(Sav) Conceptual Design
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE A PROTOTYPE COMPUTERIZED SYNTHESIS METHODOLOGY FOR GENERIC SPACE ACCESS VEHICLE (SAV) CONCEPTUAL DESIGN A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of Doctor of Philosophy By XIAO HUANG Norman, Oklahoma 2006 UMI Number: 3212013 UMI Microform 3212013 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 A PROTOTYPE COMPUTERIZED SYNTHESIS METHODOLOGY FOR GENERIC SPACE ACCESS VEHICLE (SAV) CONCEPTUAL DESIGN A DISSERTATION APPROVED FOR THE SCHOOL OF AEROSPACE AND MECHANICAL ENGINEERING BY ____________________________ Dr. Bernd Chudoba (Chair) ____________________________ Dr. Alfred G. Striz (Chair) ____________________________ Dr. Sesh Commuri ____________________________ Dr. Zahed Siddique ____________________________ Dr. Yunjun Xu ©Copyright by XIAO HUANG 2006 All Rights Reserved. ACKNOWLEDGMENTS I express my sincere thanks to my advisor Dr. Bernd Chudoba for his generous advice, encouragement, and continuous support throughout the progress of this research. His strong design knowledge and experience in aerospace vehicle conceptual design greatly accelerated my research. The available of extensive design data, information, experience, and knowledge of past and present aerospace projects in his personal database made my effort much easier. The quality of this research is significantly improved because of his thorough reading of the dissertation and open discussion of ideas. Special thanks to Dr. Alfred G. Striz for kindly consenting to serve as co-chairman on my dissertation committee and providing valuable and constructive suggestions. Acknowledgments are also due Dr. Zahed Siddique, Dr. Yunjun Xu, Dr. Sesh Commuri, for serving as members of my doctoral advisory committee. I would like to acknowledge the contributions of other Aerospace Vehicle Design (AVD) Laboratory members, and especially Paul Czysz for his guidance and valuable suggestions to the overall success of the research project. The students (Kiran Pippalapalli, Gary Coleman, Andy Huizenga, Andy N. Ferguson, Kristen N. Roberts, Amit R. Oza, Bradley D. Mixon, Bryan D. Mixon) have been with me throughout my graduate program and their friendship, and assistance have enriched my graduate study at The University of Oklahoma. iv I would like to dedicate this dissertation to all members of my family, my dear father, Dr. Yubin Huang, my loving mother, Mrs. Songying Liu, my beloved wife, Min Luo, my brother, Dr. Xin Huang, and my cousin, Dr. Jiesheng Kang, who believe in me and provide unconditional support and constant encouragement. This work could not have been completed without their love, understanding, patience, and sacrifices. This research was partially supported by TGV Rockets, Inc., Rocketplane, Inc., and SpiritWing Aviation. Financial assistance provided by the School of Aerospace and Mechanical Engineering (AME) at The University of Oklahoma is also gratefully acknowledged. v TABLE OF CONTENTS ACKNOWLEDGMENTS ........................................................................................................................iv LIST OF FIGURES ................................................................................................................................ix LIST OF TABLES ..............................................................................................................................xiv NOTATION ..............................................................................................................................xvi ABSTRACT ............................................................................................................................xxiv 1. Introduction and Objectives............................................................................................. 1 1.1 Introduction............................................................................................................................1 1.2 Objectives.............................................................................................................................14 1.3 Research Strategy.................................................................................................................20 2. Space Access Vehicle Design and Synthesis Systems............................................... 27 2.1 Space Access Vehicle (SAV) .....................................................................................................27 2.2 Characteristics of Space Access Vehicle (SAV) Conceptual Design.........................................27 2.3 Definition and Classifications of Design Synthesis Methodologies...........................................30 2.4 An Assessment of Design Synthesis Systems ............................................................................33 2.4.1 Mathematical Modeling of a Synthesis System ..........................................................42 2.4.2 Multidisciplinary Analysis and Optimization .............................................................44 2.4.3 Knowledge-Based System...........................................................................................47 2.4.4 Generic Concepts ........................................................................................................49 2.5 AVDS-SAV Development Requirements ..................................................................................51 3. Design Knowledge, Primary Design Disciplines and Methods Library...................... 54 3.1 Design Knowledge Base - KBSDESIGN .........................................................................................54 3.2 Primary Design Disciplines........................................................................................................62 3.2.1 Weight and Sizing.......................................................................................................64 3.2.2 Propulsion ...................................................................................................................67 3.2.3 Aerodynamics .............................................................................................................69 3.2.4 Stability and Control ...................................................................................................74 3.2.5 Aerothermodynamics ..................................................................................................77 3.2.6 Trajectory ....................................................................................................................80 3.2.7 Life-Cycle Cost ...........................................................................................................83 vi 4. A Generic Space Access Vehicle Design Methodology .............................................. 87 4.1 Generic Methodology Development...........................................................................................89 4.2 Alternative Methodology Concepts Towards a Generic SAV Synthesis System.......................91 4.3 Design Synthesis Methodology for Baseline Vehicle – HTHL..................................................94 4.3.1 Takeoff......................................................................................................................104 4.3.2 Ascent........................................................................................................................130 4.3.3 Reentry......................................................................................................................154 4.3.4 Approach and Landing..............................................................................................180 4.3.5 Design Space Screening and Design Convergence...................................................200 4.4 Extension of the HTHL Methodology to VTVL Vehicles .......................................................210 5. Application of HTHL Design Methodology ................................................................. 214 5.1 HTHL Baseline Vehicle Description........................................................................................219 5.1.1 Geometry Estimation ................................................................................................219 5.1.2 Weight Estimation.....................................................................................................220 5.2 Disciplinary Analysis ...............................................................................................................225 5.2.1 Atmosphere ...............................................................................................................225 5.2.2 Aerodynamics ...........................................................................................................226 5.2.3 Stability and Control .................................................................................................228 5.2.4 Propulsion .................................................................................................................230 5.2.5 Aerothermodynamics ................................................................................................231 5.3 Design Synthesis Process .........................................................................................................232 5.3.1 Takeoff......................................................................................................................232