateurs 141 A Short Preface 141 1. Ludwig Bieberbach as Supporter of the Idea That the Validity of Mathematics Be Decided through World Views 142 2. An Advocate of Racial Purity Sets the Standards in German Mathematical Logic, Where Attempts Are Made to Confuse Scientific Results with Matters of Race 143 3. Gentzen as a "Witness" for a National-Racial Interpretation of the Mathematical Foundational Research through Steck and Requard 144 4. The Somewhat Sharper Point of View of Friedrich Requard 147 5. Ludwig Bieberbach and his Deutsche Mathematik 150 6. NS Ideology in Mathematics through Bieberbach Receives Negative Resonance Even within His Own Camp 152 7. Ludwig Bieberbach: Representative of "German Mathematics" 153 8. A Contemporary of Bieberbach's in Exile: Johann L. Schmidt 159 9. Bieberbach and Intuitionism 160 10. Formalism and Proof Theory 160 11. Applied Mathematics as Folkish Mathematics 162 12. Nazis Criticised the Lack of Support from Mathematics 163 13. Mathematical Foundational Research Remains Unmolested by the Nazis 167 14. Attacks on Mathematical Logic from Without: Dingier, Steck, and May 169 15. The Attacked: Heinrich Scholz (1884-1956) 176 16. Bieberbach, Max Steck and Jaensch 186 17. Bieberbach and Erich Jaensch 188 x CONTENTS 18. Steck's Attack on Hilbert Leads to Bieberbach's Commissioning a Defence of Mathematical Logic by H. Scholz and Publishing It in Deutsche Mathematik 190 19. Interlude: May and Dingier Provide Arguments for Steck 197 20. Steck and Scholz in Dispute 202 21. Max Steck as Denouncing "Expert Witness" and Publicist 208 22. The Exception: The Dedicated National Socialist, Logician and Historian of Mathematics, Oskar Becker, Remains Neutral 216 23. Resistance as a Mathematician Was Possible under National Social¬ ism 218 24. Kurt Reidemeister's Additional Contemplations on Politico-Scientific Power Play in "German Mathematics" 219 25. Longer Notes 221 Chapter 5. Recovery and Docent Position 1942 to 1944 233 1. Final Discharge from the German Army 233 2. Hans Rohrbach Commandeers Gerhard Gentzen to Prague through the Osenberg Initiative 234 3. Gentzen's Teaching Position in Prague: "Kepler's Laws of Planetary Motion" 236 4. The First Courses in November 1943 238 5. The Last Known Scientific Letter of Gerhard Gentzen 243 6. Gerhard Gentzen in 1944: Teaching Functions, Computing Office, and War 244 7. Hans Rohrbach's Report on the Conditions in the Mathematical Institute in Prague 246 8. Why Did Gentzen Banish Any Thought of Flight? 247 Chapter 6. Arrest, Imprisonment, Death and Nachlass 253 1. The Last Days of Freedom in the Private Sector 253 2. The Arrest of Gerhard Gentzen and the Awful Imprisonment 255 3. Gentzen's Physical Death 257 4. Is Gentzen's Death Understandable? 260 5. Rumours 261 6. Attempts to Rescue the Nachlass 263 7. The Deciphering of the Stenographic Notes 266 Conclusion 267 1. Misapprehensions about the Life of Gerhard Gentzen 267 2. Logic and Politics 267 3. Upshot 269 Tables of the Life of Gerhard Gentzen 273 Chronology 273 Contemporary Assessments of Gentzen 278 Publications of Gentzen 281 Appendix A. Gentzen and Geometry C. SMORYNSKI 283 CONTENTS xi Appendix B. Hilbert's Programme C. Smorynski 291 1. Constructive Prologue 291 2. Problems in Paris 293 3. Hilbert and Geometry 296 4. First Steps 300 5. Enter Brouwer 301 6. Back to Hilbert 308 7. Weyl Stirs Things Up 310 8. Hilbert Responds 312 9. More on Brouwer 322 10. Outbreak of Hostilities 323 11. The Formula Game 324 12. On the Infinite 325 13. A Fragile Truce 327 14. "Hilbert's Programme" Is Born 329 15. Brouwer Takes Up Arms 331 16. Hilbert Finishes Off Brouwer 332 17. The Programme Expands 334 18. Godel's Theorem 335 19. Concluding Remarks 339 Appendix C. Three Lectures Gerhard Gentzen 343 1. The Concept of Infinity in Mathematics 343 2. The Concept of Infinity and the Consistency of Mathematics 350 3. The Current Situation in Research in the Foundations of Mathematics 353 Appendix D. From Hilbert's Programme to Gentzen's Programme Jan von Plato 367 1. Mathematical Proof 367 2. Hilbert's Programme 373 3. Gentzen's Programme 383 4. Later Developments in Structural Proof Theory 396 5. References 401 Bibliography 405 Index 433.
Recommended publications
  • Wissenschaftsphilosophen Im Krieg - Impromptus
    Erschienen in: "Krieg der Gelehrten" und die Welt der Akademien 1914-1924 / Eckart, Wolfgang U.; Godel, Rainer (Hrsg.). - 1. Auflage. - Stuttgart : Wissenschaftliche Verlagsgesellschaft, 2016. - (Acta Historica Leopoldina ; 68). - „Kri eg der Gelehnen'' und di e Welt der Akademien 191 4-1924 S. 147-164. - ISBN 978-3-8047-3612-2 Wissenschaftsphilosophen im Krieg - Impromptus Gereon WOLTERS ML (Konstanz) Zusamnzenfassung Soweit deutsche Gelehrte nicht selbst im Felde standen, nahmen sie zumeist am Schreibti sch oder in öffent lichen Yortriigen akti v am Ersten Weltkrieg teil. Das gilt auch für die Phi losophen. Unter ihnen finden wir nicht weni ge ausgesprochene Kriegshetze r. Der vorliegende Beitrag untersucht (unter Rückgriff au f Korrespondenzen und Tage­ bucheinträge) di e im Entstehen begriffene Di szipli n der Wi ssenschaft sphilosophie. Die wichti gsten Wi ssenschafts­ ph ilosophen - die ältesten unter ihnen waren bei Kriegsbeginn 32 Jahre all - waren entweder naiv kriegsbegeistert (so zunächst Rudolf CA RNA P), oder Kriegsgegner (Moritz SCHLICK, Otto NEUR AT H und Han s REICHEN BAC H) oder komplett unpolitisch und mit sich selber beschäftigt (Hugo DI NGL ER ). Der spütere Wi ssenschaft sphilosoph Heinrich SCHOLZ, im Krieg noch Theologe, erweist sich al s der einzige Kriegspropagandist. - Das unter deutschen Gelehrten verbreitete und aggressionslcgit imi ercnde Gefühl der kollektiven Demtitigung durch den Rest der We lt weist beängs­ ti gende Parallelen zu Positionen von Gelehrten im heuti gen Ru ss land und zu weiten Teilen der islamischen Welt auf. Abstract: Not all Gcrman scholars served in thc armed forccs in thc Grcat War; many of thcm fought through their writings ancl s1>cechcs.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Arxiv:1803.01386V4 [Math.HO] 25 Jun 2021
    2009 SEKI http://wirth.bplaced.net/seki.html ISSN 1860-5931 arXiv:1803.01386v4 [math.HO] 25 Jun 2021 A Most Interesting Draft for Hilbert and Bernays’ “Grundlagen der Mathematik” that never found its way into any publi- Working-Paper cation, and 2 CVof Gisbert Hasenjaeger Claus-Peter Wirth Dept. of Computer Sci., Saarland Univ., 66123 Saarbrücken, Germany [email protected] SEKI Working-Paper SWP–2017–01 SEKI SEKI is published by the following institutions: German Research Center for Artificial Intelligence (DFKI GmbH), Germany • Robert Hooke Str.5, D–28359 Bremen • Trippstadter Str. 122, D–67663 Kaiserslautern • Campus D 3 2, D–66123 Saarbrücken Jacobs University Bremen, School of Engineering & Science, Campus Ring 1, D–28759 Bremen, Germany Universität des Saarlandes, FR 6.2 Informatik, Campus, D–66123 Saarbrücken, Germany SEKI Editor: Claus-Peter Wirth E-mail: [email protected] WWW: http://wirth.bplaced.net Please send surface mail exclusively to: DFKI Bremen GmbH Safe and Secure Cognitive Systems Cartesium Enrique Schmidt Str. 5 D–28359 Bremen Germany This SEKI Working-Paper was internally reviewed by: Wilfried Sieg, Carnegie Mellon Univ., Dept. of Philosophy Baker Hall 161, 5000 Forbes Avenue Pittsburgh, PA 15213 E-mail: [email protected] WWW: https://www.cmu.edu/dietrich/philosophy/people/faculty/sieg.html A Most Interesting Draft for Hilbert and Bernays’ “Grundlagen der Mathematik” that never found its way into any publication, and two CV of Gisbert Hasenjaeger Claus-Peter Wirth Dept. of Computer Sci., Saarland Univ., 66123 Saarbrücken, Germany [email protected] First Published: March 4, 2018 Thoroughly rev. & largely extd. (title, §§ 2, 3, and 4, CV, Bibliography, &c.): Jan.
    [Show full text]
  • Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published By
    titelbild_2008:Layout 1 26.01.2009 20:19 Seite 1 Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published by Mathematisches Forschungsinstitut Oberwolfach Direktor Gert-Martin Greuel Gesellschafter Gesellschaft für Mathematische Forschung e.V. Adresse Mathematisches Forschungsinstitut Oberwolfach gGmbH Schwarzwaldstr. 9-11 D-77709 Oberwolfach-Walke Germany Kontakt http://www.mfo.de [email protected] Tel: +49 (0)7834 979 0 Fax: +49 (0)7834 979 38 Das Mathematische Forschungsinstitut Oberwolfach ist Mitglied der Leibniz-Gemeinschaft. © Mathematisches Forschungsinstitut Oberwolfach gGmbH (2009) JAHRESBERICHT 2008 / ANNUAL REPORT 2008 INHALTSVERZEICHNIS / TABLE OF CONTENTS Vorwort des Direktors / Director’s Foreword ......................................................................... 6 1. Besondere Beiträge / Special contributions 1.1 Das Jahr der Mathematik 2008 / The year of mathematics 2008 ................................... 10 1.1.1 IMAGINARY - Mit den Augen der Mathematik / Through the Eyes of Mathematics .......... 10 1.1.2 Besuch / Visit: Bundesministerin Dr. Annette Schavan ............................................... 17 1.1.3 Besuche / Visits: Dr. Klaus Kinkel und Dr. Dietrich Birk .............................................. 18 1.2 Oberwolfach Preis / Oberwolfach Prize ....................................................................... 19 1.3 Oberwolfach Vorlesung 2008 .................................................................................... 27 1.4 Nachrufe ..............................................................................................................
    [Show full text]
  • Frege in Context
    British Journal for the History of Philosophy 9(3) 2001:557– 570 REVIEW ARTICLE FREGE IN CONTEXT Nikolay Milkov Gottfried Gabriel und Wolfgang Kienzler (eds). Frege in Jena. Beiträge zur Spurensicherung . (Kritisches Jahrbuch der Philosophie , Band 2). Würzburg, Königshausen & Neumann, 1997, pp.161. Pb. DM 28. ISBN 3826014405 Gottfried Gabriel und Uwe Dathe (eds). Gottlob Frege. Werk und Wirkung. Paderborn, Mentis, 2000, pp.313. Pb. DM 30. ISBN 3897850850 REWRITING FREGE’S BIOGRAPHY English-speaking philosophers know little about Frege’s life. In 1972 T. W. Bynum published ‘On the Life and Work of Gottlob Frege’, an introduction of fty-four pages to his translation of the Begriffsschrift , in which various facts about Frege’s life were cited. These notes are still being used as a guide to Frege’s biography today – as in Anthony Kenny’s recent book Frege (see Kenny 1995, p. 1 n.). Apparently, many writers on Frege have never heard about a complete revolution in investigating Frege’s biography that took place in the 1990s in Germany, falsifying almost every sentence in Bynum’s piece. The two volumes under review – I shall refer to them as Spurensicherung and Wirkung for brevity – which are the outcome of two symposia on Frege held at the University of Jena, form the pinnacle of this biographical makeover. Indeed, from 1979 on, four such symposia had already taken place in Jena, resulting in three volumes of proceedings in each of which new data pertaining to Frege’s biography were contained. What is new in 1 I use the term ‘East German’ here, following the tradition established during the Cold War, when Germany was divided into two parts, usually known in English as East and West Germany.
    [Show full text]
  • Gotthard Günther: Leben Und Werk
    Joachim Castella Gotthard Günther : Leben und Werk Diese Arbeit wurde von Joachim Castella ausgeführt als erste von zwei umfangreichen Studien im Rahmen des Forschungsprojektes 'Theorie komplexer biologischer Systeme'. Autopoiesis und Polykontexturalität: Formalisation, Operativierung und Modellierung. Gefördert von der Volkswagenstiftung im Rahmen des Wettbewerbs Biowissenschaften (Leitung: Dr. Rudolf Kaehr und Prof. Dr. Eberhard von Goldammer) an der Ruhr-Universität Bochum—siehe dazu auch Joachim Paul (Hrsg.), Anmoderation der Sommer-Edition 2007, www.vordenker.de The text was originally edited and rendered into PDF file for the e-journal <www.vordenker.de> by E. von Goldammer Copyright 2007 @ Joachim Castella This material may be freely copied and reused, provided the author and sources are cited How to cite this article: Castella, J., Gotthard Günther: Leben und Werk, www.vordenker.de (Sommer 2007 Edition), Joachim Paul (ed.), URL :<http://www.vordenker.de> ISSN 1619-9324 Joachim Castella Gotthard Günther: Leben und Werk Erstes Kapitel: Lesen – Stellen – Bauen 1 Das Hymen des Textes 1 Dopplungen 4 Positionen und Perspektiven 7 Die Monotonie der Kritik 12 Ins Outback der Tradition 16 Das Schisma der Moderne 20 Die Sprache des Jenseits 23 Dekonstruktive Lektüre 28 Baustellen 32 Zweites Kapitel: Zwischen den Stühlen 36 Ab urbe condita 36 Zeitgeister 39 Der zerbrochene Krug der Logik 43 Auf ins letzte Gefecht 50 Ein Schritt mit Bedeutung 54 Die Spaltung in der Spaltung 59 Präliminarien des Unionsvertrages 64 Drittes Kapitel: Die neue
    [Show full text]
  • Dritten Reich”
    4. Mit Charakterst¨arke und Integrit¨at ubernommene¨ Verantwortung im “Dritten Reich” 4.1 Die ersten Jahre der nationalsozialistischen Diktatur Das Jahr 1933 begann mit der wohl folgenschwersten politischen Ver¨anderung Deutschlands (zumindest) im 20. Jahrhundert – der “Machtergreifung” durch die Nationalsozialisten am 30. Januar 77 78 1933: Reichskanzler Heinrich Bruning¨ , der aufgrund seiner strik- ten Sparpolitik ohnehin nicht popul¨ar war, verlor u. a. wegen der Osthilfeverordnung und des Verbots der SA die Unterstutzung¨ des Reichspr¨asidenten Paul von Hindenburg, fur¨ dessen am 10. April 1932 im zweiten Wahlgang (gegen Adolf Hitler und Ernst Th¨almann) erfolgte Wiederwahl er sich sehr stark engagiert hatte. Auf Betrei- ben des (parteilosen) Generals Kurt von Schleicher musste Bruning¨ am 30. Mai 1932 zurucktreten¨ – nach seinen eigenen Worten “hun- dert Meter vor dem Ziel”. Zu seinem Nachfolger ernannte Hinden- burg Franz von Papen79. Nach den Reichstagswahlen vom 6. No- vember 1932, aufgrund deren (ebenso wie bei der Reichstagswahl vom 31. Juli 1932) wiederum keine arbeitsf¨ahige Koalition m¨oglich war, trat das Kabinett Papen am 17. November 1932 zuruck.¨ Nach ergebnislosen Verhandlungen mit Hitler wurde Schleicher am 3. De- zember 1932 zum Reichskanzler berufen und mit der Bildung eines Pr¨asidialkabinetts beauftragt. Hinter seinem Rucken¨ verhandelte je- doch Papen am 22. Januar 1933 im Auftrage Hindenburgs mit Hitler uber¨ dessen Berufung zum Reichskanzler. Nach einem Gespr¨ach mit 77 Der Anfang dieses Abschnitts ist aus Jurgen¨ Elstrodt, Norbert Schmitz: Geschichte der Mathematik an der Universit¨at Munster,¨ Teil I: 1773 – 1945, Munster,¨ 2008, S. 54 ff., ubernommen.¨ 78 Geboren am 26. November 1885 in Munster,¨ Abitur am Gymnasium Pauli- num; in der Weimarer Republik fuhrender¨ Vertreter der Zentrumspartei.
    [Show full text]
  • Beth and Scholz∗
    Moral Integrity during a Difficult Period: Beth and Scholz∗ [Philosophia Scientiae (Nancy) 3 (4) (1998/1999), 151-173. Special issue: Un logicien consciencieux. La philosophie de Evert Willem Beth.] Volker Peckhaus Institut f¨urPhilosophie der Universit¨atErlangen-N¨urnberg Bismarckstr. 1, D{91054 Erlangen E-mail: [email protected] February 7, 2000 1 Introduction Willem Evert Beth started his academic career as a philosopher of mathe- matics in the mid 1930's, and it should be noted that his approach to this subject at the borderline between philosophy and mathematics was more philosophical than mathematical. It was an ambivalent time, but extremely exciting for scientists working in the area. In their recollections logicians of the time called it the \heroic era." The era lasted, as Georg Henrik von Wright was convinced (von Wright 1993, 21), from 1879 to 1934. This pe- riod was marked by Gottlob Frege's Begriffsschrift (Frege 1879) and the first volume of David Hilbert and Paul Bernays's Grundlagen der Mathematik (Hilbert and Bernays 1934). It was, according to von Wright, relieved by an epoch which began with two incidents being themselves of heroic greatness (26): Kurt G¨odel'sresults concerning the incompleteness of formalized lan- guages and Alfred Tarski's semantic theory of truth. Hans Hermes, on the ∗Lecture delivered on 22nd April, 1998 at the conference \Evert Willem Beth and His Philosophical Friends: From Bernays to Boche´nski"(22nd to 24th April, 1998) in M´er´eville,France. I would like to thank Henk Visser (Haarlem) for his invaluable help in providing documents from the Beth papers, Kai F.
    [Show full text]
  • Title: Collaboration of Polish Logicians with Heinrich Scholz and “Group from Münster” (1932-1956) Author: Gabriela Besle
    Title: Collaboration of Polish Logicians with Heinrich Scholz and “Group from Münster” (1932-1956) Author: Gabriela Besler Citation style: Besler Gabriela. (2021). Collaboration of Polish Logicians with Heinrich Scholz and “Group from Münster” (1932-1956). Collaboration of Polish Logicians with Heinrich Scholz and “Group from Munster" (1932-1956) Gabriela Besler University of Silesia in Katowice (Poland) 26th International Congress of History of Science and Technology and Medicine. Giants and Dwarfs Prague, July 25 - 31 2021 Motto: • Es ist schon, dass es in der verworrenen Welt, in der wir zu existieren gezwungen sind, noch ein paar unverworrene Dinge gibt. • It's nice that there are still a few unsettled things in the tangled world we are forced to exist in (Scholz-Tarski, 30.04.1948) Heinrich Scholz (1884-1956) • Logician, philosopher and theologian, one of the most important German academics in 20th c. • 1917-1928 - Schlesische Friedrich-Wilhelm-Universitat zu Breslau and at Christian-Albrecht University of Kiel. • 1921 - read Whitehead's and Russell's Principia Mathematica, then dealt with mathematical logic. • 1928-1952 - Westfalische Wilhelms-Universitat (Munster, Germany), organized a group of academics working on mathematical logic there, called “Group from Munster" (K. Schroter, H. Hermes, G. Hasenjaeger). • Before the Second World War had the scientific legacy of Gottlob Frege and Ernst Schroder. He wanted to be the first posthumous editor and publisher ofFrege's papers (Heitfeld-Rydzik2020). • During the war he substantially helped at least four Polish academics: Jan tukasiewicz and his wife Regina, Alfred Tarski's family, Jan Salamucha,acolleague from Cracow, ProfessorKowalski. • Included by Bochenski among top analytical philosophers, next to Quine, Austin, Tarski and Popper.
    [Show full text]
  • Church Dogmatics First Appeared
    EDITORS' PREFACE IT was in 1936 that Professor Thomson's translation of this half-volume of Karl Barth's Church Dogmatics first appeared. In introducing this new translation, our first word must be one of deep gratitude for what he did. It is only now in the completion of the English edition of the Church Dogmatics that we are able properly to appreciate the arduous intellectual as well as linguistic work he had to put in, at that early stage, in breaking into Barth's thought and finding a way of giving it intelligible articulation in English. Without his pioneering work the translation of the succeeding volumes would have been much more difficult and rather less successful. Meantime some 14,000 copies of Thomson's translation have been printed, and their distribution all over the world, not only in English-speaking countries, has done yeoman service in introducing many generations of students and readers to the work which more than any other has changed the direction of the history of theology. The fact that the continued demand for this, and the subsequent volumes, in English, does not abate, belies the ever-recurring rumours (evidently spread by wishful thinking reactionaries!) that Barth's influence is on the wane, and argues rather that modern theology is aware that, far from by-passing Barth, or even passing through him, it has yet to catch up on him. This increasing interest in Barth's dogmatics is also apparent in the persistent demand for a fresh translation of this half-volume, made in the light of the rest and making the English edition of the Church Dogmatics uniform throughout.
    [Show full text]
  • Handbuch Der Allgemeinen Morphologie
    Handbuch der Allgemeinen Morphologie MIZ Handbuch der Allgemeinen Morphologie ELEMENTARE PRINZIPIEN UND METHODEN ZUR LÖSUNG KREATIVER PROBLEME © P. Holliger-Uebersax HERMANN HOLLIGER - UEBERSAX MORPHOLOGE ASCO UNTERNEHMENSBERATER Korrekturen 11.01.awy © P. Holliger-Uebersax 1 von 354 Handbuch der Allgemeinen Morphologie MORPHOLOGIE - kreatives Denken in geordneter Form „Es hat der Autor, Wenn er schreibt, So etwas Gewisses, Das ihn treibt.“ Goethe ,,Ich muss mir gegenwärtig wünschen, dass man mir aufmerksam folge, und es muss sich erst am Ende zeigen, wenn wir den Weg zurückschauen, den wir zurückgelegt haben, ob wir den rechten gegangen sind.“ Goethe (1788 / 89) Vorarbeiten zur Morphologie Provisorischer Text, als Manuskript gedruckt © Copyright by Peggy Holliger-Uebersax, MIZ-Verlag, Zürich, 19804 Morphologisches Institut Zürich Hermann Holliger-Uebersax, Morphologe, ASCO Unternehmensberater (†1989) Korrekturen 11.01.awy© P. Holliger-Uebersax2 von 354 Handbuch der Allgemeinen Morphologie Elementare Prinzipien und Methoden zur Lösung kreativer Probleme „Der Mensch k a n n von Haus aus gar nicht denken. Er bringt bei seiner Geburt durch Vererbung von seinen Vorfahren lediglich die geistige Veranlagung zum Denken mit auf die Welt. Er muss also das Denken erst erlernen.“ Gramel Worum handelt es sich? Morphologie im weiteren Sinne des Wortes ist eine fachunabhängige - interdisziplinäre - Methodenlehre für die Lösung kreativer Probleme in geordneter Form. Diese Allgemeine Morphologie ist in diesem Handbuch in fünf Themenkreise gegliedert: 1. Der kreative Mensch Grundlegende Einsichten in die psychischen Mechanismen des menschlichen Verhaltens. Bewusste Handhabung des angemessenen problemlösenden Verhaltens. Abbau und Vermeidung unangemessenen Verhaltens. Eigenformierung, Eigenführung. 2. Kreative Kommunikation Erfolgreiche Gestaltung zwischenmenschlicher Beziehungen. Morphologische Methodik des Überzeugen, der Gesprächsführung, des Verhandelns: Morphologische Dialektik.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach History of Mathematics
    Mathematisches Forschungsinstitut Oberwolfach Report No. 24/2008 History of Mathematics of the Early 20th Century: The Role of Transition Organised by Leo Corry, Tel Aviv, Israel Della Fenster, Richmond, U.S.A. Joachim Schwermer, Vienna, Austria May 25th – May 31st, 2008 Abstract. This conference provided a focused venue to investigate the his- tory of mathematics during a particularly active time in the discipline, that is, roughly between the turn of the 20th century and 1950. Using the lens of transition to explore this vibrant period, mathematicians, historians of math- ematics and historians of science observed and discussed points of connection between the people, places and ideas from fields as seemingly diverse as class field theory, mathematical physics and algebraic geometry, among others. Mathematics Subject Classification (2000): 01A55, 01A60, 01A85. Introduction by the Organisers This conference provided a focused venue to investigate the history of mathemat- ics during a particularly active time in the discipline, that is, roughly between the turn of the 20th century and 1950. Using the lens of transition to explore this vibrant period, the organizers brought together mathematicians, historians of mathematics and historians of science to explore ideas and offer insights from different perspectives. With this wide range of scholars in attendance, speakers had to give careful thought to the presentation of their work. This extra effort not only yielded a sterling set of talks but also inspired scholars to rethink their own work. The restricted time period revealed an almost unexpected richness in the history of mathematics as the conference participants observed and discussed points of connection between the people, places and ideas from fields as seemingly diverse as class field theory, mathematical physics and algebraic geometry, among others.
    [Show full text]