Vehicle Concept Exploration and Avionics Architecture Design for a Fast Package Delivery System by Dylan F

Total Page:16

File Type:pdf, Size:1020Kb

Vehicle Concept Exploration and Avionics Architecture Design for a Fast Package Delivery System by Dylan F Vehicle Concept Exploration and Avionics Architecture Design for a Fast Package Delivery System by Dylan F. Glas S.B., Aeronautics and Astronautics (1997) Massachusetts Institute of Technology S.B., Earth, Atmospheric, and Planetary Sciences (1997) Massachusetts Institute of Technology Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of MASTER OF ENGINEERING IN AERONAUTICS AND ASTRONAUTICS at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2000 @ Dylan F. Glas, 2000. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. A uthor.................. ............. .......... / Department of Aeronautics and Astronautics May 14, 2000 Certified by............ ........ ...... R. John Hansman, Jr. Professor, Department of Aeronautics and Astronautics Thesis Supervisor Certified by ......... Charles Boppe Senior Lecturer, Department of Aeronautics and Astronautics Thesis Supervisor Accepted by .................... .................................. Nesbitt Hagood MASSACHUSETTS INSTITUTE Chairman, Graduate Office OF TECHNOLOGY SEP 0 7 2000 LIBRARIES Vehicle Concept Exploration and Avionics Architecture Design for a Fast Package Delivery System by Dylan F. Glas Submitted to the Department of Aeronautics and Astronautics on May 14, 2000, in partial fulfillment of the requirements for the degree of MASTER OF ENGINEERING IN AERONAUTICS AND ASTRONAUTICS Abstract Fast Package Delivery was explored as a possible commercial application of advanced reusable launch vehicle technologies. The market was divided into two distinct segments: an on-demand charter service for urgent deliveries, and a scheduled service similar to today's overnight delivery services. System reliability is a strong driver for both cases. For the on-demand case, vehicle speed is of critical importance. In order to provide on-demand service, only one customer may be served per vehicle flight. Since the price a customer will pay is highly sensitive to vehicle speed, the optimal vehicle concept was determined to be a Mach 6 hypersonic aircraft. Due to the small payload weight (200 lb) the overall vehicle size and cost are highly sensitive to equipment weight. Therefore substantial savings could be realized if the aircraft were unmanned. Flight operations would most likely be autonomous during cruise, but remotely piloted during launch and landing. Scheduled service, due to its much larger projected payload (6000 lb), is less sensitive to the weight of onboard equipment, and would not need to be unmanned. Packages from many customers would be carried at once, enabling lower prices to be charged to each customer. Lower prices mean that lower vehicle speeds would be acceptible to the customers, and so the optimal vehicle concept for scheduled service was found to be a Mach 2-3 supersonic transport. Unfortunately, due to the inherent unreliability of experimental technologies, Fast Package Deliv- ery does not appear to be a feasible application at this time. However, once supersonic and reusable launch vehicle technologies begin to mature, Fast Package Delivery should be considered as a real- istic business prospect. This paper presents the market analysis, system requirements development, vehicle concept selection, and avionics considerations for a Fast Package Delivery system. Thesis Supervisor: R. John Hansman, Jr. Title: Professor, Department of Aeronautics and Astronautics Thesis Supervisor: Charles Boppe Title: Senior Lecturer, Department of Aeronautics and Astronautics 2 Acknowledgements Since its inception in 1997, many hands contributed to this project. First of all, I would like to thank the team: Kurt Palmer, Anand Karasi, Martin Chan, and especially Jared Martin, whose passion for Reusable Launch Vehicles carried Fast Package Delivery to the next level. This was by no means an individual effort, and I've learned a lot from all of you. Many thanks also go to the faculty advisors who helped us along the way: Pete Young, Stan Weiss, Manuel Martinez-Sanchez, Mark Spearing, and my advisor, John Hansman. Thanks most of all to Charlie Boppe, who really helped to pull the whole project together, who was there for every design meeting, and who spent countless hours going through drafts of my thesis. I would also like to acknowledge a number of individuals for their contributions to this project: " Curtis McNeal, NASA Marshall Space Flight Center * David Quin, Emery Expedite " Jeff Kobielush, UPS Sonic Air " Gary Schwartz, Draper Laboratories On a personal level, this thesis represents much more to me than the completion of a single project, or even a single degree program. This marks the end of seven years of my life spent in and around MIT, and I have many acknowledgements to give for helping me get to this point. To Lee Hasey, Joel Wexler, Joe Gooze, and Elena Ruehr, truly some of the most amazing teachers I have ever had - I can never thank them enough for their hard work and the inspiration they have given me. To my a cappella group, the Toons, an incredibly talented and passionate group of individuals. They really provided the fire that kept me going through the difficult times. To Hiroshi Ishii at the MIT Media Lab, and to James Kessler at Sapient, whose leadership and encouragement helped me to achieve more than I ever thought I could, and whose wise advice continues to guide me through life. To Ben, Teddy, Chris, Johnny, Radu, Peter Ju, KIP, Peter Finin, and the other brothers of Phi Kappa Theta at MIT, for all the friendship, energy, challenging ideas, and opportunities they have given me. To my sister Robin, who means more to me than I can really put into words. To the 281 crew - Marcel, Heather, Heidi, Joel, and Rebecca - for their unique perspectives, late-night conversations, hilarious good times, and so many other memories. And finally, I must thank my parents for all the knowledge, patience, love, and wisdom that they've given me over the years. 3 Contents 1 Introduction 9 1.1 Fast Package Delivery (FPD) ..... ........... .... 9 1.2 Related Research Projects ................... ... 10 1.2.1 Commercial Space Transportation Study (CSTS) ..... 10 1.2.2 Boeing's Suborbital Freight Delivery Concept Exploration . 10 1.2.3 X-Prize Contenders ....... ...... ....... 10 2 Market Predictions 11 2.1 The Packages .... ..... ...... ..... ...... ... 11 2.1.1 Time-Critical Packages .. ..... ..... ..... ... 11 2.1.2 Perishables .. ....... ....... ...... .... 12 2.1.3 High Value-per-Pound Items ...... ...... .... 13 2.2 The Projections ... ........ ....... ....... ... 13 2.3 The Problem .... ........ ....... ....... ... 17 2.3.1 Scheduled Service . ...... ....... ....... 18 2.3.2 On-Demand Service . ....... ....... ...... 22 3 System Requirements 25 3.1 Introduction. ........ ....... ........ ..... 25 3.2 Customer Needs ....... ....... ........ ..... 25 3.3 System Tools: Quality Function Deployment ....... .... 27 3.3.1 QFD Analysis for Scheduled Service .. ...... .... 28 3.3.2 QFD Analysis for On-Demand Service . ...... .... 35 4 Concept Selection 40 4.1 Vehicle Concepts .......... ........... ...... 40 4.1.1 Initial Concepts .. ........... .......... 40 4.1.2 Final Concepts .... ....... ....... ...... 41 4 4.2 Comparison Study --- -- --- 49 4.2.1 Scoring the Concepts .. .. .. .. .. .. .. .. .. .. .. .. .. .. 50 4.2.2 Scheduled Service Concept .. .. .. .. .. .. .. .. .. .. .. .. .. 53 4.2.3 On-Demand Service Concept . .. .. .. .. .. .. .. .. .. .. .. .. 53 5 Scheduled Service 56 5.1 Overview . .. .. .. .. .. .. .. .. .. .. .. -- -- -- - . - -- . 56 5.2 Vehicle Solutions .. .. .. .. .. .. .. .. .. .. .. .. -- . -. .. 56 5.3 Scheduling .. .. .. .. .. .. .. .. .. .. .. - -- . .. .. .. .. 57 5.4 Challenges . .. .. .. .. .. .. .. .. .. .. -- -. - -- -- . .. .. .. 57 6 On-Demand Service 59 6.1 Overview .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 59 6.2 Vehicle Layout . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 60 6.3 M ission Profile .. .. .. .. .. .. - -- . -- - - . .. .. .. .. .. 61 6.4 Propulsion System .. .. .. .. .. .. .. .. .. .. .. .. .. 62 6.5 Thermal Analysis .. .. .. .. .. .. .. .. .. .. .. .. .. .. 63 6.6 M aterials .. .. .. .. .. .. .. .. -- - -- - . .. - -- -- - -- . 64 6.7 Avionics . .. .. .. .. .. .. .. - - -- -- - - . - - -- - . .. .. .. 64 6.8 Further Research .. .. .. .. .. .. .. .. - . -- -- - - . .. .. 65 7 Avionics Architecture 66 7.1 Overview . .. .. .. .. .. .. .. .. .. .. .. -- -. .. .. .. 66 7.2 Assumptions . .. .. .. .. .. .. .. .. .. - . - -- - -- -- - . 66 7.3 Safety Considerations .. .. .. .. .. .. .. .. - - . - -- . .. .. 67 7.4 Components .. .. .. .. .. .. .. .. .. - -- -- . .. .. .. 68 7.4.1 Air Data .. .. .. .. .. .. .. .. .. - - -- . -- - . .. .. 68 7.4.2 Navigation . .. .. .. .. .. .. .. .. -- -. - - . .. .. .. 70 7.4.3 Video .. .. .. .. .. .. .. - -- - -- -- - -- -- - -- -- - 71 7.4.4 Communication .. .. .. .. .. .. .. - -- - . - -- -- -- -- .. 71 7.4.5 Propulsion .. .. .. .. .. .. .. .. -- -- . - -- -- - -- -- . 72 7.4.6 Electrical Power . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 73 7.4.7 Other actuators . .. .. .. .. .. .. .. - . .. - . - - . 74 7.5 Processing . .. .. .. .. .. .. -- -. - . - -- - -- -- - -- -- - -- - 74 7.5.1 Flight Control System . .. .. .. .. .. .. .. .. .. - . .. 74 7.5.2 State Estimator . .. .. .. .. .. .. .. .. .. .. .. .. 76 7.5.3 Guidance Module .. .. .. .. .. .. .. - -- - -- - - . 77 5 7.5.4 GCS Command Relay ---- 77 7.5.5 M ission
Recommended publications
  • Future Space Launch Vehicles
    Future Space Launch Vehicles S. Krishnan Professor of Aerospace Engineering Indian Institute of Technology Madras Chennnai - 600 036, India (Written in 2001) Introduction Space technology plays a very substantial role in the economical growth and the national security needs of any country. Communications, remote sensing, weather forecasting, navigation, tracking and data relay, surveillance, reconnaissance, and early warning and missile defence are its dependent user-technologies. Undoubtedly, space technology has become the backbone of global information highway. In this technology, the two most important sub-technologies correspond to spacecraft and space launch vehicles. Spacecraft The term spacecraft is a general one. While the spacecraft that undertakes a deep space mission bears this general terminology, the one that orbits around a planet is also a spacecraft but called specifically a satellite more strictly an artificial satellite, moons around their planets being natural satellites. Cassini is an example for a spacecraft. This was developed under a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. Cassini spacecraft, launched in 1997, is continuing its journey to Saturn (about 1274 million km away from Earth), where it is scheduled to begin in July 2004, a four- year exploration of Saturn, its rings, atmosphere, and moons (18 in number). Cassini executed two gravity-assist flybys (or swingbys) of Venus one in April 1998 and one in June 1999 then a flyby of Earth in August 1999, and a flyby of Jupiter (about 629 million km away) in December 2000, see Fig. 1. We may note here with interest that ISRO (Indian Space Research Organisation) is thinking of a flyby mission of a spacecraft around Moon (about 0.38 million km away) by using its launch vehicle PSLV.
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • Seeds of Discovery: Chapters in the Economic History of Innovation Within NASA
    Seeds of Discovery: Chapters in the Economic History of Innovation within NASA Edited by Roger D. Launius and Howard E. McCurdy 2015 MASTER FILE AS OF Friday, January 15, 2016 Draft Rev. 20151122sj Seeds of Discovery (Launius & McCurdy eds.) – ToC Link p. 1 of 306 Table of Contents Seeds of Discovery: Chapters in the Economic History of Innovation within NASA .............................. 1 Introduction: Partnerships for Innovation ................................................................................................ 7 A Characterization of Innovation ........................................................................................................... 7 The Innovation Process .......................................................................................................................... 9 The Conventional Model ....................................................................................................................... 10 Exploration without Innovation ........................................................................................................... 12 NASA Attempts to Innovate .................................................................................................................. 16 Pockets of Innovation............................................................................................................................ 20 Things to Come ...................................................................................................................................... 23
    [Show full text]
  • Rotary Rocket Company Web Site Text Document
    Rotary Rocket Company Web Site Text Document There is a quiet revolution underwaya Revolution to Orbit. In a little under two years, Rotary Rocket Company of Redwood City, California, will begin to operate the Roton, a single-stage-to-orbit (SSTO) space vehicle. The Roton will be the worlds first, fully reusable, piloted, commercial space vehicle. The space launch marketplace will be forever changed. The advent of affordable space transportation brought about by Rotary Rocket Companys Roton space vehicle will herald the arrival of the new space agethe age of routine, commercial space transportation. www.rotaryrocket.com Information in this document was current as of August 24, 1999. Corporate Press Releases, In the News, and Management Biographies are located in separate documents for download. Outside Link information is not included. Copyright © 1999 Rotary Rocket Company. All rights reserved. Business Strategy (QWUHSUHQHXULDO)RFXV Rotary Rocket Companys management has opted for an innovative and entrepreneurial business strategy to break into a industry characterized by dependence on government grants and contracts, large work forces, ponderous bureaucracies, entrenched corporate interests, and low profitability. Our companys corporate culture is identified by a small but highly experienced work force, extensive use of contractors, and incentives to employees through ownership opportunities. We are focused on addressing strong market demand while at the same time creating new markets with an innovative engineering solution. 6XSHULRU3RVLWLRQLQJ The launch industry is largely a commodity market and our management has positioned Rotary Rocket to be the lowest cost provider in that market. We intend our vehicle to be less expensive to build and operate than any other existing expendable or emerging reusable launch vehicles.
    [Show full text]
  • Quarterly Launch Report
    Commercial Space Transportation QUARTERLY LAUNCH REPORT Featuring the launch results from the previous quarter and forecasts for the next two quarters 1st Quarter 1998 U n i t e d S t a t e s D e p a r t m e n t o f T r a n s p o r t a t i o n • F e d e r a l A v i a t i o n A d m i n i s t r a t i o n A s s o c i a t e A d m i n i s t r a t o r f o r C o m m e r c i a l S p a c e T r a n s p o r t a t i o n QUARTERLY LAUNCH REPORT 1 1ST QUARTER 1998 REPORT Objectives This report summarizes recent and scheduled worldwide commercial, civil, and military orbital space launch events. Scheduled launches listed in this report are vehicle/payload combinations that have been identified in open sources, including industry references, company manifests, periodicals, and government documents. Note that such dates are subject to change. This report highlights commercial launch activities, classifying commercial launches as one or more of the following: • Internationally competed launch events (i.e., launch opportunities considered available in principle to competitors in the international launch services market), • Any launches licensed by the Office of the Associate Administrator for Commercial Space Transportation of the Federal Aviation Administration under U.S.
    [Show full text]
  • Suborbital Reusable Launch Vehicles and Applicable Markets
    SUBORBITAL REUSABLE LAUNCH VEHICLES AND APPLICABLE MARKETS Prepared by J. C. MARTIN and G. W. LAW Space Launch Support Division Space Launch Operations October 2002 Space Systems Group THE AEROSPACE CORPORATION El Segundo, CA 90245-4691 Prepared for U. S. DEPARTMENT OF COMMERCE OFFICE OF SPACE COMMERCIALIZATION Herbert C. Hoover Building 14th and Constitution Ave., NW Washington, DC 20230 (202) 482-6125, 482-5913 Contract No. SB1359-01-Z-0020 PUBLIC RELEASE IS AUTHORIZED Preface This report has been prepared by The Aerospace Corporation for the Department of Commerce, Office of Space Commercialization, under contract #SB1359-01-Z-0020. The objective of this report is to characterize suborbital reusable launch vehicle (RLV) concepts currently in development, and define the military, civil, and commercial missions and markets that could capitalize on their capabilities. The structure of the report includes a brief background on orbital vs. suborbital trajectories, as well as an overview of expendable and reusable launch vehicles. Current and emerging market opportunities for suborbital RLVs are identified and discussed. Finally, the report presents the technical aspects and program characteristics of selected U.S. and international suborbital RLVs in development. The appendix at the end of this report provides further detail on each of the suborbital vehicles, as well as the management biographies for each of the companies. The integration of suborbital RLVs with existing airports and/or spaceports, though an important factor that needs to be evaluated, was not the focus of this effort. However, it should be noted that the RLV concepts discussed in this report are being designed to minimize unique facility requirements.
    [Show full text]
  • Beam Powered Propulsion Systems
    Beam Powered Propulsion Systems Nishant Agarwal University of Colorado, Boulder, 80309 While chemical rockets have dominated space exploration, other forms of rocket propulsion based on nuclear power, electrostatic and magnetic drives, and other principles have been considered from the earliest days of the field with the goal to improve efficiency through higher exhaust velocities, in order to reduce the amount of fuel the rocket vehicle needs to carry. However, the gap between technology to reach orbit from surface and from orbit to interplanetary travel still remains open considering both economics of time and money. In addition, methods have been tested over the years to reach the orbit with single stage rocket from earth’s surface which will eventually result in drastic cost savings. Reusable SSTO vehicles offer the promise of reduced launch expenses by eliminating recurring costs associated with hardware replacement inherent in expendable launch systems. No Earth- launched SSTO launch vehicles have ever been constructed till date. Beam Powered Propulsion has emerged as a promising concept that is capable to fulfill all regimes of space travel. This paper takes a look at these concepts and studies the feasibility of Microwave Propulsion for possibility of SSTO vehicle. Nomenclature At = nozzle throat area C* = characteristic velocity Cf = Thrust Coefficient Cp = Specific heat constant Dt, Dexit = Diameter of nozzle throat, Nozzle exit diameter g = acceleration due to gravity Gamma = Specific heat ratio LOX/LH = Liquid Oxygen/Liquid Hydrogen MR = mass ratio Mi,Ms,Mp = total mass, structural mass, propellant mass, payload mass Mpayl = payload mass Mdot = flow rate Isp = Specific Impulse Ve = exhaust velocity I.
    [Show full text]
  • Richard Branson's Space Line Is Flight-Testing for a 2014 Virgin Galactic Launch. After That: Mars by Adam Higginbotham
    RICHA R D BR A NSON ’s SPACE LINE IS FLIGHT-TESTING FOR A 2014 VIRGIN U P GALACTIC LAUNCH. AFTER THAT: MARS by ADAM HIGGINBOTHAM photography: CHRIS CRISMAN OMETIMES it almost seems to disappear into the desert. Conceived as a conjuring trick of architecture and topography, the Virgin Galactic Gateway to Space rises in a sinuous curve from the harsh New Mexico dust, its steel surfaces weathered into a red- brown mirage on the horizon; at twilight, the silhouette of the world’s first purpose- built commercial spaceport melts slowly into the ridgeline of the San Andres moun- tains, 30 kilometres away. The route that the package-tour astro- nauts of tomorrow will take through the building has been meticulously devised by the architects of Foster + Partners to fore- shadow the journey they will make into space: a concrete ramp ascends gently towards the centre of the building – a nar- row, hooded cleft that even in the blind- ing southwestern sunshine forms a small rectangle of perfect darkness. A mag- netic tag worn by each passenger triggers heavy steel doors that will open into a nar- row and dimly lit passageway, the walls curving out towards another blackened doorway, and a catwalk with views of the 4,300-square-metre hangar four storeys below, housing the fleet of spacecraft in which they will travel. And then, the finale: the last set of doors swings open into the astronaut lounge, a vast, open space filled with natural light from an elliptical wall of windows, offer- ing a panorama of the three-kilometre- long spaceport runway, and the sky beyond.
    [Show full text]
  • Cecil Spaceport Master Plan 2012
    March 2012 Jacksonville Aviation Authority Cecil Spaceport Master Plan Table of Contents CHAPTER 1 Executive Summary ................................................................................................. 1-1 1.1 Project Background ........................................................................................................ 1-1 1.2 History of Spaceport Activities ........................................................................................ 1-3 1.3 Purpose of the Master Plan ............................................................................................ 1-3 1.4 Strategic Vision .............................................................................................................. 1-4 1.5 Market Analysis .............................................................................................................. 1-4 1.6 Competitor Analysis ....................................................................................................... 1-6 1.7 Operating and Development Plan................................................................................... 1-8 1.8 Implementation Plan .................................................................................................... 1-10 1.8.1 Phasing Plan ......................................................................................................... 1-10 1.8.2 Funding Alternatives ............................................................................................. 1-11 CHAPTER 2 Introduction .............................................................................................................
    [Show full text]
  • Making History with Spaceshipone
    Volume 20, Issue 9, September 2005 A Monthly Publication of the Pine Mountain Lake Aviation Association Making History with SpaceShipOne ABOUT OUR SEPTEMBER 10, 2005 GUEST SPEAKER Brian Binnie is a Program Business Manager and Test Pilot at Brian Binnie Captures the X-Prize with SpaceShipOne Scaled Composites, based at Mojave Airport, the first FAA licensed Spaceport. He has 21 years of flight test experience including 20 years of Naval Service in the Strike- Fighter community. Brian has logged over 4600 hours of flight time in 59 different aircraft and is a licensed Airline Transport Pilot. Brian’s educational background includes a Bachelor of Science degree in Aerospace Engineering; a Master of Science degree in Fluid Mechanics and Thermodynamics from Brown University; and a Master of Science in Aeronautical Engineering from On October 4, 2004, SpaceShipOne, piloted by Brian Binnie, Princeton University. Brian is also a graduate of the U.S. Navy’s rocketed into history, becoming the first private manned Test Pilot School at Patuxent River, MD and the Naval Aviation spacecraft to exceed an altitude of 328,000 feet twice within the Safety School at Monterey, CA. He is a member of the Society span of a 14 day period, thus claiming the ten million dollar of Experimental Test Pilots and a published member of the Ansari X-Prize and setting the stage for civilian space flight. American Institute of Aeronautics and Astronautics. A Second Record Shattered As a naval aviator, he learned to fly everything from fighter jets to In addition to meeting the altitude requirement to win the X-Prize, transport planes to helicopters.
    [Show full text]
  • An Analysis of the Competitive Advantage of the United States of America in Commercial Human Orbital Spaceflight Markets
    University of Pennsylvania ScholarlyCommons Management Papers Wharton Faculty Research 2014 An Analysis of the Competitive Advantage of the United States of America in Commercial Human Orbital Spaceflight Markets Greg Autry Laura Hhuang Jeff Foust Follow this and additional works at: https://repository.upenn.edu/mgmt_papers Part of the Management Sciences and Quantitative Methods Commons Recommended Citation Autry, G., Hhuang, L., & Foust, J. (2014). An Analysis of the Competitive Advantage of the United States of America in Commercial Human Orbital Spaceflight Markets. Futron Corporation, Retrieved from https://repository.upenn.edu/mgmt_papers/222 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mgmt_papers/222 For more information, please contact [email protected]. An Analysis of the Competitive Advantage of the United States of America in Commercial Human Orbital Spaceflight Markets Abstract The “Public/Private Human Access to Space” / Human Orbital Markets (HOM) study group of the International Academy of Astronautics (IAA) has established a framework for the identification and analysis of relevant factors and structures that support a global human orbital spaceflight market. The HOM study group has called for analysis at the national level to be incorporated in their global study. This report, commissioned by the FAA Office of Commercial Space Transport, provides a review of demonstrated and potential Human Orbital Markets and an analysis of the U.S. industrial supply chain supporting commercial human orbital spaceflight. eW utilize a multi‐method, holistic approach incorporating primarily qualitative methodologies that also incorporates relevant statistical data. Our methodology parallels the National Competitive Advantage diamond model pioneered by economist Michael Porter. The study reveals that while the U.S.
    [Show full text]