Summary Report of Freshwater Nonindigenous Aquatic Species in U.S

Total Page:16

File Type:pdf, Size:1020Kb

Summary Report of Freshwater Nonindigenous Aquatic Species in U.S Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................. 3 References Cited ....................................................................................................................................... 4 CRUSTACEANS ............................................................................................................................................... 5 Overview ................................................................................................................................................... 5 Species Accounts of Crustaceans New to Region 4 ................................................................................ 11 Argulus japonicus Thiele, 1900 (Japanese Fishlouse) ......................................................................... 11 Elaphoidella bidens bidens (Schmeil, 1893) (a harpacticoid copepod) ............................................... 12 Mesocyclops ogunnus Onabamiro, 1957 (a cyclopoid copepod) ....................................................... 13 Paracyclops bromeliacola Karaytug and Boxshall, 1998 (a copepod) ................................................ 14 Skistodiaptomus pallidus Herrick, 1879 (a calanoid copepod) ........................................................... 15 Macrobrachium ohione (S. I. Smith, 1874) (Ohio Shrimp) .................................................................. 16 Macrobrachium rosenbergii (De Man, 1879) (Giant River Prawn) ..................................................... 17 Procambarus hayi (Faxon, 1884) (Straightedge Crayfish) ................................................................... 19 Crustacean References Cited .................................................................................................................. 20 MOLLUSKS ................................................................................................................................................... 24 Overview ................................................................................................................................................. 24 Species Accounts of Mollusks New to Region 4 ...................................................................................... 28 Dreissena bugensis Andrusov, 1897 (Quagga Mussel) ....................................................................... 28 Thiara scabra (Müller, 1774) (Pagoda Tiara) ...................................................................................... 30 Viviparus georgianus (Lea, 1934) (Banded Mysterysnail)................................................................... 31 Viviparus subpurpureus (Say, 1829) (Olive Mysterysnail) ................................................................... 32 Mollusk References Cited ....................................................................................................................... 33 AMPHIBIANS AND REPTILES ........................................................................................................................ 35 Overview ................................................................................................................................................. 35 ii Species Accounts of Amphibians and Reptiles New to Region 4 ............................................................ 43 Bombina orientalis (Boulenger, 1890) (Oriental Fire-bellied Toad) .................................................... 43 Afrixalus fornasini (Bianconi, 1849) (Fornasini’s Spiny Reed Frog) ..................................................... 44 Kaloula pulchra Gray, 1831 (Malaysian Painted Frog or Chubby Frog) .............................................. 45 Pipa pipa (Linnaeus, 1758) (Suriname Toad) ...................................................................................... 47 Amphiuma tridactylum Cuvier, 1827 (Three-toed Amphiuma) .......................................................... 48 Cynops orientalis (Boie, 1826) (Oriental Fire-bellied Newt) ............................................................... 49 Pachytriton labiatus (Unterstein, 1930) (Paddle-tail Newt) ............................................................... 51 Paleosuchus palpebrosus (Cuvier, 1807) (Cuvier's Dwarf Caiman) ..................................................... 52 Crocodylus acutus (Cuvier, 1807) (American Crocodile) ..................................................................... 53 Eunectes murinus (Linnaeus, 1758) (Green Anaconda) ...................................................................... 54 Eunectes notaeus (Cope, 1862) (Yellow Anaconda) ........................................................................... 55 Erpeton tentaculatus Lacepede, 1800 (Tentacled Snake)................................................................... 57 Rhinoclemmys pulcherrima (Gray, 1855) (Painted Wood Turtle) ....................................................... 58 Chelydra serpentina (Linnaeus, 1758) (Snapping Turtle) .................................................................... 59 Macrochelys temminickii (Troost in Harlan, 1835) (Alligator Snapping Turtle) .................................. 60 Glyptemys insculpta (LeConte, 1830) (Wood Turtle) .......................................................................... 61 Staurotypus salvinii Gray, 1864 (Pacific Coast Giant Musk Turtle) ..................................................... 61 Apalone spinifera (Le Sueur, 1827) (Spiny Softshell) .......................................................................... 62 Amphibians and Reptiles References Cited ............................................................................................ 64 FISH ............................................................................................................................................................. 69 Overview ................................................................................................................................................. 69 Species Accounts of Fishes New to Region 4 .......................................................................................... 84 Phenacogrammus interruptus (Boulenger, 1899) (Congo Tetra) ....................................................... 84 Channa maculata (Lacepède, 1801) (Blotched Snakehead) ............................................................... 85 Channa micropeltes (Cuvier in Cuvier and Valenciennes, 1831) (Giant Snakehead) .......................... 86 Amphilophus labiatus (Günther, 1864) (Red Devil) ............................................................................ 86 Parachromis dovii (Günther, 1864) (Wolf Cichlid) .............................................................................. 87 Paraneetroplus melanurus x Paraneetroplus zonatus (hybrid cichlid) ............................................... 88 Paraneetroplus synspilus (Hubbs, 1935) (Redhead Cichlid) ................................................................ 89 Mylopharyngodon piceus (Richardson, 1846) (Black Carp) ................................................................ 90 Tanichthys albonubes (Lin, 1932) (White Cloud Mountain Minnow) ................................................. 93 iii Apeltes quadracus (Mitchill, 1815) (Fourspine Stickleback) ............................................................... 94 Gyrinocheilus aymonieri (Tirant, 1883) (Chinese Algae-eater) ........................................................... 95 Atractosteus spatula (Lacepède, 1803) (Alligator Gar) ....................................................................... 95 Ancistrus sp. Kner, 1854 (Bristlenosed Catfish) possibly A. cf. cirrhosus ............................................ 96 Farlowella vittata Myers, 1942 (Stick catfish) .................................................................................... 98 Glyptoperichthys gibbiceps (Kner, 1854) (Leopard Pleco) .................................................................. 99 Pterygoplichthys anisitsi
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Common Fish Keeping Myths
    Common Fish Keeping Myths There are many common misconceptions and myths floating around about fish keeping and aquarium care, so we’re going to take a moment to address a few of the ones we frequently hear: I can put several fish in a small two gallon bowl. This mostly depends on the fish. With fish tanks, there is something we call the bio load - the number of fish you can have based on the size of the tank and the size of the fish. The general rule of thumb is one inch of fish per gallon. There are some ways to fudge this rule: adding a filter (or a more powerful filter) and more frequent water changes can allow you to keep a few more fish. Some of the cleaner and hardier species of fish can be in larger groups., and it all depends on the amount of work you want to put into your tank. Fish only grow to the size of their tank. There are some species that do suffer from "stunting" and stay small, but this is usually caused by ammonia poisoning, not the tank size. And while fish kept in this toxic environment will survive, it's for a limited time, and they won't thrive. Most species will grow to their adult sizes, regardless of the size of their homes. Bottom feeders and algae eaters will help keep my tank clean. This is the most common one we hear, and it's definitely not true. Most bottom feeders are members of the catfish family.
    [Show full text]
  • Hemichromis Bimaculatus (African Jewelfish)
    African Jewelfish (Hemichromis bimaculatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, September 2018 Web Version, 2/14/2019 Photo: Zhyla. Licensed under CC BY-SA 3.0. Available: https://commons.wikimedia.org/wiki/File:Hemichromis_bimaculatus1.jpg. (September 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Africa: widely distributed in West Africa, where it is known from most hydrographic basins [Teugels and Thys van den Audenaerde 2003], associated with forested biotopes [Daget and Teugels 1991, Lamboj 2004]. Also reported from coastal basins of Cameroon, Democratic Republic of the Congo and Nile basin [Teugels and Thys van den Audenaerde 1992], but at least its presence in Cameroon is unconfirmed in [Stiassny et al. 2008]. [Lamboj 2004] limits this species to Guinea, Sierra Leone and Liberia.” 1 From Azeroual and Lalèyè (2010): “This species is widely distributed throughout western Africa, but has also been recorded from Algeria to Egypt.” “Northern Africa: Within this region this species is very rare. It used to be caught from the coastal lagoons, especially Lake Mariut (Egypt) and Algeria. Its [sic] found in Tunisia in the wadis of Kebili in the south of Tunisia and in wadis near Chott Melrhir in eastern Algeria (Kraiem, pers. comm.), and Egypt (Wadi El Rayan Lakes).” “Western Africa: It is known from most hydrographic basins in western Africa.” Status in the United States It is not certain if this species is present in the United States, or if records pertain to H. letourneuxi. From NatureServe (2018): “Introduced and established in Dade County, Florida, […] (Nelson 1983).” From Nico et al.
    [Show full text]
  • Ambloplites Constellatus, a New Species of Rock Bass from the Ozark Upland of Arkansas and Missouri with a Review of Western Rock Bass Populations
    Ambloplites constellatus, a New Species of Rock Bass from the Ozark Upland of Arkansas and Missouri with a Review of Western Rock Bass Populations ROBERT C. CASHNER and ROYAL D. SUTTKUS V Reprinted from THE AMERICAN MIDLAND NATURALIST Vol. 98, No. 1, July, 1977, pp. 147-161 University of Notre Dame Press Notre Dame, Indiana Ambloplites constellatus, a New Species of Rock Bass from the Ozark Upland of Arkansas and Missouri with a Review of Western Rock Bass Populations' ROBERT C. CASHNER Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70122 and ROYAL D. SUTTKUS Tulane University, Museum of Natural History, Belle Chasse, Louisiana 70037 ABSTRACT: A new species of rock bass, Ambloplites constellatus, is described from the upland section of the White River in Arkansas and Missouri. It is compared with the closely related northern rock bass (A. rupestris) from Missouri and Meramec river populations, the southern rock bass (A. ariommus) from the Ouachita and Little river drainages, and with other western rock bass populations of undetermined status. Ambloplites constellatus is distinguished from its congeners by its freckled color pattern and slender body form. Ambloplites constellatus occurs throughout the upper White River. There are two records of the species from the Osage River drainage in Missouri. INTRODUCTION In his study of Missouri fishes, Pflieger (1971) noted that rock bass from the upper White River system differed strikingly in color pattern from other Missouri populations. Based on our examination of mate- rial from throughout the Ozark Upland province, as well as other western rock bass populations, we describe the upper White River population as a new species, Ambloplites constellatus, the Ozark rock bass.
    [Show full text]
  • Text Transformation K Text Statistics K Parsing Documents K Information Extraction K Link Analysis
    Chapter IR:III III. Text Transformation q Text Statistics q Parsing Documents q Information Extraction q Link Analysis IR:III-25 Text Transformation © HAGEN/POTTHAST/STEIN 2018 Parsing Documents Retrieval Unit The atomic unit of retrieval of a search engine is typically a document. Relation between documents and files: q One file, one document. Examples: web page, PDF, Word file. q One file, many documents. Examples: archive files, email threads and attachments, Sammelbände. q Many files, one document. Examples: web-based slide decks, paginated web pages, e.g., forum threads. Dependent on the search domain, a retrieval unit may be defined different from what is commonly considered a document: q One document, many units. Examples: comments, reviews, discussion posts, arguments, chapters, sentences, words, etc. IR:III-26 Text Transformation © HAGEN/POTTHAST/STEIN 2018 Parsing Documents Index Term Documents and queries are preprocessed into sets of normalized index terms. Lemma- tization Stop word Index Plain text Tokenization extraction removal terms Stemming The primary goal of preprocessing is to unify the vocabularies of documents and queries. Each preprocessing step is a heuristic to increase the likelihood of semantic matches while minimizing spurious matches. A secondary goal of preprocessing is to create supplemental index terms to improve retrieval performance, e.g., for documents that do not posses many of their own. IR:III-27 Text Transformation © HAGEN/POTTHAST/STEIN 2018 Parsing Documents Document Structure and Markup The most common document format for web search engines is HTML. Non-HTML documents are converted to HTML documents for a unified processing pipeline. Index terms are obtained from URLs and HTML markup.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Doublespot Acara (Aequidens Pallidus) Ecological Risk Screening Summary
    Doublespot Acara (Aequidens pallidus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, web version – 03/29/2018 Photo: Frank M Greco. Licensed under Creative Commons BY 3.0 Unported. Available: https://commons.wikimedia.org/wiki/File:Aequidens_pallidus.jpg. (August 2017). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2015): “South America: Amazon River basin, in the middle and lower Negro River, Uatumã, Preto da Eva, and Puraquequara rivers.” Status in the United States No records of Aequidens pallidus in the United States found. 1 Means of Introductions in the United States No records of Aequidens pallidus in the United States found. Remarks No additional remarks. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2015): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Acanthopterygii Order Perciformes Suborder Labroidei Family Cichlidae Genus Aequidens Species Aequidens pallidus (Heckel, 1840)” From Eschmeyer et al. (2017): “pallidus, Acara Heckel [J. J.] 1840:347 […] [Annalen des Wiener Museums der Naturgeschichte v. 2] Rio Negro of Rio Amazonas, South America. Holotype (unique): NMW 33678. •Valid as Aequidens pallidus (Heckel 1840) -- (Kullander in Reis et al. 2003:608 […]). Current status: Valid as Aequidens pallidus (Heckel 1840). Cichlidae: Cichlinae.” Size, Weight, and Age Range From Froese and Pauly (2015): “Max length: 14.3 cm SL male/unsexed; [Kullander 2003]” “Maximum length 20.0 cm TL [Stawikowski and Werner 1998].” 2 Environment From Froese and Pauly (2015): “Freshwater; benthopelagic; pH range: 6.5 - 7.5; dH range: ? - 10.
    [Show full text]
  • Croaking Gourami, Trichopsis Vittata (Cuvier, 1831), in Florida, USA
    BioInvasions Records (2013) Volume 2, Issue 3: 247–251 Open Access doi: http://dx.doi.org/10.3391/bir.2013.2.3.12 © 2013 The Author(s). Journal compilation © 2013 REABIC Rapid Communication Croaking gourami, Trichopsis vittata (Cuvier, 1831), in Florida, USA Pamela J. Schofield 1* and Darren J. Pecora2 1 US Geological Survey, Southeast Ecological Science Center, 7920 NW 71st Street, Gainesville, FL 32653, USA 2 US Fish and Wildlife Service, Arthur R. Marshall Loxahatchee National Wildlife Refuge, 10216 Lee Road, Boynton Beach, FL 33473, USA E-mail: [email protected] (PJS), [email protected] (DJP) *Corresponding author Received: 8 February 2013 / Accepted: 30 May 2013 / Published online: 1 July 2013 Handling editor: Kit Magellan Abstract The croaking gourami, Trichopsis vittata, is documented from wetland habitats in southern Florida. This species was previously recorded from the same area over 15 years ago, but was considered extirpated. The rediscovery of a reproducing population of this species highlights the dearth of information available regarding the dozens of non-native fishes in Florida, as well as the need for additional research and monitoring. Key words: canal; croaking gourami; cypress swamp; Florida; Loxahatchee; Osphronemidae; Trichopsis vittata was previously considered extirpated (Shafland Introduction et al. 2008a, b), but is now known to be reproducing in a localised area. Dozens of non-native fishes have been introduced into Florida’s inland waterways, via accidental escape, pet releases, or intentional introduction
    [Show full text]
  • African Jewelfish ( Hemichromis Letourneuxi )
    African Jewelfish ( Hemichromis letourneuxi ) Order: Perciformes - Family: Cichlidae - Subfamily: Pseudocrenilabrinae - Tribe: Hemichromini Also known as: Saraba or Nile Jewell Fish Synonyms: Hemichromis rolandi, Hemichromis saharae, Hemichromis bimaculatus saharae, Hemichromis letourneauxi. Type: Freshwater, brackish; benthopelagic; - African Cichlid_Sauvage, 1880 Overview: Described as Hemichromis letourneuxi (Sauvage 1880), but commonly misspelled as H. letourneauxi. Loiselle (1979) revised the genus and provided diagno- ses, photographs, and synonyms for the species. An updated key to the genus was given in Loiselle (1992). Color photographs were provided by Linke and Staeck (1994). Until recently, all published references to introduced populations of this species taken in Florida were incorrectly identified or listed as Hemichromis bimaculatus (Smith-Vaniz, personal communication). Description: Physical Characteristics: Color Form: Max. Size: Approximate size 12-15 см Size 10-12 cm (3.9-4.7") Sexual dimorphism: Diet: Carnivore, Pellet Foods, Flake Foods, Live Foods Lifespan: 5-8 years Reproduction & Spawning: Behavior: . Habitat: Savannah associated species which prospers in a range of lentic habitats that include brackish water lagoons, large lakes and riverine flood plains (Ref. 5644). Occurs near vegetation beds and fringes. Feeds on Caridina and insects. Substrate spawner, ripe and spent fish are common early in the flood season. Origin / Distribution: The African Jewelfish, (Hemichromis letourneuxi) is native to the north and northwestern regions of Africa. Although the species has been present in the canals of south Florida since the 1950s, its geographic range has expanded greatly in recent years and continues to spread throughout south Florida habitats, from Ever- glades National Park to Big Cypress National Park (Loftus and others 2006).
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Master of the Marsh Information for Cart
    Mighty MikeMighty Mike:Mike: The Master of the Marsh A story of when humans and predators meet Alligators are magnificent predators that have lived for millions of years and demonstrate amazing adaptations for survival. Their “recent” interaction with us demonstrates the importance of these animals and that we have a vital role to play in their survival. Primary Exhibit Themes: 1. American Alligators are an apex predator and a keystone species of wetland ecosystems throughout the southern US, such as the Everglades. 2. Alligators are an example of a conservation success story. 3. The wetlands that alligators call home are important ecosystems that are in need of protection. Primary Themes and Supporting Facts 1. Alligators are an apex predator and, thus, a keystone species of wetland ecosystems throughout the southern US, such as the Everglades. a. The American Alligator is known as the “Master of the Marsh” or “King of the Everglades” b. What makes a great predator? Muscles, Teeth, Strength & Speed i. Muscles 1. An alligator has the strongest known bite of any land animal – up to 2,100 pounds of pressure. 2. Most of the muscle in an alligators jaw is intended for biting and gripping prey. The muscles for opening their jaws are relatively weak. This is why an adult man can hold an alligators jaw shut with his bare hands. Don’t try this at home! ii. Teeth 1. Alligators have up to 80 teeth. 2. Their conical teeth are used for catching the prey, not tearing it apart. 3. They replace their teeth as they get worn and fall out.
    [Show full text]
  • Vocalizations in Two Rare Crocodilian Species: a Comparative Analysis of Distress Calls of Tomistoma Schlegelii (Müller, 1838) and Gavialis Gangeticus (Gmelin, 1789)
    NORTH-WESTERN JOURNAL OF ZOOLOGY 11 (1): 151-162 ©NwjZ, Oradea, Romania, 2015 Article No.: 141513 http://biozoojournals.ro/nwjz/index.html Vocalizations in two rare crocodilian species: A comparative analysis of distress calls of Tomistoma schlegelii (Müller, 1838) and Gavialis gangeticus (Gmelin, 1789) René BONKE1,*, Nikhil WHITAKER2, Dennis RÖDDER1 and Wolfgang BÖHME1 1. Herpetology Department, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Adenauerallee 160, 53113 Bonn, Germany. 2. Madras Crocodile Bank Trust, P.O. Box 4, Mamallapuram, Tamil Nadu 603 104, S.India. *Corresponding author, R. Bonke, E-mail: [email protected] Received: 07. August 2013 / Accepted: 16. October 2014 / Available online: 17. January 2015 / Printed: June 2015 Abstract. We analysed 159 distress calls of five individuals of T. schlegelii for temporal parameters and ob- tained spectral parameters in 137 of these calls. Analyses of G. gangeticus were based on 39 distress calls of three individuals, of which all could be analysed for temporal and spectral parameters. Our results document differences in the call structure of both species. Distress calls of T. schlegelii show numerous harmonics, whereas extensive pulse trains are present in G. gangeticus. In the latter, longer call durations and longer in- tervals between calls resulted in lower call repetition rates. Dominant frequencies of T. schlegelii are higher than in G. gangeticus. T. schlegelii specimens showed a negative correlation of increasing body size with de- creasing dominant frequencies. Distress call durations increased with body size. T. schlegelii distress calls share only minor structural features with distress calls of G. gangeticus. Key words: Tomistoma schlegelii, Gavialis gangeticus, distress calls, temporal parameters, spectral parameters.
    [Show full text]