Write the Function in Standard Form

Total Page:16

File Type:pdf, Size:1020Kb

Write the Function in Standard Form Write The Function In Standard Form Bealle often suppurates featly when active Davidson lopper fleetly and ray her paedogenesis. Tressed Jesse still outmaneuvers: clinometric and georgic Augie diphthongises quite dirtily but mistitling her indumentum sustainedly. If undefended or gobioid Allen usually pulsate his Orientalism miming jauntily or blow-up stolidly and headfirst, how Alhambresque is Gustavo? Now the vertex always sits exactly smack dab between the roots, when you do have roots. For the two sides to be equal, the corresponding coefficients must be equal. So, changing the value of p vertically stretches or shrinks the parabola. To save problems you must sign in. This short tutorial helps you learn how to find vertex, focus, and directrix of a parabola equation with an example using the formulas. The draft was successfully published. To determine the domain and range of any function on a graph, the general idea is to assume that they are both real numbers, then look for places where no values exist. For our purposes, this is close enough. English has also become the most widely used second language. Simplify the radical, but notice that the number under the radical symbol is negative! On this lesson, you fill learn how to graph a quadratic function, find the axis of symmetry, vertex, and the x intercepts and y intercepts of a parabolawi. Be sure to write the terms with the exponent on the variable in descending order. Wendler Polynomial Webquest Introduction: By the end of this webquest, you will have a deeper understanding of polynomials. Anyone can ask a math question, and most questions get answers! Follow along with the highlighted text while you listen! And if I have an upward opening parabola, the vertex is going to be the minimum point. In this case, the data will have low levels of variability. So, the variance is the mean of square deviations. Follow my instagram account to know more about graphs. The ordered pairs in the table correspond to points on the graph. Practice and the function standard form! Build your math skills, get used to solving different kind of problems. Why do you think that form is called factored form? Walk through observation of. Because this parabola opens upward, the axis of symmetry is the vertical line that intersects the parabola at the vertex. However, there is so much more that one can do with Desmos. Conics Circles Parabolas Ellipses And Hyperbolas She Loves Math. We would love to hear what you have to say about this page! How to convert from the standard form to the vertex form? All we need to do is: ______________________________________________________________________. Did you have an idea for improving this content? Use the quadratic formula to solve the following quadratic equations. Please enter your password. We found a book related to your question. Stockholm: Almquist and Wiksell. Product presentation and graph of the. She takes the time to fully explain each and every aspect of any problem I might ask for help and always with encouragement and humor. Your changes will be discarded. Gcf first or vertex would like the standard. Behavior: you discuss the precise behavior that you want to address. Before attempting the Balanced Assessment, students. Quadratic functions are often written in general form. So if we imagine our axes. Please upgrade in order to view all NOTE_COUNT notes. Choose files to upload or drag and drop files into this window. How Do You Convert a Quadratic from Standard Form to Vertex Form by Completing the Square? Write the vertex form of a quadratic function. Definition of turning points of a polynomial function. If we are given the equation of the line, we can rewrite it into general form easily. What is the Standard Form of a Quadratic? When written in the function? The graph is not a parabola. Recent animal behavior studies have found that most species appear to spend a great deal of time resting. Use the online graphing calculator and draw the graph of the function as shown below. Whenever you will need assistance with math and in particular with online surd calculator or the quadratic formula come pay a visit to us at Sofsource. Norman was the variety of French that was widely used by the educated classes in late medieval England. These dominoes can be used to play any standard domino game. After taking and checking this short test, take note of the items that you were not able to answer correctly and. These methods do not write anything, they just return a new string. And I want to write this as a perfect square. The winning artwork plus other notable entries can be viewed at: mei. CW At the end of the tour, he Details help explain what happens and why. Yes, are real numbers. To clear fractions, you can multiply both sides of the equation by a whole number. Write f in the factored form. The directrix is given by the equation. Give these out and have everyone write their names and put their tags on. Are you sure you want to clear your practice data? Get a free answer to a quick problem. You just clipped your first slide! Is every student included in the SLGO Plan? Project requirements are minimal, with only three expectations: The drawing. This section is empty. To start, one need to enter the parabola equation and specify its variable. Substitute the values for the coefficients into the Quadratic Formula. The axis of symmetry is also known as line of symmetry. The numbers to be mu. We need to determine the maximum value. Trig students create trig art projects every fall. To complete the square for first factor out a and then complete the square. Please check your inbox and confirm your email address. Function End Behavior with Positive Leading Coefficient End Behavior with Negative Leading Coefficient Even Degree Odd Degree Given each graph, tell whether the degree of the function is even or odd and identify whether the leading coefficient is positive or negative. Leodanis is an industrial engineer who loves Python and software development. Confirm that the graph of the equation passes through the given three points. The set of plans brings together three of my favorite subject areas: art, architecture, and mathematics. Identify the vertex, axis of symmetry, roots, and directrix for the graph of a quadratic equation. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Find the table of the form, make parabolas and want to determine the variable in my favorite subject and then describe how much In conic sections of maths, the parabola vertex is a point where the said parabola crosses its axis of symmetry. Making Algebra easier for you! The Five Step Method. Minimum and maximum of two quadratic functions. Parabolas can either be in the form. George is the calmest gorilla in the zoo. Matrix Inverse Calculator; What are quadratic equations, and what is the quadratic formula? Factor the left side of each equation, and use the Zero Product Property to solve. Students analyze the relationship between quadratic functions in standard and vertex forms and convert between vertex form and standard form. Write the function in vertex form. Excellent activity where quadratic functions are matched to graphs. These forms of linear function can help us calculate slope, y intercept and a variety of other info. Python with popular libraries like Matplotlib, Seaborn, Bokeh, and more. Give the equation of the. Scroll Down for Answer! Writing Equations of Parabolas Date_____ Period____ Use the information provided to write the vertex form equation of each parabola. Negative experiences such as timed tests, tracking and personal attitudes have hurt how some people feel about math. What is a quadratic function? Here are a few of the techniques that might be helpful. In this section, we will investigate quadratic functions, which frequently model problems involving area and projectile motion. You can use the sliders to help you figure out the equation, but you may not leave the sliders in for your equations when you turn in your work. Functions of this sort may be written in various ways, depending on our goal in each case. It was used, for example, as the teaching language in grammar schools. It is insightful to view the location of the vertex as being the intersection point of the line. You can rewrite the quadratic expression in the vertex form by multiplying and then combining like terms so that the function rule is written in descending order of the exponents. This spam is absolutely horrible. There is to start by step solutions, write the function in standard form! Please check lighting, focus, and camera quality. Internet is a worldwide system of interconnected computer networks. GED stands for General Education Development or General Education Diploma. Access these online resources for additional instruction and practice with quadratic equations. So for us to find the real value added to the entire equation, we need to multiply the number added inside the parenthesis by the number that was factored out. This book includes public domain images or openly licensed images that are copyrighted by their respective owners. Label one and Give the points of intersection of the graph of Move the sliders to complete the table below. The eccentricity of a parabola is the distance from the focus to any point on the graph divided by the distance from that same point on the graph to the directrix. That way, you can pick values on either side to see what the graph does on either side of the vertex.
Recommended publications
  • A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables
    mathematics Article A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables Chukwuma Ogbonnaya 1,2,* , Chamil Abeykoon 3 , Adel Nasser 1 and Ali Turan 4 1 Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK; [email protected] 2 Faculty of Engineering and Technology, Alex Ekwueme Federal University, Ndufu Alike Ikwo, Abakaliki PMB 1010, Nigeria 3 Aerospace Research Institute and Northwest Composites Centre, School of Materials, The University of Manchester, Manchester M13 9PL, UK; [email protected] 4 Independent Researcher, Manchester M22 4ES, Lancashire, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)74-3850-3799 Abstract: A system of transcendental equations (SoTE) is a set of simultaneous equations containing at least a transcendental function. Solutions involving transcendental equations are often problematic, particularly in the form of a system of equations. This challenge has limited the number of equations, with inter-related multi-functions and multi-variables, often included in the mathematical modelling of physical systems during problem formulation. Here, we presented detailed steps for using a code- based modelling approach for solving SoTEs that may be encountered in science and engineering problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to illustrate the steps. Parametric studies were performed to visualize how a change in the variables Citation: Ogbonnaya, C.; Abeykoon, affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to C.; Nasser, A.; Turan, A.
    [Show full text]
  • Math 1232-04F (Survey of Calculus) Dr. J.S. Zheng Chapter R. Functions
    Math 1232-04F (Survey of Calculus) Dr. J.S. Zheng Chapter R. Functions, Graphs, and Models R.4 Slope and Linear Functions R.5* Nonlinear Functions and Models R.6 Exponential and Logarithmic Functions R.7* Mathematical Modeling and Curve Fitting • Linear Functions (11) Graph the following equations. Determine if they are functions. (a) y = 2 (b) x = 2 (c) y = 3x (d) y = −2x + 4 (12) Definition. The variable y is directly proportional to x (or varies directly with x) if there is some positive constant m such that y = mx. We call m the constant of proportionality, or variation constant. (13) The weight M of a person's muscles is directly proportional to the person's body weight W . It is known that a person weighing 200 lb has 80 lb of muscle. (a) Find an equation of variation expressing M as a function of W . (b) What is the muscle weight of a person weighing 120 lb? (14) Definition. A linear function is any function that can be written in the form y = mx + b or f(x) = mx + b, called the slope-intercept equation of a line. The constant m is called the slope. The point (0; b) is called the y-intercept. (15) Find the slope and y-intercept of the graph of 3x + 5y − 2 = 0. (16) Find an equation of the line that has slope 4 and passes through the point (−1; 1). (17) Definition. The equation y − y1 = m(x − x1) is called the point-slope equation of a line. The point is (x1; y1), and the slope is m.
    [Show full text]
  • Lesson 1: Multiplying and Factoring Polynomial Expressions
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 M4 ALGEBRA I Lesson 1: Multiplying and Factoring Polynomial Expressions Classwork Opening Exercise Write expressions for the areas of the two rectangles in the figures given below. 8 2 2 Now write an expression for the area of this rectangle: 8 2 Example 1 The total area of this rectangle is represented by 3a + 3a. Find expressions for the dimensions of the total rectangle. 2 3 + 3 square units 2 푎 푎 Lesson 1: Multiplying and Factoring Polynomial Expressions Date: 2/2/14 S.1 This work is licensed under a © 2014 Common Core, Inc. Some rights reserved. commoncore.org Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 M4 ALGEBRA I Exercises 1–3 Factor each by factoring out the Greatest Common Factor: 1. 10 + 5 푎푏 푎 2. 3 9 + 3 2 푔 ℎ − 푔 ℎ 12ℎ 3. 6 + 9 + 18 2 3 4 5 푦 푦 푦 Discussion: Language of Polynomials A prime number is a positive integer greater than 1 whose only positive integer factors are 1 and itself. A composite number is a positive integer greater than 1 that is not a prime number. A composite number can be written as the product of positive integers with at least one factor that is not 1 or itself. For example, the prime number 7 has only 1 and 7 as its factors. The composite number 6 has factors of 1, 2, 3, and 6; it could be written as the product 2 3.
    [Show full text]
  • Nature of the Discriminant
    Name: ___________________________ Date: ___________ Class Period: _____ Nature of the Discriminant Quadratic − b b 2 − 4ac x = b2 − 4ac Discriminant Formula 2a The discriminant predicts the “nature of the roots of a quadratic equation given that a, b, and c are rational numbers. It tells you the number of real roots/x-intercepts associated with a quadratic function. Value of the Example showing nature of roots of Graph indicating x-intercepts Discriminant b2 – 4ac ax2 + bx + c = 0 for y = ax2 + bx + c POSITIVE Not a perfect x2 – 2x – 7 = 0 2 b – 4ac > 0 square − (−2) (−2)2 − 4(1)(−7) x = 2(1) 2 32 2 4 2 x = = = 1 2 2 2 2 Discriminant: 32 There are two real roots. These roots are irrational. There are two x-intercepts. Perfect square x2 + 6x + 5 = 0 − 6 62 − 4(1)(5) x = 2(1) − 6 16 − 6 4 x = = = −1,−5 2 2 Discriminant: 16 There are two real roots. These roots are rational. There are two x-intercepts. ZERO b2 – 4ac = 0 x2 – 2x + 1 = 0 − (−2) (−2)2 − 4(1)(1) x = 2(1) 2 0 2 x = = = 1 2 2 Discriminant: 0 There is one real root (with a multiplicity of 2). This root is rational. There is one x-intercept. NEGATIVE b2 – 4ac < 0 x2 – 3x + 10 = 0 − (−3) (−3)2 − 4(1)(10) x = 2(1) 3 − 31 3 31 x = = i 2 2 2 Discriminant: -31 There are two complex/imaginary roots. There are no x-intercepts. Quadratic Formula and Discriminant Practice 1.
    [Show full text]
  • Formula Sheet 1 Factoring Formulas 2 Exponentiation Rules
    Formula Sheet 1 Factoring Formulas For any real numbers a and b, (a + b)2 = a2 + 2ab + b2 Square of a Sum (a − b)2 = a2 − 2ab + b2 Square of a Difference a2 − b2 = (a − b)(a + b) Difference of Squares a3 − b3 = (a − b)(a2 + ab + b2) Difference of Cubes a3 + b3 = (a + b)(a2 − ab + b2) Sum of Cubes 2 Exponentiation Rules p r For any real numbers a and b, and any rational numbers and , q s ap=qar=s = ap=q+r=s Product Rule ps+qr = a qs ap=q = ap=q−r=s Quotient Rule ar=s ps−qr = a qs (ap=q)r=s = apr=qs Power of a Power Rule (ab)p=q = ap=qbp=q Power of a Product Rule ap=q ap=q = Power of a Quotient Rule b bp=q a0 = 1 Zero Exponent 1 a−p=q = Negative Exponents ap=q 1 = ap=q Negative Exponents a−p=q Remember, there are different notations: p q a = a1=q p q ap = ap=q = (a1=q)p 1 3 Quadratic Formula Finally, the quadratic formula: if a, b and c are real numbers, then the quadratic polynomial equation ax2 + bx + c = 0 (3.1) has (either one or two) solutions p −b ± b2 − 4ac x = (3.2) 2a 4 Points and Lines Given two points in the plane, P = (x1; y1);Q = (x2; y2) you can obtain the following information: p 2 2 1. The distance between them, d(P; Q) = (x2 − x1) + (y2 − y1) . x + x y + y 2.
    [Show full text]
  • Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models
    L6 - 1 Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models Polynomial Functions Def. A polynomial function of degree n is a function of the form n n−1 f(x) = anx + an−1x + ::: + a1x + a0; (an =6 0) where a0; a1; :::; an are constants called coefficients and n is a nonnegative integer. an is called the leading coefficient. ex. Determine if the given function is a polynomial; if so, find its degree. 2 p 1) f(x) = 4x8 − x6 − 4x2 + 3 5 2 2) f(x) = x3 − + 4x2 x NOTE: The domain of a polynomial function A polynomial function of degree 1: L6 - 2 Quadratic Functions A polynomial function of degree 2, 2 f(x) = a2x +a1x+a0, a2 =6 0, is called a quadratic function. We write f(x) = ex. Graph the following: 1) y = x2 6 - 2) y = −(x + 3)2 3) y = (x − 2)2 + 1 6 6 - - L6 - 3 Graphing a quadratic function I. Standard Form of a Quadratic Function: We can graph a quadratic equation in standard form using translations. ex. Graph f(x) = −x2 + 6x − 6. 6 - L6 - 4 II. Graph using the vertex formula: We can prove the following using the Quadratic For- mula (see text) and very easily using calculus: The vertex of the graph of f(x) = ax2+bx+c is given by the formula x = and y = . The parabola opens upwards if a > 0 and downwards if a < 0. We use the vertex and intercepts to graph. ex. Sketch the graph of y = 2x2 + 5x − 3.
    [Show full text]
  • Chapter 1 Linear Functions
    Chapter 1 Linear Functions 11 Sec. 1.1: Slopes and Equations of Lines Date Lines play a very important role in Calculus where we will be approximating complicated functions with lines. We need to be experts with lines to do well in Calculus. In this section, we review slope and equations of lines. Slope of a Line: The slope of a line is defined as the vertical change (the \rise") over the horizontal change (the \run") as one travels along the line. In symbols, taking two different points (x1; y1) and (x2; y2) on the line, the slope is Change in y ∆y y − y m = = = 2 1 : Change in x ∆x x2 − x1 Example: World milk production rose at an approximately constant rate between 1996 and 2003 as shown in the following graph: where M is in million tons and t is the years since 1996. Estimate the slope and interpret it in terms of milk production. 12 Clicker Question 1: Find the slope of the line through the following pair of points (−2; 11) and (3; −4): The slope is (A) Less than -2 (B) Between -2 and 0 (C) Between 0 and 2 (D) More than 2 (E) Undefined It will be helpful to recall the following facts about intercepts. Intercepts: x-intercepts The points where a graph touches the x-axis. If we have an equation, we can find them by setting y = 0. y-intercepts The points where a graph touches the y-axis. If we have an equation, we can find them by setting x = 0.
    [Show full text]
  • Cubic Polynomials with Real Or Complex Coefficients: the Full
    Cubic polynomials with real or complex coefficients: The full picture Nicholas S. Bardell RMIT University [email protected] Introduction he cubic polynomial with real coefficients y = ax3 + bx2 + cx + d in which Ta | 0, has a rich and interesting history primarily associated with the endeavours of great mathematicians like del Ferro, Tartaglia, Cardano or Vieta who sought a solution for the roots (Katz, 1998; see Chapter 12.3: The Solution of the Cubic Equation). Suffice it to say that since the times of renaissance mathematics in Italy various techniques have been developed which yield the three roots of a general cubic equation. A ‘cubic formula’ does exist—much like the one for finding the two roots of a quadratic equation—but in the case of the cubic equation the formula is not easily memorised and the solution steps can get quite involved (Abramowitz & Stegun, 1970; see Chapter 3: Elementary Analytical Methods, 3.8.2 Solution of Cubic Equations). Hence it is not surprising that with the advent of the digital computer, numerical root- finding algorithms such as those attributed to Newton-Raphson, Halley, and Householder have become the solution of choice (Weisstein, n.d.). Students studying a mathematics specialism as a part of the Victorian VCE (Mathematical Methods, 2010), HSC in NSW (Mathematics Extension in NSW, 1997) or Queensland QCE (Mathematics C, 2009) are expected to be able Australian Senior Mathematics Journal vol. 30 no. 2 to recognise, plot, factorise, and even solve cubic polynomials as described by ACARA (ACARA, n.d., Unit 1, Topic 1: Functions and Graphs).
    [Show full text]
  • Determining Quadratic Functions a Linear Function, of the Form F(X)= Ax + B, Is Determined by Two Points
    Dr. Matthew M. Conroy - University of Washington 1 Determining Quadratic Functions A linear function, of the form f(x)= ax + b, is determined by two points. Given two points on the graph of a linear function, we may find the slope of the line which is the function’s graph, and then use the point-slope form to write the equation of the line. A quadratic function, of the form f(x) = ax2 + bx + c, is determined by three points. Given three points on the graph of a quadratic function, we can work out the function by finding a,b and c algebraically. This will require solving a system of three equations in three unknowns. However, a general solution method is not needed, since the equations all have a certain special form. In particular, they all contain a +c term, and this allows us to simplify to a two variable/two equation system very quickly. Here is an example. Suppose we know f(x) = ax2 + bx + c is a quadratic function and that f(−2) = 5, f(1) = 8, and f(6) = 4. Note this is equivalent to saying that the points (−2, 5), (1, 8) and (6, 4) lie on the graph of f. These three points give us the following equations: 2 5= a((−2) )+ b(−2) + c =4a − 2b + c (1) 2 8= a(1 )+ b(1) + c = a + b + c (2) 2 4= a(6 )+ b(6) + c = 36a +6b + c (3) Notice that +c terms dangling on the right-hand end of each equation. By subtracting the equations in pairs, we eliminate the +c term, and get two equations and two unknowns.
    [Show full text]
  • Quadratic and Exponential Functions Quick Review Graphing Equations:  Y = ½ X – 3
    Ch 11 Quadratic and Exponential Functions Quick Review Graphing Equations: y = ½ x – 3 2x + 3y = 6 Quick Review Evaluate Expressions Order of Operations! Factor 1st – GCF 2nd – trinomials into two binomials 11.1 Graphing Quadratic Functions Vocab • Parabola – – The graph of a quadratic function • Quadratic Function – – A function described by an equation of the form f(x) = ax2 + bx +c, where a ≠ 0 – A second degree polynomial • Function – – A relation in which exactly one x-value is paired with exactly one y-value Quadratic Function • This shape is a parabola • Graphs of all quadratic functions have the shape of a parabola Exploration of Parabolas • Sketch pictures of the following1 situations1 1 y 3 x2 y 2 x2 y x2 y x2 y x2 y x2 2 4 8 y 2 x2 y 1 x2 y1 x2 y 2 x2 y x2 3 y x2 1 y x2 1 y x2 4 y x 12 y x 12 y x 32 y x 32 Example • Graph the quadratic equation by making a 2 table of values. y x 2 Example • Graph the quadratic equation1 by making a y x2 4 table of values. 2 Parts of a Parabola ax2 + bx + c • + a opens up – Lowest point called: minimum • - a opens down – Highest point called: maximum • Parabolas continue to extend as they open • Domain (x-values): all real numbers • Range (y-values): – Opens up - #s greater than or equal to minimum value – Opens down - #s less than or equal to the maximum value • Vertex – minimum or maximum value • Axis of Symmetry: vertical line through vertex Axis of Symmetry Example • Use characteristics of2 quadratic functions to graph y x 2 x 1 – Find the equation of the axis of symmetry.
    [Show full text]
  • Quadratic Functions, Parabolas, Problem Solving
    pg097 [R] G1 5-36058 / HCG / Cannon & Elich cr 11-14-95 QC3 2.5 Quadratic Functions, Parabolas, and Problem Solving 97 58. If f~x! 5 2x 1 3 and the domain D of f is given by 63. Area Given the three lines y 5 m~x 1 4!, D 5 $x _ x 2 1 x 2 2 # 0%,then y 52m~x14!,andx52, for what value of m will (a) draw a graph of f,and thethreelinesformatrianglewithanareaof24? (b) find the range of f.(Hint: What values of y occur on 64. (a) Is the point ~21, 3! on the circle the graph?) x 2 1 y 2 2 4x 1 2y 2 20 5 0? 59. The length L of a metal rod is a linear function of its (b) If the answer is yes, find an equation for the line temperature T, where L is measured in centimeters and that is tangent to the circle at (21,3);iftheanswer T in degrees Celsius. The following measurements have is no, find the distance between the x-intercept been made: L 5 124.91 when T 5 0, and L 5 125.11 points of the circle. when T 5 100. 65. (a) Show that points A~1, Ï3! and B~2Ï3, 1! are on (a) Find a formula that gives L as a function of T. the circle x 2 1 y 2 5 4. (b) What is the length of the rod when its temperature (b) Find the area of the shaded region in the diagram.
    [Show full text]
  • MATH 135 Calculus 1, Spring 2016 1.2 Linear and Quadratic Functions
    MATH 135 Calculus 1, Spring 2016 Worksheet for Sections 1.2 and 1.3 1.2 Linear and Quadratic Functions Linear Functions A linear function is one of the form f(x) = mx + b, where m and b are arbitrary constants. It is \linear" in x (no exponents, fractions, trig, etc.). The graph of a linear function is a line. The constant m is the slope of the line and this number has the same value everywhere on the line. If (x1; y1) and (x2; y2) are any two points on the line, then the slope is given by y − y ∆y m = 2 1 = (∆ =\Delta," means change). x2 − x1 ∆x This number will be the same no matter which two points on the line are chosen. Two important equations for a line are: 1. Slope-intercept form: y = mx + b (m is the slope and b is the y-intercept.) 2. Point-slope form: y − y0 = m(x − x0)(m is the slope and (x0; y0) is any point on the line.) If m > 0, then the line is increasing while if m < 0, the line is decreasing. When m = 0, the line has zero slope and is horizontal (a constant function). Two lines are parallel when they have the same slope, while two lines are perpendicular if the product of their slopes is −1. Exercise 0.1 Find the equation of the line with the given information. (a) The line passing through the points (−2; 3) and (4; 1). (b) The line parallel to 2y + 5x = 0, passing through (2; 5).
    [Show full text]