Chapter 1 Linear Functions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables
mathematics Article A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables Chukwuma Ogbonnaya 1,2,* , Chamil Abeykoon 3 , Adel Nasser 1 and Ali Turan 4 1 Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK; [email protected] 2 Faculty of Engineering and Technology, Alex Ekwueme Federal University, Ndufu Alike Ikwo, Abakaliki PMB 1010, Nigeria 3 Aerospace Research Institute and Northwest Composites Centre, School of Materials, The University of Manchester, Manchester M13 9PL, UK; [email protected] 4 Independent Researcher, Manchester M22 4ES, Lancashire, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)74-3850-3799 Abstract: A system of transcendental equations (SoTE) is a set of simultaneous equations containing at least a transcendental function. Solutions involving transcendental equations are often problematic, particularly in the form of a system of equations. This challenge has limited the number of equations, with inter-related multi-functions and multi-variables, often included in the mathematical modelling of physical systems during problem formulation. Here, we presented detailed steps for using a code- based modelling approach for solving SoTEs that may be encountered in science and engineering problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to illustrate the steps. Parametric studies were performed to visualize how a change in the variables Citation: Ogbonnaya, C.; Abeykoon, affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to C.; Nasser, A.; Turan, A. -
Math 1232-04F (Survey of Calculus) Dr. J.S. Zheng Chapter R. Functions
Math 1232-04F (Survey of Calculus) Dr. J.S. Zheng Chapter R. Functions, Graphs, and Models R.4 Slope and Linear Functions R.5* Nonlinear Functions and Models R.6 Exponential and Logarithmic Functions R.7* Mathematical Modeling and Curve Fitting • Linear Functions (11) Graph the following equations. Determine if they are functions. (a) y = 2 (b) x = 2 (c) y = 3x (d) y = −2x + 4 (12) Definition. The variable y is directly proportional to x (or varies directly with x) if there is some positive constant m such that y = mx. We call m the constant of proportionality, or variation constant. (13) The weight M of a person's muscles is directly proportional to the person's body weight W . It is known that a person weighing 200 lb has 80 lb of muscle. (a) Find an equation of variation expressing M as a function of W . (b) What is the muscle weight of a person weighing 120 lb? (14) Definition. A linear function is any function that can be written in the form y = mx + b or f(x) = mx + b, called the slope-intercept equation of a line. The constant m is called the slope. The point (0; b) is called the y-intercept. (15) Find the slope and y-intercept of the graph of 3x + 5y − 2 = 0. (16) Find an equation of the line that has slope 4 and passes through the point (−1; 1). (17) Definition. The equation y − y1 = m(x − x1) is called the point-slope equation of a line. The point is (x1; y1), and the slope is m. -
Lesson 1.2 – Linear Functions Y M a Linear Function Is a Rule for Which Each Unit 1 Change in Input Produces a Constant Change in Output
Lesson 1.2 – Linear Functions y m A linear function is a rule for which each unit 1 change in input produces a constant change in output. m 1 The constant change is called the slope and is usually m 1 denoted by m. x 0 1 2 3 4 Slope formula: If (x1, y1)and (x2 , y2 ) are any two distinct points on a line, then the slope is rise y y y m 2 1 . (An average rate of change!) run x x x 2 1 Equations for lines: Slope-intercept form: y mx b m is the slope of the line; b is the y-intercept (i.e., initial value, y(0)). Point-slope form: y y0 m(x x0 ) m is the slope of the line; (x0, y0 ) is any point on the line. Domain: All real numbers. Graph: A line with no breaks, jumps, or holes. (A graph with no breaks, jumps, or holes is said to be continuous. We will formally define continuity later in the course.) A constant function is a linear function with slope m = 0. The graph of a constant function is a horizontal line, and its equation has the form y = b. A vertical line has equation x = a, but this is not a function since it fails the vertical line test. Notes: 1. A positive slope means the line is increasing, and a negative slope means it is decreasing. 2. If we walk from left to right along a line passing through distinct points P and Q, then we will experience a constant steepness equal to the slope of the line. -
Write the Function in Standard Form
Write The Function In Standard Form Bealle often suppurates featly when active Davidson lopper fleetly and ray her paedogenesis. Tressed Jesse still outmaneuvers: clinometric and georgic Augie diphthongises quite dirtily but mistitling her indumentum sustainedly. If undefended or gobioid Allen usually pulsate his Orientalism miming jauntily or blow-up stolidly and headfirst, how Alhambresque is Gustavo? Now the vertex always sits exactly smack dab between the roots, when you do have roots. For the two sides to be equal, the corresponding coefficients must be equal. So, changing the value of p vertically stretches or shrinks the parabola. To save problems you must sign in. This short tutorial helps you learn how to find vertex, focus, and directrix of a parabola equation with an example using the formulas. The draft was successfully published. To determine the domain and range of any function on a graph, the general idea is to assume that they are both real numbers, then look for places where no values exist. For our purposes, this is close enough. English has also become the most widely used second language. Simplify the radical, but notice that the number under the radical symbol is negative! On this lesson, you fill learn how to graph a quadratic function, find the axis of symmetry, vertex, and the x intercepts and y intercepts of a parabolawi. Be sure to write the terms with the exponent on the variable in descending order. Wendler Polynomial Webquest Introduction: By the end of this webquest, you will have a deeper understanding of polynomials. Anyone can ask a math question, and most questions get answers! Follow along with the highlighted text while you listen! And if I have an upward opening parabola, the vertex is going to be the minimum point. -
Algebra II Level 1
Algebra II 5 credits – Level I Grades: 10-11, Level: I Prerequisite: Minimum grade of 70 in Geometry Level I (or a minimum grade of 90 in Geometry Topics) Units of study include: equations and inequalities, linear equations and functions, systems of linear equations and inequalities, matrices and determinants, quadratic functions, polynomials and polynomial functions, powers, roots, and radicals, rational equations and functions, sequence and series, and probability and statistics. PROFICIENCIES INEQUALITIES -Solve inequalities -Solve combined inequalities -Use inequality models to solve problems -Solve absolute values in open sentences -Solve absolute value sentences graphically LINEAR EQUATION FUNCTIONS -Solve open sentences in two variables -Graph linear equations in two variables -Find the slope of the line -Write the equation of a line -Solve systems of linear equations in two variables -Apply systems of equations to solve real word problems -Solve linear inequalities in two variables -Find values of functions and graphs -Find equations of linear functions and apply properties of linear functions -Graph relations and determine when relations are functions PRODUCTS AND FACTORS OF POLYNOMIALS -Simplify, add and subtract polynomials -Use laws of exponents to multiply a polynomial by a monomial -Calculate the product of two or more polynomials -Demonstrate factoring -Solve polynomial equations and inequalities -Apply polynomial equations to solve real world problems RATIONAL EQUATIONS -Simplify quotients using laws of exponents -Simplify -
Lesson 1: Multiplying and Factoring Polynomial Expressions
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 M4 ALGEBRA I Lesson 1: Multiplying and Factoring Polynomial Expressions Classwork Opening Exercise Write expressions for the areas of the two rectangles in the figures given below. 8 2 2 Now write an expression for the area of this rectangle: 8 2 Example 1 The total area of this rectangle is represented by 3a + 3a. Find expressions for the dimensions of the total rectangle. 2 3 + 3 square units 2 푎 푎 Lesson 1: Multiplying and Factoring Polynomial Expressions Date: 2/2/14 S.1 This work is licensed under a © 2014 Common Core, Inc. Some rights reserved. commoncore.org Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 M4 ALGEBRA I Exercises 1–3 Factor each by factoring out the Greatest Common Factor: 1. 10 + 5 푎푏 푎 2. 3 9 + 3 2 푔 ℎ − 푔 ℎ 12ℎ 3. 6 + 9 + 18 2 3 4 5 푦 푦 푦 Discussion: Language of Polynomials A prime number is a positive integer greater than 1 whose only positive integer factors are 1 and itself. A composite number is a positive integer greater than 1 that is not a prime number. A composite number can be written as the product of positive integers with at least one factor that is not 1 or itself. For example, the prime number 7 has only 1 and 7 as its factors. The composite number 6 has factors of 1, 2, 3, and 6; it could be written as the product 2 3. -
The Computational Complexity of Polynomial Factorization
Open Questions From AIM Workshop: The Computational Complexity of Polynomial Factorization 1 Dense Polynomials in Fq[x] 1.1 Open Questions 1. Is there a deterministic algorithm that is polynomial time in n and log(q)? State of the art algorithm should be seen on May 16th as a talk. 2. How quickly can we factor x2−a without hypotheses (Qi Cheng's question) 1 State of the art algorithm Burgess O(p 2e ) 1.2 Open Question What is the exponent of the probabilistic complexity (for q = 2)? 1.3 Open Question Given a set of polynomials with very low degree (2 or 3), decide if all of them factor into linear factors. Is it faster to do this by factoring their product or each one individually? (Tanja Lange's question) 2 Sparse Polynomials in Fq[x] 2.1 Open Question α β Decide whether a trinomial x + ax + b with 0 < β < α ≤ q − 1, a; b 2 Fq has a root in Fq, in polynomial time (in log(q)). (Erich Kaltofen's Question) 2.2 Open Questions 1. Finding better certificates for irreducibility (a) Are there certificates for irreducibility that one can verify faster than the existing irreducibility tests? (Victor Miller's Question) (b) Can you exhibit families of sparse polynomials for which you can find shorter certificates? 2. Find a polynomial-time algorithm in log(q) , where q = pn, that solves n−1 pi+pj n−1 pi Pi;j=0 ai;j x +Pi=0 bix +c in Fq (or shows no solutions) and works 1 for poly of the inputs, and never lies. -
Section P.2 Solving Equations Important Vocabulary
Section P.2 Solving Equations 5 Course Number Section P.2 Solving Equations Instructor Objective: In this lesson you learned how to solve linear and nonlinear equations. Date Important Vocabulary Define each term or concept. Equation A statement, usually involving x, that two algebraic expressions are equal. Extraneous solution A solution that does not satisfy the original equation. Quadratic equation An equation in x that can be written in the general form 2 ax + bx + c = 0 where a, b, and c are real numbers with a ¹ 0. I. Equations and Solutions of Equations (Page 12) What you should learn How to identify different To solve an equation in x means to . find all the values of x types of equations for which the solution is true. The values of x for which the equation is true are called its solutions . An identity is . an equation that is true for every real number in the domain of the variable. A conditional equation is . an equation that is true for just some (or even none) of the real numbers in the domain of the variable. II. Linear Equations in One Variable (Pages 12-14) What you should learn A linear equation in one variable x is an equation that can be How to solve linear equations in one variable written in the standard form ax + b = 0 , where a and b and equations that lead to are real numbers with a ¹ 0 . linear equations A linear equation has exactly one solution(s). To solve a conditional equation in x, . isolate x on one side of the equation by a sequence of equivalent, and usually simpler, equations, each having the same solution(s) as the original equation. -
9 Power and Polynomial Functions
Arkansas Tech University MATH 2243: Business Calculus Dr. Marcel B. Finan 9 Power and Polynomial Functions A function f(x) is a power function of x if there is a constant k such that f(x) = kxn If n > 0, then we say that f(x) is proportional to the nth power of x: If n < 0 then f(x) is said to be inversely proportional to the nth power of x. We call k the constant of proportionality. Example 9.1 (a) The strength, S, of a beam is proportional to the square of its thickness, h: Write a formula for S in terms of h: (b) The gravitational force, F; between two bodies is inversely proportional to the square of the distance d between them. Write a formula for F in terms of d: Solution. 2 k (a) S = kh ; where k > 0: (b) F = d2 ; k > 0: A power function f(x) = kxn , with n a positive integer, is called a mono- mial function. A polynomial function is a sum of several monomial func- tions. Typically, a polynomial function is a function of the form n n−1 f(x) = anx + an−1x + ··· + a1x + a0; an 6= 0 where an; an−1; ··· ; a1; a0 are all real numbers, called the coefficients of f(x): The number n is a non-negative integer. It is called the degree of the polynomial. A polynomial of degree zero is just a constant function. A polynomial of degree one is a linear function, of degree two a quadratic function, etc. The number an is called the leading coefficient and a0 is called the constant term. -
Vocabulary Eighth Grade Math Module Four Linear Equations
VOCABULARY EIGHTH GRADE MATH MODULE FOUR LINEAR EQUATIONS Coefficient: A number used to multiply a variable. Example: 6z means 6 times z, and "z" is a variable, so 6 is a coefficient. Equation: An equation is a statement about equality between two expressions. If the expression on the left side of the equal sign has the same value as the expression on the right side of the equal sign, then you have a true equation. Like Terms: Terms whose variables and their exponents are the same. Example: 7x and 2x are like terms because the variables are both “x”. But 7x and 7ͬͦ are NOT like terms because the x’s don’t have the same exponent. Linear Expression: An expression that contains a variable raised to the first power Solution: A solution of a linear equation in ͬ is a number, such that when all instances of ͬ are replaced with the number, the left side will equal the right side. Term: In Algebra a term is either a single number or variable, or numbers and variables multiplied together. Terms are separated by + or − signs Unit Rate: A unit rate describes how many units of the first type of quantity correspond to one unit of the second type of quantity. Some common unit rates are miles per hour, cost per item & earnings per week Variable: A symbol for a number we don't know yet. It is usually a letter like x or y. Example: in x + 2 = 6, x is the variable. Average Speed: Average speed is found by taking the total distance traveled in a given time interval, divided by the time interval. -
Polynomials.Pdf
POLYNOMIALS James T. Smith San Francisco State University For any real coefficients a0,a1,...,an with n $ 0 and an =' 0, the function p defined by setting n p(x) = a0 + a1 x + AAA + an x for all real x is called a real polynomial of degree n. Often, we write n = degree p and call an its leading coefficient. The constant function with value zero is regarded as a real polynomial of degree –1. For each n the set of all polynomials with degree # n is closed under addition, subtraction, and multiplication by scalars. The algebra of polynomials of degree # 0 —the constant functions—is the same as that of real num- bers, and you need not distinguish between those concepts. Polynomials of degrees 1 and 2 are called linear and quadratic. Polynomial multiplication Suppose f and g are nonzero polynomials of degrees m and n: m f (x) = a0 + a1 x + AAA + am x & am =' 0, n g(x) = b0 + b1 x + AAA + bn x & bn =' 0. Their product fg is a nonzero polynomial of degree m + n: m+n f (x) g(x) = a 0 b 0 + AAA + a m bn x & a m bn =' 0. From this you can deduce the cancellation law: if f, g, and h are polynomials, f =' 0, and fg = f h, then g = h. For then you have 0 = fg – f h = f ( g – h), hence g – h = 0. Note the analogy between this wording of the cancellation law and the corresponding fact about multiplication of numbers. One of the most useful results about integer multiplication is the unique factoriza- tion theorem: for every integer f > 1 there exist primes p1 ,..., pm and integers e1 em e1 ,...,em > 0 such that f = pp1 " m ; the set consisting of all pairs <pk , ek > is unique. -
The Evolution of Equation-Solving: Linear, Quadratic, and Cubic
California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2006 The evolution of equation-solving: Linear, quadratic, and cubic Annabelle Louise Porter Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Mathematics Commons Recommended Citation Porter, Annabelle Louise, "The evolution of equation-solving: Linear, quadratic, and cubic" (2006). Theses Digitization Project. 3069. https://scholarworks.lib.csusb.edu/etd-project/3069 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. THE EVOLUTION OF EQUATION-SOLVING LINEAR, QUADRATIC, AND CUBIC A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degre Master of Arts in Teaching: Mathematics by Annabelle Louise Porter June 2006 THE EVOLUTION OF EQUATION-SOLVING: LINEAR, QUADRATIC, AND CUBIC A Project Presented to the Faculty of California State University, San Bernardino by Annabelle Louise Porter June 2006 Approved by: Shawnee McMurran, Committee Chair Date Laura Wallace, Committee Member , (Committee Member Peter Williams, Chair Davida Fischman Department of Mathematics MAT Coordinator Department of Mathematics ABSTRACT Algebra and algebraic thinking have been cornerstones of problem solving in many different cultures over time. Since ancient times, algebra has been used and developed in cultures around the world, and has undergone quite a bit of transformation. This paper is intended as a professional developmental tool to help secondary algebra teachers understand the concepts underlying the algorithms we use, how these algorithms developed, and why they work.