Quadratic Functions and Inequalities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables
mathematics Article A Computational Approach to Solve a System of Transcendental Equations with Multi-Functions and Multi-Variables Chukwuma Ogbonnaya 1,2,* , Chamil Abeykoon 3 , Adel Nasser 1 and Ali Turan 4 1 Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK; [email protected] 2 Faculty of Engineering and Technology, Alex Ekwueme Federal University, Ndufu Alike Ikwo, Abakaliki PMB 1010, Nigeria 3 Aerospace Research Institute and Northwest Composites Centre, School of Materials, The University of Manchester, Manchester M13 9PL, UK; [email protected] 4 Independent Researcher, Manchester M22 4ES, Lancashire, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)74-3850-3799 Abstract: A system of transcendental equations (SoTE) is a set of simultaneous equations containing at least a transcendental function. Solutions involving transcendental equations are often problematic, particularly in the form of a system of equations. This challenge has limited the number of equations, with inter-related multi-functions and multi-variables, often included in the mathematical modelling of physical systems during problem formulation. Here, we presented detailed steps for using a code- based modelling approach for solving SoTEs that may be encountered in science and engineering problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to illustrate the steps. Parametric studies were performed to visualize how a change in the variables Citation: Ogbonnaya, C.; Abeykoon, affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to C.; Nasser, A.; Turan, A. -
Math 1232-04F (Survey of Calculus) Dr. J.S. Zheng Chapter R. Functions
Math 1232-04F (Survey of Calculus) Dr. J.S. Zheng Chapter R. Functions, Graphs, and Models R.4 Slope and Linear Functions R.5* Nonlinear Functions and Models R.6 Exponential and Logarithmic Functions R.7* Mathematical Modeling and Curve Fitting • Linear Functions (11) Graph the following equations. Determine if they are functions. (a) y = 2 (b) x = 2 (c) y = 3x (d) y = −2x + 4 (12) Definition. The variable y is directly proportional to x (or varies directly with x) if there is some positive constant m such that y = mx. We call m the constant of proportionality, or variation constant. (13) The weight M of a person's muscles is directly proportional to the person's body weight W . It is known that a person weighing 200 lb has 80 lb of muscle. (a) Find an equation of variation expressing M as a function of W . (b) What is the muscle weight of a person weighing 120 lb? (14) Definition. A linear function is any function that can be written in the form y = mx + b or f(x) = mx + b, called the slope-intercept equation of a line. The constant m is called the slope. The point (0; b) is called the y-intercept. (15) Find the slope and y-intercept of the graph of 3x + 5y − 2 = 0. (16) Find an equation of the line that has slope 4 and passes through the point (−1; 1). (17) Definition. The equation y − y1 = m(x − x1) is called the point-slope equation of a line. The point is (x1; y1), and the slope is m. -
Trinomials, Singular Moduli and Riffaut's Conjecture
Trinomials, singular moduli and Riffaut’s conjecture Yuri Bilu,a Florian Luca,b Amalia Pizarro-Madariagac August 30, 2021 Abstract Riffaut [22] conjectured that a singular modulus of degree h ≥ 3 cannot be a root of a trinomial with rational coefficients. We show that this conjecture follows from the GRH and obtain partial unconditional results. Contents 1 Introduction 1 2 Generalities on singular moduli 4 3 Suitable integers 5 4 Rootsoftrinomialsandtheprincipalinequality 8 5 Suitable integers for trinomial discriminants 11 6 Small discriminants 13 7 Structure of trinomial discriminants 20 8 Primality of suitable integers 24 9 A conditional result 25 10Boundingallbutonetrinomialdiscriminants 29 11 The quantities h(∆), ρ(∆) and N(∆) 35 12 The signature theorem 40 1 Introduction arXiv:2003.06547v2 [math.NT] 26 Aug 2021 A singular modulus is the j-invariant of an elliptic curve with complex multi- plication. Given a singular modulus x we denote by ∆x the discriminant of the associated imaginary quadratic order. We denote by h(∆) the class number of aInstitut de Math´ematiques de Bordeaux, Universit´ede Bordeaux & CNRS; partially sup- ported by the MEC CONICYT Project PAI80160038 (Chile), and by the SPARC Project P445 (India) bSchool of Mathematics, University of the Witwatersrand; Research Group in Algebraic Structures and Applications, King Abdulaziz University, Jeddah; Centro de Ciencias Matem- aticas, UNAM, Morelia; partially supported by the CNRS “Postes rouges” program cInstituto de Matem´aticas, Universidad de Valpara´ıso; partially supported by the Ecos / CONICYT project ECOS170022 and by the MATH-AmSud project NT-ACRT 20-MATH-06 1 the imaginary quadratic order of discriminant ∆. Recall that two singular mod- uli x and y are conjugate over Q if and only if ∆x = ∆y, and that there are h(∆) singular moduli of a given discriminant ∆. -
Write the Function in Standard Form
Write The Function In Standard Form Bealle often suppurates featly when active Davidson lopper fleetly and ray her paedogenesis. Tressed Jesse still outmaneuvers: clinometric and georgic Augie diphthongises quite dirtily but mistitling her indumentum sustainedly. If undefended or gobioid Allen usually pulsate his Orientalism miming jauntily or blow-up stolidly and headfirst, how Alhambresque is Gustavo? Now the vertex always sits exactly smack dab between the roots, when you do have roots. For the two sides to be equal, the corresponding coefficients must be equal. So, changing the value of p vertically stretches or shrinks the parabola. To save problems you must sign in. This short tutorial helps you learn how to find vertex, focus, and directrix of a parabola equation with an example using the formulas. The draft was successfully published. To determine the domain and range of any function on a graph, the general idea is to assume that they are both real numbers, then look for places where no values exist. For our purposes, this is close enough. English has also become the most widely used second language. Simplify the radical, but notice that the number under the radical symbol is negative! On this lesson, you fill learn how to graph a quadratic function, find the axis of symmetry, vertex, and the x intercepts and y intercepts of a parabolawi. Be sure to write the terms with the exponent on the variable in descending order. Wendler Polynomial Webquest Introduction: By the end of this webquest, you will have a deeper understanding of polynomials. Anyone can ask a math question, and most questions get answers! Follow along with the highlighted text while you listen! And if I have an upward opening parabola, the vertex is going to be the minimum point. -
Lesson 1: Multiplying and Factoring Polynomial Expressions
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 M4 ALGEBRA I Lesson 1: Multiplying and Factoring Polynomial Expressions Classwork Opening Exercise Write expressions for the areas of the two rectangles in the figures given below. 8 2 2 Now write an expression for the area of this rectangle: 8 2 Example 1 The total area of this rectangle is represented by 3a + 3a. Find expressions for the dimensions of the total rectangle. 2 3 + 3 square units 2 푎 푎 Lesson 1: Multiplying and Factoring Polynomial Expressions Date: 2/2/14 S.1 This work is licensed under a © 2014 Common Core, Inc. Some rights reserved. commoncore.org Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 M4 ALGEBRA I Exercises 1–3 Factor each by factoring out the Greatest Common Factor: 1. 10 + 5 푎푏 푎 2. 3 9 + 3 2 푔 ℎ − 푔 ℎ 12ℎ 3. 6 + 9 + 18 2 3 4 5 푦 푦 푦 Discussion: Language of Polynomials A prime number is a positive integer greater than 1 whose only positive integer factors are 1 and itself. A composite number is a positive integer greater than 1 that is not a prime number. A composite number can be written as the product of positive integers with at least one factor that is not 1 or itself. For example, the prime number 7 has only 1 and 7 as its factors. The composite number 6 has factors of 1, 2, 3, and 6; it could be written as the product 2 3. -
Chapter 8: Exponents and Polynomials
Chapter 8 CHAPTER 8: EXPONENTS AND POLYNOMIALS Chapter Objectives By the end of this chapter, students should be able to: Simplify exponential expressions with positive and/or negative exponents Multiply or divide expressions in scientific notation Evaluate polynomials for specific values Apply arithmetic operations to polynomials Apply special-product formulas to multiply polynomials Divide a polynomial by a monomial or by applying long division CHAPTER 8: EXPONENTS AND POLYNOMIALS ........................................................................................ 211 SECTION 8.1: EXPONENTS RULES AND PROPERTIES ........................................................................... 212 A. PRODUCT RULE OF EXPONENTS .............................................................................................. 212 B. QUOTIENT RULE OF EXPONENTS ............................................................................................. 212 C. POWER RULE OF EXPONENTS .................................................................................................. 213 D. ZERO AS AN EXPONENT............................................................................................................ 214 E. NEGATIVE EXPONENTS ............................................................................................................. 214 F. PROPERTIES OF EXPONENTS .................................................................................................... 215 EXERCISE .......................................................................................................................................... -
Nature of the Discriminant
Name: ___________________________ Date: ___________ Class Period: _____ Nature of the Discriminant Quadratic − b b 2 − 4ac x = b2 − 4ac Discriminant Formula 2a The discriminant predicts the “nature of the roots of a quadratic equation given that a, b, and c are rational numbers. It tells you the number of real roots/x-intercepts associated with a quadratic function. Value of the Example showing nature of roots of Graph indicating x-intercepts Discriminant b2 – 4ac ax2 + bx + c = 0 for y = ax2 + bx + c POSITIVE Not a perfect x2 – 2x – 7 = 0 2 b – 4ac > 0 square − (−2) (−2)2 − 4(1)(−7) x = 2(1) 2 32 2 4 2 x = = = 1 2 2 2 2 Discriminant: 32 There are two real roots. These roots are irrational. There are two x-intercepts. Perfect square x2 + 6x + 5 = 0 − 6 62 − 4(1)(5) x = 2(1) − 6 16 − 6 4 x = = = −1,−5 2 2 Discriminant: 16 There are two real roots. These roots are rational. There are two x-intercepts. ZERO b2 – 4ac = 0 x2 – 2x + 1 = 0 − (−2) (−2)2 − 4(1)(1) x = 2(1) 2 0 2 x = = = 1 2 2 Discriminant: 0 There is one real root (with a multiplicity of 2). This root is rational. There is one x-intercept. NEGATIVE b2 – 4ac < 0 x2 – 3x + 10 = 0 − (−3) (−3)2 − 4(1)(10) x = 2(1) 3 − 31 3 31 x = = i 2 2 2 Discriminant: -31 There are two complex/imaginary roots. There are no x-intercepts. Quadratic Formula and Discriminant Practice 1. -
5.2 Polynomial Functions 5.2 Polynomialfunctions
5.2 Polynomial Functions 5.2 PolynomialFunctions This is part of 5.1 in the current text In this section, you will learn about the properties, characteristics, and applications of polynomial functions. Upon completion you will be able to: • Recognize the degree, leading coefficient, and end behavior of a given polynomial function. • Memorize the graphs of parent polynomial functions (linear, quadratic, and cubic). • State the domain of a polynomial function, using interval notation. • Define what it means to be a root/zero of a function. • Identify the coefficients of a given quadratic function and he direction the corresponding graph opens. • Determine the verte$ and properties of the graph of a given quadratic function (domain, range, and minimum/maximum value). • Compute the roots/zeroes of a quadratic function by applying the quadratic formula and/or by factoring. • !&etch the graph of a given quadratic function using its properties. • Use properties of quadratic functions to solve business and social science problems. DescribingPolynomialFunctions ' polynomial function consists of either zero or the sum of a finite number of non-zero terms, each of which is the product of a number, called the coefficient of the term, and a variable raised to a non-negative integer (a natural number) power. Definition ' polynomial function is a function of the form n n ) * f(x =a n x +a n ) x − +...+a * x +a ) x+a +, − wherea ,a ,...,a are real numbers andn ) is a natural number. � + ) n ≥ In a previous chapter we discussed linear functions, f(x =mx=b , and the equation of a horizontal line, y=b . -
Formula Sheet 1 Factoring Formulas 2 Exponentiation Rules
Formula Sheet 1 Factoring Formulas For any real numbers a and b, (a + b)2 = a2 + 2ab + b2 Square of a Sum (a − b)2 = a2 − 2ab + b2 Square of a Difference a2 − b2 = (a − b)(a + b) Difference of Squares a3 − b3 = (a − b)(a2 + ab + b2) Difference of Cubes a3 + b3 = (a + b)(a2 − ab + b2) Sum of Cubes 2 Exponentiation Rules p r For any real numbers a and b, and any rational numbers and , q s ap=qar=s = ap=q+r=s Product Rule ps+qr = a qs ap=q = ap=q−r=s Quotient Rule ar=s ps−qr = a qs (ap=q)r=s = apr=qs Power of a Power Rule (ab)p=q = ap=qbp=q Power of a Product Rule ap=q ap=q = Power of a Quotient Rule b bp=q a0 = 1 Zero Exponent 1 a−p=q = Negative Exponents ap=q 1 = ap=q Negative Exponents a−p=q Remember, there are different notations: p q a = a1=q p q ap = ap=q = (a1=q)p 1 3 Quadratic Formula Finally, the quadratic formula: if a, b and c are real numbers, then the quadratic polynomial equation ax2 + bx + c = 0 (3.1) has (either one or two) solutions p −b ± b2 − 4ac x = (3.2) 2a 4 Points and Lines Given two points in the plane, P = (x1; y1);Q = (x2; y2) you can obtain the following information: p 2 2 1. The distance between them, d(P; Q) = (x2 − x1) + (y2 − y1) . x + x y + y 2. -
Polynomials Remember from 7-1: a Monomial Is a Number, a Variable, Or a Product of Numbers and Variables with Whole-Number Exponents
Notes 7-3: Polynomials Remember from 7-1: A monomial is a number, a variable, or a product of numbers and variables with whole-number exponents. A monomial may be a constant or a single variable. I. Identifying Polynomials A polynomial is a monomial or a sum or difference of monomials. Some polynomials have special names. A binomial is the sum of two monomials. A trinomial is the sum of three monomials. • Example: State whether the expression is a polynomial. If it is a polynomial, identify it as a monomial, binomial, or trinomial. Expression Polynomial? Monomial, Binomial, or Trinomial? 2x - 3yz Yes, 2x - 3yz = 2x + (-3yz), the binomial sum of two monomials 8n3+5n-2 No, 5n-2 has a negative None of these exponent, so it is not a monomial -8 Yes, -8 is a real number Monomial 4a2 + 5a + a + 9 Yes, the expression simplifies Monomial to 4a2 + 6a + 9, so it is the sum of three monomials II. Degrees and Leading Coefficients The terms of a polynomial are the monomials that are being added or subtracted. The degree of a polynomial is the degree of the term with the greatest degree. The leading coefficient is the coefficient of the variable with the highest degree. Find the degree and leading coefficient of each polynomial Polynomial Terms Degree Leading Coefficient 5n2 5n 2 2 5 -4x3 + 3x2 + 5 -4x2, 3x2, 3 -4 5 -a4-1 -a4, -1 4 -1 III. Ordering the terms of a polynomial The terms of a polynomial may be written in any order. However, the terms of a polynomial are usually arranged so that the powers of one variable are in descending (decreasing, large to small) order. -
Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models
L6 - 1 Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models Polynomial Functions Def. A polynomial function of degree n is a function of the form n n−1 f(x) = anx + an−1x + ::: + a1x + a0; (an =6 0) where a0; a1; :::; an are constants called coefficients and n is a nonnegative integer. an is called the leading coefficient. ex. Determine if the given function is a polynomial; if so, find its degree. 2 p 1) f(x) = 4x8 − x6 − 4x2 + 3 5 2 2) f(x) = x3 − + 4x2 x NOTE: The domain of a polynomial function A polynomial function of degree 1: L6 - 2 Quadratic Functions A polynomial function of degree 2, 2 f(x) = a2x +a1x+a0, a2 =6 0, is called a quadratic function. We write f(x) = ex. Graph the following: 1) y = x2 6 - 2) y = −(x + 3)2 3) y = (x − 2)2 + 1 6 6 - - L6 - 3 Graphing a quadratic function I. Standard Form of a Quadratic Function: We can graph a quadratic equation in standard form using translations. ex. Graph f(x) = −x2 + 6x − 6. 6 - L6 - 4 II. Graph using the vertex formula: We can prove the following using the Quadratic For- mula (see text) and very easily using calculus: The vertex of the graph of f(x) = ax2+bx+c is given by the formula x = and y = . The parabola opens upwards if a > 0 and downwards if a < 0. We use the vertex and intercepts to graph. ex. Sketch the graph of y = 2x2 + 5x − 3. -
Chapter 1 Linear Functions
Chapter 1 Linear Functions 11 Sec. 1.1: Slopes and Equations of Lines Date Lines play a very important role in Calculus where we will be approximating complicated functions with lines. We need to be experts with lines to do well in Calculus. In this section, we review slope and equations of lines. Slope of a Line: The slope of a line is defined as the vertical change (the \rise") over the horizontal change (the \run") as one travels along the line. In symbols, taking two different points (x1; y1) and (x2; y2) on the line, the slope is Change in y ∆y y − y m = = = 2 1 : Change in x ∆x x2 − x1 Example: World milk production rose at an approximately constant rate between 1996 and 2003 as shown in the following graph: where M is in million tons and t is the years since 1996. Estimate the slope and interpret it in terms of milk production. 12 Clicker Question 1: Find the slope of the line through the following pair of points (−2; 11) and (3; −4): The slope is (A) Less than -2 (B) Between -2 and 0 (C) Between 0 and 2 (D) More than 2 (E) Undefined It will be helpful to recall the following facts about intercepts. Intercepts: x-intercepts The points where a graph touches the x-axis. If we have an equation, we can find them by setting y = 0. y-intercepts The points where a graph touches the y-axis. If we have an equation, we can find them by setting x = 0.