Overview of Breeding Ornamental Species

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Breeding Ornamental Species 28/11/2017 Breeding New Species - Introduction • An important part of expanding the Sri Lankan export industry is offering more species to customers • Sri Lanka is well known for production of livebearers but other important commercial species do lack • This presentation presents information on the production of a range of Breeding Special Species new species for Sri Lanka • Some of these species require similar breeding techniques and have been grouped tother under their taxonomic groups BREEDING NEW SPECIES Elephantnose Fish Barbs • Gnathonemus petersii • These fish are from the order ‘Cypriniformes’, of which there are over 1400 species. This order also includes the danios and • Normally from wild. Some success in rasboras, which are also popular ornamental fish and have similar breeding but not economical features to barbs. • This group includes species such as Koi carp, goldfish, Danios and Barbs, with approximately 35 species in the group. • They are regarded generally as voracious egg eaters, so eggs need to be separated from parents as soon as possible after spawning. • Some form of substrate is normally provided for the eggs to BARB / CARP SPECIES BREEDING fall into to protect them from being eaten. 1 28/11/2017 Induced Breeding of Sahyadria danisonii General Information Classification Scientific classification Endemic to Kerala, India Kingdom: Animalia Phylum: Chordata Class: Actinopterygii • A stream dwelling Fish Order: Cypriniformes • Prefers rock pools with overhanging vegetation Family: Cyprinidae Genus: Sahyadria • Strict herbivore mainly on Filamentous Algae Species: S. denisonii • A shoaling fish • IUCN Status – Endangered • Fragile, with quick negative responses to environmental changes, exhausts rapidly Observations on Reproductive Biology Important Points Trait Values Smallest Mature Males (Length) (wt 15 gr) 8.5 – 9.0 cm Smallest Mature Females (length) ( wt 21 gr) 8.5 – 10 cm • No distinctive Sexual Dimorphism Absolute fecundity between 7.8 – 10.0 cm length 74 – 284 • Female has a slightly wider body Water Temperature 26 – 28 0C pH 7.0 - 7.5 • Natural Spawning between November to April - Dissolved Oxygen (mg L 1) ➢ 5 • Rapidly exhausts Total Alkalinity (mg L-1) 20 – 25 Hardness (mg L-1) 20 – 25 • Yellow, heavily yoked, transparent adhesive eggs Ovaprim Dose (Single dose for both sexes) 0.4 ml/kg BW • Non guarder lithophile Latency period 10 – 12 hours Before Hydration Hatching since fertilization 36 hrs Free swimming and first feeding 4 days Completing metamorphosis 14 days Fertilized and Hydrated 3.5 cm body length 4 months 2 28/11/2017 Rainbow and Redtail Sharks Inducing Agents Tested and Successful Inducing Agents Kingdom: Animalia Phylum: Chordata Males Females Class: Actinopterygii Does not react positively to LHRH or SGnRH alone 0 Order: Cypriniformes Inducing Agent Temp C Per Kg of Body Weight Interval Needs a Dopamine Antagonist Family: Cyprinidae Brain Single 1st 2nd H Genus: Epalzeorhynchos CPE 28 0.5 mg 0.5 mg 2.0 mg 6 Species: E. bicolo Dopamine Blocker Dopamine + HCG 10 IU 10 IU 50 IU Kingdom Animalia Phylum: Chordata Reserpine 28 100 mg 100 mg 0 mg 7 Class: Actinopterygii LHRH Pituitary Order: Cypriniformes LHRH A 2 mic gr 2 mic gr 8 mic gr Family: Cyprinidae Genus: Epalzeorhynchos Ovaries Species: E. frenatum Eggs Tested and Successful Inducing Agents Suggestions Males Females • We have used Ovaprim as the inducing agent successfully in Tamil Nadu Inducing Agent Temp 0C Per Kg of Body Weight Interval • It is a combination of Salmon Gonadotropin Releasing Hormone and Domoperidone Single 1st 2nd H which is a dopamine antagonist CPE + 28 2 mg + 0.5 mg 2.0 mg 6 HCG 10 IU 10 IU 50 IU • The dosage used by us was 0.5ml per Kg of body weight • 2 Injections in 10%, +90% dose to females within 6 hour interval Reserpine + 30 50 mg 50 mg 0 mg 7 • One time injection at half dose at the time of the resolving injection time to males LHRH A 5 mic gr 2 mic gr 8 mic gr • Both Manual Stripping and Group spawnings were successful • This system also applies to Algae Eaters and Silver Sharks AROWANA Special thanks to: Living Gems (Pvt) Ltd Madurai Tamil Nadu, India 3 28/11/2017 Arowana Silver Arowana Golden Arowana • Arowanas are freshwater bony • Osteoglossum bicirrhosum • Scleropages Formosus fish of the family Osteoglossidae, • Mature in about 2 years, also known as bonytongues mouth brooding by male for • These are much less • specialized surface feeders n about 4-5 weeks, each brood productive then Silver • Also known as ‘Dragon Fish’ about 120 to 200 fry, Arowana as they only fewer • Highly prized, particularly in • Spawn all year round but eggs per spawn – around Chinese culture more frequent during raining average brood is about • Red and Gold varieites most season. Can spawn in earth 60pcs. All the rest is the same highly prized pond or cement pond with as silver Arowana earth bottom. 30ft x 60ft may • Quite specific climatic conditions put 20 female and 10 male. • Mature in 2.5 to 3 years. needed – restricted production Mass spawning. (Indonesia, Malaysia) – some reports of India and also Sri Lanka • Requires large amount of land • Not breed in tanks Breeding Arowana Broodstock Holding Egg / Fry Collection • To increase hatch rate and survival • The breeding and farming of • Spawn all year round but more frequent during raining season. fo fry it is preferable to harvest eggs Silver and Gold Arowana are and fry and incubate artificially very similar • Can spawn in earth pond or cement pond with earth bottom. • Males ‘holding’ are recognized by: • by a distended operculum • The following slides are • Typical pond may stock 20 female relevant to both species and 10 male. Mass spawning. • swimming behaviour • Males ‘holding’ eggs/fry are • Reduced feed carefully crowded using seine nets • Brood pouch under lower jaw • The pH of water in the rearing and caught to collect eggs tank should be maintained (where eggs are) between 6.8 - 7.5 and 27 - • This is done very slowly and with • Need to handle fish carefully during 29°C great care so as not to stress the process fish • lower jaw of the fish is pulled • Arowana can accidentally • Typical breeding pond is 30 by backward slowly and the body is swallows some of the young when shaken slightly to release the half 60 feet with water depth was stressed maintained at about 0.5 - 0.75 developed larvae from the male’s meters. mouth 4 28/11/2017 Incubating Eggs and Fry Nursery Culture • Generally kept in glass aquaria • The yoke sac should be fully absorbed in around 60 days. • enhance the colour and promote the formation of chromatophores • When fry start to swim we suggest to illuminate with horizontally they are ready for artificial lighting at least 10 -12 first live food hours a day • partial water change of about • Bloodworms, small fish fry 30% of total tank volume every 2- (baby guppies) can be used 3 days to maintain water quality • Feed generously with quality Arowana Johor • Use high quality Arowana diet feed and live feeds (fish, shrimp etc) Baru • After 6 -7 months of free- swimming the fry measure about 20 -25cm in length and are suitable for market Arowana Johor Arowana Johor Arowana Johor Baru Baru Baru 5 28/11/2017 Polypterus / Bichir White Polypterus / Bichir White • Polypterus senegalus • Males and females can be readily • While breeding in aquariums is easily distinguished reported very little commercial • Males have a wide, muscular/fat anal production fin and sometimes a pointed tailfin tip. • Information here is based on breeding by hobbyists • Females have a smaller, thinner anal • Pairs kept minimum 4 foot, fin and sometimes a rounded tailfin preferably 6ft tip. Females tend grow faster, get • Shallow as they take air from he larger and thicker-bodied than males. Arowana Johor surface – no more than 18inch • Females mature at around 5-6 years, deep water whereas males can be mature at 12 Baru • Temp 25 to 28 months • Soft to slightly hard, neutral pH • Young females can still carry undeveloped eggs, but successful • Nocturnal species so avoid bright breeding will be difficult until 5-6 lighting of tanks and sunlight Polypterus / Bichir White Polypterus / Bichir White Ocellate river stingray • Males will approach the female • The eggs hatch in 3-4 days, with • Potamotrygon motoro and shake their heads, twitch their the fry becoming free swimming tails and follow the female until she around 3 days later. • Originates from Sth America and accepts. Once she has, they will • Fry are ready to feed when they inhabits a variety of biotopes find a hiding spot and later she will swim-up, First foods should • Generally shallow, slow moving release her eggs for the male to be brineshrimp rivers with sandy / muddy catch in his anal fin. He will then • The fry are not particularly mobile, bottoms fertilize the eggs in his cupped anal so care should be exercised to fin and scatter them. ensure they are well fed. • Can grow up to 90cm across the body, captive species generally • Juveniles will take a high protein • It is thought one of the breeding diet but also benefit form live and only grow to 60cm triggers for P. senegalus frozen foods • Most farms originally large senegalusis a grassy substrate, so the eggs can be scattered outdoor tanks, nowadays more inside the grass without risk of specialised indoor breeding being eaten. 6 28/11/2017 Tanks and Water Quality Breeding Stingray How to Pair Stingrays • Males have distinctive • Tanks need to be large with • The young fish (often ‘claspers’ can be seen from 240cm x 90cm x 75cm or larger referred to as “pups”) develop above, but younger males commonly used by breeders inside the mother and are may need to be seen from • Need good water quality and born live and fully-formed.
Recommended publications
  • Preliminary Studies on the Food and Feeding Habits of Synodontis Membraneceus from Ogobiri River, Nigeria
    r 233 Preliminary studies on the food and feeding habits of Synodontis membraneceus from Ogobiri River, Nigeria Allison, M. E. / Youdubagha, S. E. Abstract Thefood andfeeding habits of Synodontis membraneceus of Ogobiri River of Bayelsa State, Nigeria was studied using 44 male and 51 female specimens that were boughtfrom fishers in the study area measuring between 5 and 25 em total length. The Numerical and the Frequency of Occurrence method of analysis were used. For the males, thefood items by the numerical method were copepods (168), insects, (118), Cladocera (69), and unidentified items (32). In thefemale specimens, thefood items were Cladocera (286), Insect (216) Copepod (100) and unidentified organisms/materials (65). In the Frequency of Occurrence method for the males, Copepod was still the highest with a total of (48), Cladocera (44), Insects (29) and unidentified (I 6). For thefemales, Cladoera (48), Insects were (30) followed by Copepods (35) and unidentified (J9). The Percentage composition offood items by the Numerical method was Cladocera (45.5%), Insects (34.5%), Copepod (12.5%), and unidentified items (7.0%) while the Percentage Frequency of Occurrence was, Cla• docera (30.5%), Insects (30.9%), Copepod (29.6%), and unidentified items (9.0%). Keywords:Numerical method,frequency of occurrence, S. membraneceus, Ogobiri River. Introduction ish is a very important source of food for humans (FAO, 2010). Information about the food habits of fishes is on defin• ing predator-prey relationship (Saa et al., 1997) and the creation of trophic models as a tool to understanding complete Fecosystem (Lopez-Perata and Arcila, 2002; Bachok et al., 2004).
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Rainbow Sharkminnow (Epalzeorhynchos Frenatum) ERSS
    Rainbow Sharkminnow (Epalzeorhynchos frenatum) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, June 2012 Revised, November 2018 Web Version, 2/1/2019 Photo: Drachenschwertträger36/Wikimedia. Licensed under Creative Commons BY-SA 2.0 Germany. Available: https://commons.wikimedia.org/wiki/File:Z%C3%BCgelfransenlipper.jpg. (November 8, 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Asia: Mekong, Chao Phraya and Xe Bangfai basins [Kottelat 1998] and Maeklong basin [Yang and Winterbottom 1998].” 1 “[In Cambodia:] Occurs in the Mekong River [Kottelat 1998]. Known from Tonlé Sap and Phnom Penh [Kottelat 1985].” “[In Laos:] Occurs in the Mekong and the lower Xe Bangfai [Kottelat 1998]. Found in Ban Hang Khone, a village on an island in the middle of the mainstream Mekong River just below the Great Khone Waterfalls in Khong District, Champasak Province [Baird 1998].” “[In Thailand:] Occurs in the Maeklong [Vidthayanon et al. 1997], Mekong and Chao Phraya basins [Vidthayanon et al. 1997; Kottelat 1998]. Known from Chiang Mai and the Tachin (Samut Sakhon) River [Suvatti 1981]; also from Phra Nakhon Si Ayutthaya, Nakhon Sawan, Ubon Ratchathani, Kanchanaburi, Nakhon Ratchasima, Phrae and Phitsanulok [Monkolprasit et al. 1997].” From Vidthayanon (2012): “It has also been reported from Viet Nam.” Status in the United States Tuckett et al. (2017) caught 1 individual of Epalzeorhynchos frenatum in the wild in Florida but within 500m of an aquaculture facility. According to Chapman et al. (1994), Epalzeorhynchos frenatum (listed as Labeo frenatus) was imported to the United States for the ornamental trade in 1992.
    [Show full text]
  • Epalzeorhynchos Munense ERSS
    Epalzeorhynchos munense (a fish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, June 2012 Revised, November 2018 Web Version, 2/1/2019 Photo: W. J. Rainboth/FAO. Licensed under Creative Commons BY-NC 3.0 Unported. Available: http://www.fishbase.org/photos/PicturesSummary.php?StartRow=0&ID=27163&what=species& TotRec=2. (November 9, 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018a): “Asia: Mekong [Cambodia, Thailand, Laos] and Chao Phraya [Thailand] basins [Kottelat 2001] and Maeklong basin [Thailand] [Vidthayanon et al. 1997].” “[In Laos:] Known from the middle Xe Bangfai, a tributary of the Mekong basin [Kottelat 1998].” 1 Status in the United States No records of Epalzeorhynchos munense in the wild or in trade in the United States were found. Means of Introductions in the United States No records of Epalzeorhynchos munense in the wild in the United States were found. Remarks Information searches were conducted using the valid name Epalzeorhynchos munense and the synonym Labeo munensis. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Fricke et al. (2018), Epalzeorhynchos munense is the valid name for this species. It was originally described as Labeo munensis. From Froese and Pauly (2018b): “Animalia (Kingdom) > Chordata (Phylum) > Vertebrata (Subphylum) > Gnathostomata (Superclass) > […] Actinopterygii (Class) > Cypriniformes (Order) > Cyprinidae (Family) > Epalzeorhynchos munense (Species)” Size, Weight, and Age Range From Froese and Pauly (2018a): “Max length : 9.3 cm SL male/unsexed; [Kottelat 1998]” Environment From Froese and Pauly (2018a): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2018a): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2018a): “Asia: Mekong [Cambodia, Thailand, Laos] and Chao Phraya [Thailand] basins [Kottelat 2001] and Maeklong basin [Thailand] [Vidthayanon et al.
    [Show full text]
  • ASSESSMENT of the FISHERY for SNAPPER (Pagrus Auratus) in QUEENSLAND and NEW SOUTH WALES
    ASSESSMENT OF THE FISHERY FOR SNAPPER (Pagrus auratus) IN QUEENSLAND AND NEW SOUTH WALES Principal Investigators D. Ferrell and W. Sumpton FRDC 93/074 Final Report, FRDC Project 93/074 Assessment of the Snapper fishery in Qld and NSW 93/074 Assessment of the fishery for snapper (Pagrus auratus) in Queensland and NSW. PRINCIPAL INVESTIGATORS: Wayne Sumpton1 and Doug Ferrell2 ADDRESS: 1. QLD Department of Primary Industries Southern Fisheries Centre PO Box 76 DECEPTION BAY Q 4508 Telephone: 07 3817 9584 Fax: 07 3817 9584 ` 2. NSW Fisheries Research Institute 202 Nicholson Parade Cronulla NSW 2230 Telephone: 02 9527 8514 Fax: 02 9527 8576 OBJECTIVES To estimate the recreational snapper catch in the Moreton Region and evaluate methodologies for estimating offshore recreational effort. To provide fisheries managers with models for assessing the impact on yield of proposed changes to the legislated minimum legal size of snapper. To provide fisheries managers with information on the genetic relationship between snapper populations in south Queensland, Northern New South Wales and east of the Swains Reefs (Southern Great Barrier Reef). To develop methods of estimating relative abundance and year class strength of juvenile snapper. Queensland Department of Primary Industries 2 New South Wales Fisheries Research Institute Final Report, FRDC Project 93/074 Assessment of the Snapper fishery in Qld and NSW NON TECHNICAL SUMMARY Previous work to validate snapper age estimates was supported but this validation is still suspect in northern NSW and Queensland. The reason the validation is called into question is that the clarity of interpretation of otolith edges changed with latitude.
    [Show full text]
  • Induction of Maturation and Ovulation of Red Fin Shark Fish
    International Journal of Fisheries and Aquatic Studies 2017; 5(4): 418-424 E-ISSN: 2347-5129 P-ISSN: 2394-0506 (ICV-Poland) Impact Value: 5.62 Induction of maturation and ovulation of Red Fin (GIF) Impact Factor: 0.549 IJFAS 2017; 5(4): 418-424 Shark fish Epalzeorhynchos frenatus in non-spawning © 2017 IJFAS www.fisheriesjournal.com season Received: 03-05-2017 Accepted: 04-06-2017 Muhammad Faiz Islami, Agus Oman Sudrajat and Odang Carman Muhammad Faiz Islami Department of Aquaculture, Bogor Agricultural University, Abstract Bogor, Indonesia, Jl. Agatis There are constraints on the production of red fin shark Epalzeorhynchos frenatus due to the lack of Kampus Dramaga, Bogor, matured broodstocks in Non-spawning season and has a dependence on hormone induction during Indonesia spawning process, because it can’t spawn naturally in cultivation environments. Gonad maturation can be stimulated by the addition of hormones and potential plant-based materials to feed. Thus, the present Agus Oman Sudrajat study attempted alternative hormonal combination to induce both ovulation and spawning in order to Department of Aquaculture, provide farmers with alternative choices for reproduction. This research was divided into two sub- Bogor Agricultural University, research (maturation and ovulation) in one main title. The first section of the study dealt with Bogor, Indonesia, Jl. Agatis maturational induction and it used Completely Randomized Design with 5 treatments. Ten broodstocks Kampus Dramaga, Bogor, were used in each treatment which was as follows: Oodev (0.25 and 0.5 mL. kg-1 fish) addition to feed, Indonesia turmeric powder (250 and 500 mg 100 g-1 feed), and commercial feed (at least 30 % protein) as the control.
    [Show full text]
  • Text Transformation K Text Statistics K Parsing Documents K Information Extraction K Link Analysis
    Chapter IR:III III. Text Transformation q Text Statistics q Parsing Documents q Information Extraction q Link Analysis IR:III-25 Text Transformation © HAGEN/POTTHAST/STEIN 2018 Parsing Documents Retrieval Unit The atomic unit of retrieval of a search engine is typically a document. Relation between documents and files: q One file, one document. Examples: web page, PDF, Word file. q One file, many documents. Examples: archive files, email threads and attachments, Sammelbände. q Many files, one document. Examples: web-based slide decks, paginated web pages, e.g., forum threads. Dependent on the search domain, a retrieval unit may be defined different from what is commonly considered a document: q One document, many units. Examples: comments, reviews, discussion posts, arguments, chapters, sentences, words, etc. IR:III-26 Text Transformation © HAGEN/POTTHAST/STEIN 2018 Parsing Documents Index Term Documents and queries are preprocessed into sets of normalized index terms. Lemma- tization Stop word Index Plain text Tokenization extraction removal terms Stemming The primary goal of preprocessing is to unify the vocabularies of documents and queries. Each preprocessing step is a heuristic to increase the likelihood of semantic matches while minimizing spurious matches. A secondary goal of preprocessing is to create supplemental index terms to improve retrieval performance, e.g., for documents that do not posses many of their own. IR:III-27 Text Transformation © HAGEN/POTTHAST/STEIN 2018 Parsing Documents Document Structure and Markup The most common document format for web search engines is HTML. Non-HTML documents are converted to HTML documents for a unified processing pipeline. Index terms are obtained from URLs and HTML markup.
    [Show full text]
  • Aquarium Lighting Guide Led
    Aquarium Lighting Guide Led Insistently subcontinental, Owen gelled telephotograph and Indianising routeman. Carbolic and unfilterable Meier strowing while unsensualized Osbert Teletypes her cove varietally and kipper rarely. Isochronous and diacid Nester supernaturalising: which Timmy is outcast enough? 11 Best LED Lighting for Reef Tanks 2020 Reviews & Guide. A Complete Idiot's guide or make up LED lighting unit For exchange such tutorials and fishy pictures please text my website wwwplaysofrayscom As. Pin on Fish Tank Keepers Pinterest. Unfortunately LED light is hard to patio to standard well-known aquarium lighting systems like fluorescent T5 or T tubes Here does show its a method with. Radion G5 Pro LED compatible Fixture Aqua Lab Aquaria. Best Freshwater and Coral Aquarium LED Lighting 2021. The Saltwater Aquarium Lighting Guide Pet Qwerks Toys. Leds in a feature, but perfectly which will inhabit aquariums experts will reset themselves, led aquarium survive purely blue light. Choosing Aquarium Lighting Everything together Need your Know. The Ultimate Beginners Guide to Reef Tank Lighting 201. What would handle a separate timer makes them and to the past the appropriate for freshwater gobies kept many planted aquariums, your aquarium inhabitants but for aquarium guide. Serene Freshwater LED and Current USA. Here you what find an overview nearly every aspects of aquarium lighting and ascertain relevant products everything from court most up to pay LED technology. Fish Tank Lighting What is PAR ZenAquaria. Reef aquarium led lights Saltwater Aquarium Blog. Aquarium Lighting Guide for Fish Owners BeChewy. 12 Best LED Aquarium Lighting Units According to Gallon Size. But excludes the aquarium lighting guide put a relative Allow for link to be conventional to manually control the light stay a good schedule.
    [Show full text]
  • Seine River Temperature Project
    SEINE RIVER TEMPERATURE PROJECT A multi-year project designed to determine environmental and traditional ecological knowledge indicators for lake sturgeon spawning windows A Five-Year Summary of Work Conducted from 2011 to 2015 March 2016 Prepared by Ryan Haines, Kenora Resource Consultants Inc. for Seine River First Nation In Memory of Myron Johnson As a co-worker and friend…you will be missed. i Executive Summary In 1926, the Sturgeon Falls Generating Station was constructed along the Seine River to create hydroelectric power and this facility is currently operated by H2O Power. One of the major threats to lake sturgeon is the impact of peaking hydroelectric developments on the water levels during the spring spawning season. The purpose of the Seine River Temperature Project is to help define the spring spawn for Seine River sturgeon through surrogate environmental indicators and note any effects of peaking on spawning. In addition, a goal of the project was to determine if the increases in water levels at the Seine River First Nation community are due solely to the flow from the Seine River, or if the dam at the outlet of Rainy Lake affects the water levels resulting in the Seine River functioning as a reservoir. Between 2011 and 2015, Seine River First Nation community technicians studied the spawning timing of lake sturgeon at two important spawning sites in Seine River below the Sturgeon Falls dam to help determine the environmental indicators (temperature, photoperiod, flows) for lake sturgeon spawning. In addition, work was done with Seine River First Nation Elders and knowledge holders in the fall of 2012 to identify Traditional Ecological Knowledge (TEK) indicators for lake sturgeon spawning in Seine River.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Tetra (Paracheirodon Axelrodi, Characidae) in Its Natural Habitat
    The food spectrum of the cardinal - tetra (Paracheirodon axelrodi, Characidae) in its natural habitat. Ilse WALKER1 ABSTRACT The cardinal tetra (Paracheirodon axelrodi) is the most intensively commercialized ornamental fish from the Rio Negro Basin (Amazonas State, Brasil). Analysis of the stomach and gut contents of fish caught in their natural habitats show conclusively that the cardinal is essentially a predator, feeding on the mesofauna that adheres to submerged litter, roots and waterplants. Microcrustacea and chironomid larvae (Diptera) were the most frequently ingested prey, while algae intake was relatively infrequent. It is argued that the relatively small size of the cardinals captured in their natural habitat is due to the annual migrations imposed by the inundation cycles, rather than to resource limitation, because it is known from earlier investigations of similar habitats, that these plant substrates are densely colonized by the aquatic mesofauna. Cardinals raised in captivity are larger and have higher rates of growth. KEY WORDS Rio Negro, cardinal, diet. Estratégias alimentares do cardinal-tetra (Paracheirodon axelrodi, Characidae) em seu ambiente natural. RESUMO O cardinal (Paracheirodon axelrodi) é o peixe ornamental comercializado com maior intensidade na Bacia do Rio Negro (Estado do Amazonas, Brasil). Análise do conteúdo estomacal de peixes capturados nos seus habitats naturais mostra, que o cardinal é essencialmente um predador, alimentando-se da mesofauna que está colonizando a liteira submersa, arbustos submersos, raízes flutuantes e plantas aquáticas. As presas principais são microcrustáceos e larvas de quironomídeos (Chironomidae, Diptera), enquanto ingestão de algas é pouco freqüente. Considera-se que o tamanho relativamente pequeno de cardinais capturados nos ambientes naturais é devido as migrações anuais que acompanham os ciclos anuais de enchente e vazante, e não à falta de recursos; já que é conhecido de ambientes parecidos de outros rios da região, que estes substratos aquáticos são densamente colonizados pela mesofauna.
    [Show full text]
  • Tetra Black Neon
    Black Neon Tetra Hyphessobrycon herbertaxelrodi Natural Range Colour and Varieties These tetras are native to Paraguay and the Silver belly with a black top underneath the dor- southern parts of Brazil. sal and a green to white line through the body from the eye to the tail, they are shaped similar Maximum Size and Longevity to Kerri Tetra just smaller. They will grow to approximately 4cms and can live for up to 5 years. Sexing and Breeding It is not that hard to tell the difference between Water Quality males and females. Females will be a lot Prefer soft acid water plumper and rounder in the body due to their bel- · Temperature: 22°C - 27°C. lies being full with eggs. Black neon's are egg · pH: 5.5—7.0 layers and will lay their eggs in a scattered for- · General Hardness: 100 ppm. mation, laying them on leaves glass and rocks in the aquarium. Parents should be removed from Feeding the tank after they laid the eggs as the adults will Black Neon Tetras are an omnivore and will feed eat the eggs and fry. on live foods such as brine shrimp and live black worm. They also readily take a variety of fish General Information foods such as flake and TetraMin Tropical A lot of people think that Black Neon tetras and Crisps. Neon tetras are the same types of fish; this is not true. Although having the same names (Neon) Compatibility these fish are completely different and have These tetras are a peaceful fish and will be com- variations on the water quality they will live in patible with most other tetras, they should be and the level of difficulty in keeping them.
    [Show full text]