Introduction to Factoring Learning Objectives 12.2 Instructor Notes 12.3 Instructor Overview 12.10 Instructor Overview

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Developmental Math – An Open Curriculum Instructor Guide Unit 12 – Table of Contents Unit 12: Introduction to Factoring Learning Objectives 12.2 Instructor Notes 12.3 The Mathematics of Factoring Teaching Tips: Challenges and Approaches Additional Resources Instructor Overview 12.10 Tutor Simulation: Playing the Elimination Game Instructor Overview 12.11 Puzzle: Match Factors Instructor Overview 12.13 Project: Making Connections Common Core Standards 12.43 Some rights reserved. See our complete Terms of Use. Monterey Institute for Technology and Education (MITE) 2012 To see these and all other available Instructor Resources, visit the NROC Network. 12.1 Developmental Math – An Open Curriculum Instructor Guide Unit 12 – Learning Objectives Unit 12: Factoring Lesson 1: Introduction to Factoring Topic 1: Greatest Common Factor Learning Objectives Find the greatest common factor (GCF) of monomials. Factor polynomials by factoring out the greatest common factor (GCF). Factor expressions with four terms by grouping. Lesson 2: Factoring Polynomials Topic 1: Factoring Trinomials Learning Objectives Factor trinomials with a leading coefficient of 1. Factor trinomials with a common factor. Factor trinomials with a leading coefficient other than 1. Topic 2: Factoring: Special Cases Learning Objectives Factor trinomials that are perfect squares. Factor binomials in the form of the difference of squares. Topic 3: Special Cases: Cubes Learning Objectives Factor the sum of cubes. Factor the difference of cubes. Lesson 3: Solving Quadratic Equations Topic 1: Solve Quadratic Equations by Factoring Learning Objectives Solve equations in factored form by using the Principle of Zero Products. Solve quadratic equations by factoring and then using the Principle of Zero Products. Solve application problems involving quadratic equations. 12.2 Developmental Math – An Open Curriculum Instructor Guide Unit 12 – Instructor Notes Unit 12: Factoring Instructor Notes The Mathematics of Factoring This unit builds upon students’ knowledge of polynomials learned in the previous unit. They will learn how to use the distributive property and greatest common factors to find the factored form of binomials and how to factor trinomials by grouping. Students will also learn how to recognize and quickly factor special products (perfect square trinomials, difference of squares, and the sum and difference of two squares). Finally, they’ll get experience combining these techniques and using them to solve quadratic equations. Teaching Tips: Challenges and Approaches This unit on factoring is probably one of the most difficult—students will spend a lot of time carrying out multi-step, complex procedures for what will often seem to be obscure purposes. At this stage in algebra, factoring polynomials may feel like busy work rather than a means to a useful end. It doesn’t help that students may remember having trouble with factoring from when they studied algebra in high school. Encourage students to think of factoring as the reverse of multiplying polynomials that was learned previously. Then, a problem multiplying polynomials was given and students were asked to calculate the answer. In this unit, the answer is given and the students need to come up with the question. Sound familiar? In a way, factoring is like playing the popular game show Jeopardy. Greatest Common Factor Finding the greatest common factor of whole numbers should be reviewed before finding the GCF of polynomials. Then it is a logical step to demonstrate how to factor expressions by using the distributive property in reverse to pull out the greatest common monomial from each term in a polynomial: 12.3 Developmental Math – An Open Curriculum Instructor Guide [From Lesson 1, Topic 1, Topic Text] Remind your students to pay particular attention to signs as it is easy to make a mistake with them, and also to check their final answers by multiplying. Grouping After your students are comfortable pulling the GCF out of a polynomial, it is time to teach them a new method of factoring–factoring by grouping. Begin by introducing the technique on 4-term polynomials. It's fairly easy for students to understand how to break these polynomials into groups of two and then factor each pair. Trinomials are trickier. Indeed, many textbooks do not use grouping for factoring trinomials, and instead use essentially a guess and check method. While factoring by grouping may initially be a more complex procedure, it has many significant advantages in the long term and is used in this course. The hardest part is figuring out how to rewrite the middle term of a trinomial as an equivalent binomial. Students will need to see this demonstrated repeatedly, as well as get a lot of practice working on their own. Even after they grasp the basic idea, they'll often have trouble deciding which signs to use. It will be helpful to supply them with a set of tips like the one below: 12.4 Developmental Math – An Open Curriculum Instructor Guide [From Lesson 2, Topic 1, Topic Text] Factoring by grouping has the great advantage of working for all trinomials. It also provides a method to determine when a polynomial cannot be factored. (This is not obvious when students are using the guess and check method.) Sometimes students don’t remember to look for the greatest common factor of all the terms of a polynomial before trying to factor by grouping. This isn’t wrong, but the larger numbers can make the work more difficult. Plus the student has to remember to look for a greatest common factor at the end anyway. In order to illustrate this, have students factor 9x2 + 15x − 36 without pulling out the greatest common factor of 3 -- they will notice that the numbers are cumbersome. After this, have them try again, this time factoring out the 3 as the first step. They will see the benefits. Once the grouping method is mastered, let your students use it to factor perfect square trinomials. Hopefully they'll soon see a pattern, though you will probably have to nudge them along. Eventually, they should learn to recognize if a trinomial is a perfect square, and be able to factor it without grouping. After the rule for factoring a perfect square trinomial has been developed, set them to finding one for factoring the difference of two squares. This rule is usually very easy for students to figure out. Then have them try to factor the sum of two squares, such as x2 + 4. Make sure they understand that this cannot be done. 12.5 Developmental Math – An Open Curriculum Instructor Guide Intermediate algebra students will also need to know how to factor the sum and difference of two cubes. They are sure to have trouble remembering the formulas. Try pointing out that the formulas are really the same except for signs: A binomial in the form a3 + b3 can be factored as (a + b)(a2 – ab + b2) A binomial in the form a3 – b3 can be factored as (a – b)(a2 + ab + b2) The sign in between the two cubes is the same sign as in the first factor in the formulas. The next sign is the opposite of the first sign and the last sign is always positive. Now “all” they have to remember are the variable parts of the formulas. Easy! Factoring Quadratic Equations The last topic in this unit is solving quadratic equations by factoring and applying the zero products rule. Begin by solving an example where the polynomial is already factored and set equal to zero, such as the following: [From Lesson 3, Topic 1, Worked Example 1] Now give your students a problem like "Solve x2 + x – 12 = 0 for x." Ask them how they would attempt to solve for x. Someone will suggest factoring the left hand side by grouping and they will be on their way. Then pose the problem x2 + x – 12 = 18. Make sure your students know that in order for the principle of zero products to work, the trinomial must be set equal to 0. Sometimes students are 12.6 Developmental Math – An Open Curriculum Instructor Guide so focused on new techniques, they forget basic principles for rewriting an equation and they may need to be prodded to add (or subtract) something to (or from) both sides so that one side equals zero. Be careful -- once students get into the hang of applying the zero products rule to solve equations, they may start trying it on expressions as well. For instance, if a problem says to factor x2 + x – 12, some will do so and then go ahead and calculate that x = -4 or 3. Remind your students to only do what a problem asks – factor when it says to factor and solve when it says to solve. The Sense Test Application problems have an extra requirement that solving given equations do not -- answers have to make sense based on their context. Consider the following scenario: [From Lesson 3, Topic 1, Topic Text] 12.7 Developmental Math – An Open Curriculum Instructor Guide 1 Mathematically, it is true that t can be either 4 or . But logically, only one of these answers 2 works -- since t represents the number of seconds after the rocket has taken off, it can’t be a negative number. The rocket can't hit the ground before it was launched. Teach students that when they do application problems like this, they need to check not only the math but also the sense of their results. Keep in Mind Factoring trinomials and solving quadratic equations are difficult topics. As soon as you say “factoring,” some students will recall hours of erasing before correct answers were found through trial and error. Reassure students that while the factoring by grouping method takes longer to use when working simple problems, it really will make solving complex problems quicker.
Recommended publications
  • A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables

    A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables

    mathematics Article A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables Chukwuma Ogbonnaya 1,2,* , Chamil Abeykoon 3 , Adel Nasser 1 and Ali Turan 4 1 Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK; [email protected] 2 Faculty of Engineering and Technology, Alex Ekwueme Federal University, Ndufu Alike Ikwo, Abakaliki PMB 1010, Nigeria 3 Aerospace Research Institute and Northwest Composites Centre, School of Materials, The University of Manchester, Manchester M13 9PL, UK; [email protected] 4 Independent Researcher, Manchester M22 4ES, Lancashire, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)74-3850-3799 Abstract: A system of transcendental equations (SoTE) is a set of simultaneous equations containing at least a transcendental function. Solutions involving transcendental equations are often problematic, particularly in the form of a system of equations. This challenge has limited the number of equations, with inter-related multi-functions and multi-variables, often included in the mathematical modelling of physical systems during problem formulation. Here, we presented detailed steps for using a code- based modelling approach for solving SoTEs that may be encountered in science and engineering problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to illustrate the steps. Parametric studies were performed to visualize how a change in the variables Citation: Ogbonnaya, C.; Abeykoon, affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to C.; Nasser, A.; Turan, A.
  • Math 1232-04F (Survey of Calculus) Dr. J.S. Zheng Chapter R. Functions

    Math 1232-04F (Survey of Calculus) Dr. J.S. Zheng Chapter R. Functions

    Math 1232-04F (Survey of Calculus) Dr. J.S. Zheng Chapter R. Functions, Graphs, and Models R.4 Slope and Linear Functions R.5* Nonlinear Functions and Models R.6 Exponential and Logarithmic Functions R.7* Mathematical Modeling and Curve Fitting • Linear Functions (11) Graph the following equations. Determine if they are functions. (a) y = 2 (b) x = 2 (c) y = 3x (d) y = −2x + 4 (12) Definition. The variable y is directly proportional to x (or varies directly with x) if there is some positive constant m such that y = mx. We call m the constant of proportionality, or variation constant. (13) The weight M of a person's muscles is directly proportional to the person's body weight W . It is known that a person weighing 200 lb has 80 lb of muscle. (a) Find an equation of variation expressing M as a function of W . (b) What is the muscle weight of a person weighing 120 lb? (14) Definition. A linear function is any function that can be written in the form y = mx + b or f(x) = mx + b, called the slope-intercept equation of a line. The constant m is called the slope. The point (0; b) is called the y-intercept. (15) Find the slope and y-intercept of the graph of 3x + 5y − 2 = 0. (16) Find an equation of the line that has slope 4 and passes through the point (−1; 1). (17) Definition. The equation y − y1 = m(x − x1) is called the point-slope equation of a line. The point is (x1; y1), and the slope is m.
  • Write the Function in Standard Form

    Write the Function in Standard Form

    Write The Function In Standard Form Bealle often suppurates featly when active Davidson lopper fleetly and ray her paedogenesis. Tressed Jesse still outmaneuvers: clinometric and georgic Augie diphthongises quite dirtily but mistitling her indumentum sustainedly. If undefended or gobioid Allen usually pulsate his Orientalism miming jauntily or blow-up stolidly and headfirst, how Alhambresque is Gustavo? Now the vertex always sits exactly smack dab between the roots, when you do have roots. For the two sides to be equal, the corresponding coefficients must be equal. So, changing the value of p vertically stretches or shrinks the parabola. To save problems you must sign in. This short tutorial helps you learn how to find vertex, focus, and directrix of a parabola equation with an example using the formulas. The draft was successfully published. To determine the domain and range of any function on a graph, the general idea is to assume that they are both real numbers, then look for places where no values exist. For our purposes, this is close enough. English has also become the most widely used second language. Simplify the radical, but notice that the number under the radical symbol is negative! On this lesson, you fill learn how to graph a quadratic function, find the axis of symmetry, vertex, and the x intercepts and y intercepts of a parabolawi. Be sure to write the terms with the exponent on the variable in descending order. Wendler Polynomial Webquest Introduction: By the end of this webquest, you will have a deeper understanding of polynomials. Anyone can ask a math question, and most questions get answers! Follow along with the highlighted text while you listen! And if I have an upward opening parabola, the vertex is going to be the minimum point.
  • Lesson 1: Multiplying and Factoring Polynomial Expressions

    Lesson 1: Multiplying and Factoring Polynomial Expressions

    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 M4 ALGEBRA I Lesson 1: Multiplying and Factoring Polynomial Expressions Classwork Opening Exercise Write expressions for the areas of the two rectangles in the figures given below. 8 2 2 Now write an expression for the area of this rectangle: 8 2 Example 1 The total area of this rectangle is represented by 3a + 3a. Find expressions for the dimensions of the total rectangle. 2 3 + 3 square units 2 푎 푎 Lesson 1: Multiplying and Factoring Polynomial Expressions Date: 2/2/14 S.1 This work is licensed under a © 2014 Common Core, Inc. Some rights reserved. commoncore.org Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 M4 ALGEBRA I Exercises 1–3 Factor each by factoring out the Greatest Common Factor: 1. 10 + 5 푎푏 푎 2. 3 9 + 3 2 푔 ℎ − 푔 ℎ 12ℎ 3. 6 + 9 + 18 2 3 4 5 푦 푦 푦 Discussion: Language of Polynomials A prime number is a positive integer greater than 1 whose only positive integer factors are 1 and itself. A composite number is a positive integer greater than 1 that is not a prime number. A composite number can be written as the product of positive integers with at least one factor that is not 1 or itself. For example, the prime number 7 has only 1 and 7 as its factors. The composite number 6 has factors of 1, 2, 3, and 6; it could be written as the product 2 3.
  • Nature of the Discriminant

    Nature of the Discriminant

    Name: ___________________________ Date: ___________ Class Period: _____ Nature of the Discriminant Quadratic − b b 2 − 4ac x = b2 − 4ac Discriminant Formula 2a The discriminant predicts the “nature of the roots of a quadratic equation given that a, b, and c are rational numbers. It tells you the number of real roots/x-intercepts associated with a quadratic function. Value of the Example showing nature of roots of Graph indicating x-intercepts Discriminant b2 – 4ac ax2 + bx + c = 0 for y = ax2 + bx + c POSITIVE Not a perfect x2 – 2x – 7 = 0 2 b – 4ac > 0 square − (−2) (−2)2 − 4(1)(−7) x = 2(1) 2 32 2 4 2 x = = = 1 2 2 2 2 Discriminant: 32 There are two real roots. These roots are irrational. There are two x-intercepts. Perfect square x2 + 6x + 5 = 0 − 6 62 − 4(1)(5) x = 2(1) − 6 16 − 6 4 x = = = −1,−5 2 2 Discriminant: 16 There are two real roots. These roots are rational. There are two x-intercepts. ZERO b2 – 4ac = 0 x2 – 2x + 1 = 0 − (−2) (−2)2 − 4(1)(1) x = 2(1) 2 0 2 x = = = 1 2 2 Discriminant: 0 There is one real root (with a multiplicity of 2). This root is rational. There is one x-intercept. NEGATIVE b2 – 4ac < 0 x2 – 3x + 10 = 0 − (−3) (−3)2 − 4(1)(10) x = 2(1) 3 − 31 3 31 x = = i 2 2 2 Discriminant: -31 There are two complex/imaginary roots. There are no x-intercepts. Quadratic Formula and Discriminant Practice 1.
  • Formula Sheet 1 Factoring Formulas 2 Exponentiation Rules

    Formula Sheet 1 Factoring Formulas 2 Exponentiation Rules

    Formula Sheet 1 Factoring Formulas For any real numbers a and b, (a + b)2 = a2 + 2ab + b2 Square of a Sum (a − b)2 = a2 − 2ab + b2 Square of a Difference a2 − b2 = (a − b)(a + b) Difference of Squares a3 − b3 = (a − b)(a2 + ab + b2) Difference of Cubes a3 + b3 = (a + b)(a2 − ab + b2) Sum of Cubes 2 Exponentiation Rules p r For any real numbers a and b, and any rational numbers and , q s ap=qar=s = ap=q+r=s Product Rule ps+qr = a qs ap=q = ap=q−r=s Quotient Rule ar=s ps−qr = a qs (ap=q)r=s = apr=qs Power of a Power Rule (ab)p=q = ap=qbp=q Power of a Product Rule ap=q ap=q = Power of a Quotient Rule b bp=q a0 = 1 Zero Exponent 1 a−p=q = Negative Exponents ap=q 1 = ap=q Negative Exponents a−p=q Remember, there are different notations: p q a = a1=q p q ap = ap=q = (a1=q)p 1 3 Quadratic Formula Finally, the quadratic formula: if a, b and c are real numbers, then the quadratic polynomial equation ax2 + bx + c = 0 (3.1) has (either one or two) solutions p −b ± b2 − 4ac x = (3.2) 2a 4 Points and Lines Given two points in the plane, P = (x1; y1);Q = (x2; y2) you can obtain the following information: p 2 2 1. The distance between them, d(P; Q) = (x2 − x1) + (y2 − y1) . x + x y + y 2.
  • Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models

    Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models

    L6 - 1 Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models Polynomial Functions Def. A polynomial function of degree n is a function of the form n n−1 f(x) = anx + an−1x + ::: + a1x + a0; (an =6 0) where a0; a1; :::; an are constants called coefficients and n is a nonnegative integer. an is called the leading coefficient. ex. Determine if the given function is a polynomial; if so, find its degree. 2 p 1) f(x) = 4x8 − x6 − 4x2 + 3 5 2 2) f(x) = x3 − + 4x2 x NOTE: The domain of a polynomial function A polynomial function of degree 1: L6 - 2 Quadratic Functions A polynomial function of degree 2, 2 f(x) = a2x +a1x+a0, a2 =6 0, is called a quadratic function. We write f(x) = ex. Graph the following: 1) y = x2 6 - 2) y = −(x + 3)2 3) y = (x − 2)2 + 1 6 6 - - L6 - 3 Graphing a quadratic function I. Standard Form of a Quadratic Function: We can graph a quadratic equation in standard form using translations. ex. Graph f(x) = −x2 + 6x − 6. 6 - L6 - 4 II. Graph using the vertex formula: We can prove the following using the Quadratic For- mula (see text) and very easily using calculus: The vertex of the graph of f(x) = ax2+bx+c is given by the formula x = and y = . The parabola opens upwards if a > 0 and downwards if a < 0. We use the vertex and intercepts to graph. ex. Sketch the graph of y = 2x2 + 5x − 3.
  • Chapter 1 Linear Functions

    Chapter 1 Linear Functions

    Chapter 1 Linear Functions 11 Sec. 1.1: Slopes and Equations of Lines Date Lines play a very important role in Calculus where we will be approximating complicated functions with lines. We need to be experts with lines to do well in Calculus. In this section, we review slope and equations of lines. Slope of a Line: The slope of a line is defined as the vertical change (the \rise") over the horizontal change (the \run") as one travels along the line. In symbols, taking two different points (x1; y1) and (x2; y2) on the line, the slope is Change in y ∆y y − y m = = = 2 1 : Change in x ∆x x2 − x1 Example: World milk production rose at an approximately constant rate between 1996 and 2003 as shown in the following graph: where M is in million tons and t is the years since 1996. Estimate the slope and interpret it in terms of milk production. 12 Clicker Question 1: Find the slope of the line through the following pair of points (−2; 11) and (3; −4): The slope is (A) Less than -2 (B) Between -2 and 0 (C) Between 0 and 2 (D) More than 2 (E) Undefined It will be helpful to recall the following facts about intercepts. Intercepts: x-intercepts The points where a graph touches the x-axis. If we have an equation, we can find them by setting y = 0. y-intercepts The points where a graph touches the y-axis. If we have an equation, we can find them by setting x = 0.
  • Cubic Polynomials with Real Or Complex Coefficients: the Full

    Cubic Polynomials with Real Or Complex Coefficients: the Full

    Cubic polynomials with real or complex coefficients: The full picture Nicholas S. Bardell RMIT University [email protected] Introduction he cubic polynomial with real coefficients y = ax3 + bx2 + cx + d in which Ta | 0, has a rich and interesting history primarily associated with the endeavours of great mathematicians like del Ferro, Tartaglia, Cardano or Vieta who sought a solution for the roots (Katz, 1998; see Chapter 12.3: The Solution of the Cubic Equation). Suffice it to say that since the times of renaissance mathematics in Italy various techniques have been developed which yield the three roots of a general cubic equation. A ‘cubic formula’ does exist—much like the one for finding the two roots of a quadratic equation—but in the case of the cubic equation the formula is not easily memorised and the solution steps can get quite involved (Abramowitz & Stegun, 1970; see Chapter 3: Elementary Analytical Methods, 3.8.2 Solution of Cubic Equations). Hence it is not surprising that with the advent of the digital computer, numerical root- finding algorithms such as those attributed to Newton-Raphson, Halley, and Householder have become the solution of choice (Weisstein, n.d.). Students studying a mathematics specialism as a part of the Victorian VCE (Mathematical Methods, 2010), HSC in NSW (Mathematics Extension in NSW, 1997) or Queensland QCE (Mathematics C, 2009) are expected to be able Australian Senior Mathematics Journal vol. 30 no. 2 to recognise, plot, factorise, and even solve cubic polynomials as described by ACARA (ACARA, n.d., Unit 1, Topic 1: Functions and Graphs).
  • Determining Quadratic Functions a Linear Function, of the Form F(X)= Ax + B, Is Determined by Two Points

    Determining Quadratic Functions a Linear Function, of the Form F(X)= Ax + B, Is Determined by Two Points

    Dr. Matthew M. Conroy - University of Washington 1 Determining Quadratic Functions A linear function, of the form f(x)= ax + b, is determined by two points. Given two points on the graph of a linear function, we may find the slope of the line which is the function’s graph, and then use the point-slope form to write the equation of the line. A quadratic function, of the form f(x) = ax2 + bx + c, is determined by three points. Given three points on the graph of a quadratic function, we can work out the function by finding a,b and c algebraically. This will require solving a system of three equations in three unknowns. However, a general solution method is not needed, since the equations all have a certain special form. In particular, they all contain a +c term, and this allows us to simplify to a two variable/two equation system very quickly. Here is an example. Suppose we know f(x) = ax2 + bx + c is a quadratic function and that f(−2) = 5, f(1) = 8, and f(6) = 4. Note this is equivalent to saying that the points (−2, 5), (1, 8) and (6, 4) lie on the graph of f. These three points give us the following equations: 2 5= a((−2) )+ b(−2) + c =4a − 2b + c (1) 2 8= a(1 )+ b(1) + c = a + b + c (2) 2 4= a(6 )+ b(6) + c = 36a +6b + c (3) Notice that +c terms dangling on the right-hand end of each equation. By subtracting the equations in pairs, we eliminate the +c term, and get two equations and two unknowns.
  • Quadratic and Exponential Functions Quick Review Graphing Equations:  Y = ½ X – 3

    Quadratic and Exponential Functions Quick Review Graphing Equations:  Y = ½ X – 3

    Ch 11 Quadratic and Exponential Functions Quick Review Graphing Equations: y = ½ x – 3 2x + 3y = 6 Quick Review Evaluate Expressions Order of Operations! Factor 1st – GCF 2nd – trinomials into two binomials 11.1 Graphing Quadratic Functions Vocab • Parabola – – The graph of a quadratic function • Quadratic Function – – A function described by an equation of the form f(x) = ax2 + bx +c, where a ≠ 0 – A second degree polynomial • Function – – A relation in which exactly one x-value is paired with exactly one y-value Quadratic Function • This shape is a parabola • Graphs of all quadratic functions have the shape of a parabola Exploration of Parabolas • Sketch pictures of the following1 situations1 1 y 3 x2 y 2 x2 y x2 y x2 y x2 y x2 2 4 8 y 2 x2 y 1 x2 y1 x2 y 2 x2 y x2 3 y x2 1 y x2 1 y x2 4 y x 12 y x 12 y x 32 y x 32 Example • Graph the quadratic equation by making a 2 table of values. y x 2 Example • Graph the quadratic equation1 by making a y x2 4 table of values. 2 Parts of a Parabola ax2 + bx + c • + a opens up – Lowest point called: minimum • - a opens down – Highest point called: maximum • Parabolas continue to extend as they open • Domain (x-values): all real numbers • Range (y-values): – Opens up - #s greater than or equal to minimum value – Opens down - #s less than or equal to the maximum value • Vertex – minimum or maximum value • Axis of Symmetry: vertical line through vertex Axis of Symmetry Example • Use characteristics of2 quadratic functions to graph y x 2 x 1 – Find the equation of the axis of symmetry.
  • Quadratic Functions, Parabolas, Problem Solving

    Quadratic Functions, Parabolas, Problem Solving

    pg097 [R] G1 5-36058 / HCG / Cannon & Elich cr 11-14-95 QC3 2.5 Quadratic Functions, Parabolas, and Problem Solving 97 58. If f~x! 5 2x 1 3 and the domain D of f is given by 63. Area Given the three lines y 5 m~x 1 4!, D 5 $x _ x 2 1 x 2 2 # 0%,then y 52m~x14!,andx52, for what value of m will (a) draw a graph of f,and thethreelinesformatrianglewithanareaof24? (b) find the range of f.(Hint: What values of y occur on 64. (a) Is the point ~21, 3! on the circle the graph?) x 2 1 y 2 2 4x 1 2y 2 20 5 0? 59. The length L of a metal rod is a linear function of its (b) If the answer is yes, find an equation for the line temperature T, where L is measured in centimeters and that is tangent to the circle at (21,3);iftheanswer T in degrees Celsius. The following measurements have is no, find the distance between the x-intercept been made: L 5 124.91 when T 5 0, and L 5 125.11 points of the circle. when T 5 100. 65. (a) Show that points A~1, Ï3! and B~2Ï3, 1! are on (a) Find a formula that gives L as a function of T. the circle x 2 1 y 2 5 4. (b) What is the length of the rod when its temperature (b) Find the area of the shaded region in the diagram.