The Flight to Orbit

Total Page:16

File Type:pdf, Size:1020Kb

The Flight to Orbit There are numerous ways to get there— Around the Corner Th As then–US Space Command chief from rocket The Gen. Howell M. Estes III said to launch to space defense writers just before his re- tirement in August, “This is going maneuver to come along a lot quicker than we vehicles—and the think it is. ... We tend to think this stuff is way out there in the future, Air Force is but it’s right around the corner.” keeping its Flight The Air Force and NASA have divided the task of providing the options open. US government with a means of reliable, low-cost transportation to Earth orbit. The Air Force, with the largest immediate need, is heading to up the effort to revamp the Expend- to able Launch Vehicles now used to loft military and other government satellites. Called the Evolved ELV, this program is focused on derivatives of existing rockets. Competitors have been invited to redesign or value- engineer their proven boosters with new materials and technologies to provide reliable launch services at a he Air Force would like to go Orbit far lower price than today’s bench- back and forth to Earth orbit as bit mark of around $10,000 a pound to T O easily as it goes back and forth to Low Earth Orbit. The reasoning is 30,000 feet—routinely, reliably, and that an “evolved”—rather than an relatively cheaply. Such a capability all-new—vehicle will yield cost sav- goes hand in hand with being a true ings while reducing technical risk. “aerospace” force but is one which By John A. Tirpak, Senior Editor The goal is to reduce launch costs has long eluded a hardware solution. by at least 25 percent; industry Concepts such as the X-20 Dyna-Soar leaders are shooting for a cut of 50 of the 1960s and the X-30 National percent or more. The Air Force wants Aerospace Plane of the 1980s and a family of launch vehicles, scaled early 1990s reached beyond the to fit medium and heavy payloads technological grasp of their times. headed for LEO or Geosynchronous The space shuttle, while a formidable that both help reach orbit and slow Transfer Orbit. technical feat, has never lived up to descent. Many involve international In addition, USAF wants to “stan- the twice-monthly launch sched ule partnerships, particularly with Rus- dardize the interfaces” between or cost originally envisioned for it. sian outfits, but all emphasize reuse rockets and satellites, so any US All this may soon change. As the of all or most of the system, with an military satellite can be carried by demand for both commercial and eye toward becoming a space-age the launchers available. This will military satellites multiplies almost version of today’s overnight package increase flexibility and eliminate the exponentially, more than two dozen companies. possibility that the entire military private and government projects are Even if only a fraction of the new space effort could be shut down if a under way to try to meet the cor- concepts work out, access to space particular kind of vehicle developed responding need for inexpensive will broaden and the cost of getting a flaw that grounded it. The EELV launch services. One concept calls there will drop significantly. One program also calls for most of the for winged vehicles to be towed to industry official made the analogy processing of rockets to take place altitude, then released for a rocket- between today’s rush to build cheap off-pad, freeing the launchpads— powered flight to orbit. Another launchers to the barnstorming days which are in limited supply—to be anticipates a midflight air refueling of aviation, which paved the way for used as much as possible for launch before the final ascent. Still another an explosion of new machines and and not be tied up waiting for one. envisions employing giant rotors new applications. While the Air Force originally AIR FORCE Magazine / November 1998 41 of the next decade. The VentureStar Ever since the Space Age will take off vertically, using the began, the Air Force has liquid hydrogen and liquid oxygen wanted a craft that could in its vast internal fuel tanks, orbit, quickly get to orbit and then return to a runway landing. It can land like an airplane. This be flown autonomously, remotely, drawing of the Martin SV-5D, an unmanned or by an onboard crew. lifting body tested in the It’s an ambitious undertaking. To 1960s, was the pre-cursor reduce risk and prove the technolo- to the X-24A, a manned gies involved, a half-scale demon- vehicle flight-tested from 1969 to 1971. USAF and strator called the X-33 is being built NASA flew various lifting and will fly next year on suborbital body concepts, but they flights of up to Mach 15. The main proved too technically thing to be proven with the X-33 is ambitious for the time. that its power plant—the linear aero- What goes around comes around, though; the spike engine—will work. Though Soviet space pro -gram conceived in the 1970s as a space test flew a sub-scale craft shuttle motor, it was ruled out for very much like the X-24, that program in favor of conventional and NASA is evaluating a similar craft, built by rocket motors, considered less risky Scaled Composites, as at the time. an Inter-national Space Now, Lockheed believes, the tech- Station emergency crew nology for a practical aerospike return vehicle. engine is available; the company has flown the concept aboard an SR-71 test bed. The linear aerospike is described as an “inside out” rocket motor, with fuel combustion taking place outside of a central core. The concept planned to select a single contractor take over leadership in lift services. eliminates the weight of rocket bell from among the entries in the com- China and Russia also have captured a exhausts and much of the plumbing petition, it decided late last year to very significant chunk of the market. involved with today’s rockets, thus carry two companies into production: saving weight and cost, and should Boeing with its Delta IV variants and The Next Phase be more reliable than a standard Lockheed Martin with its Atlas and The Air Force was expected to an- rocket motor. Titan follow-ons. The companies nounce details of the next phase of About 15 test flights of the X-33 will compete on a per-launch basis. the EELV program this fall, includ- are planned from Edwards AFB, Cal- A test of medium-lift variants will ing how it will save money while if. Shorter-duration flights will end take place in Fiscal 2002, and the maintaining two unique launch ve- with a landing at Michael Army Air heavy-lift versions are set to fly in hicle production lines. The project is Field at the Army’s Dugway Prov- Fiscal 2003, with a full operational expected to carry the bulk of USAF ing Grounds in Utah, while longer capability by Fiscal 2005. Earlier satellites into the 2015–20 era, when flights will conclude at Malmstrom flights are definitely possible, given it is hoped that a thoroughly Reusable AFB, Mont. Most of the flight tests that both Boeing and Lockheed Launch Vehicle will be available. will average a week apart, but the Martin had planned to pursue their NASA has taken the lead on this program calls for demonstrating a respective vehicles with or without longer-term solution. While the space turnaround time of two days at least a “win” in the EELV competitions shuttle orbiter and its large external once. The suborbital flight to Utah and given that the demand for launch solid boosters can be used again after will take about 15 minutes while services is starting to overtake the extensive refurbishment, its huge the trip to Malmstrom will take 24 number of rockets available. external liquid fuel tank is discarded minutes. The program would, not coinci- on every flight, and turnaround time The Air Force is interested in both dentally, help US companies reclaim has never bested two months. NASA VentureStar and the X-33 as possible their dominance of the satellite and the Air Force want a system which launch vehicles for its own more launch business. American firms, consumes nothing but fuel and parts routine operations in space but will which once seemed unbeatable in and with a re-fly window measured not commit to the system for some commercial space, now have only 36 in days, not weeks. time, waiting to see that the concept percent of the annual launch market of The anticipated system for the RLV delivers on its promises. The X-33 around $2.8 billion. The Challenger is the Lockheed Martin VentureStar. does have a small payload bay, mea- accident in 1986, which forced a This lifting-body design is expected suring 5 feet by 10 feet. two-year shutdown in shuttle opera- to loft 50,000 pounds to Low Earth tions and left the US scrambling for Orbit—compared to the shuttle’s Spaceplane No More expendable alternatives, allowed the 51,000-pound maximum—at only “We envision a Space Operations European Arianespace consortium to about $1,000 a pound in the middle Vehicle system,” according to Air 42 AIR FORCE Magazine / November 1998 Force Space Command requirements Its key capabilities will be “launch, sive platform. The SMV could rou- chief Brig. Gen. Brian A. Arnold. return, and reuse on demand,” Ar- tinely “replenish the constellation,” The term “system” denotes that nold said.
Recommended publications
  • Delta Clipper a Path to the Future
    Delta Clipper A Path to the Future By Jason Moore & Ashraf Shaikh Executive Summary Although the Space Shuttle has well served its purpose for years, in order to revitalize and advance the American space program, a new space launch vehicle is needed. A prime candidate for the new manned launch vehicle is the DC-X. The DC-X isn’t a state-of-the-art rocket that would require millions of dollars of new development. The DC-X is a space launch vehicle that has already been tested and proven. Very little remains to be done in order to complete the process of establishing the DC-X as an operational vehicle. All that’s left is the building and final testing of a full-size DC-X, followed by manufacture and distribution. The Space Shuttle, as well as expendable rockets, is very expensive to build, maintain and launch. Costing approximately half a billion dollars for each flight, NASA can only afford to do a limited number of Space Shuttle missions. Also, the Shuttle is maintenance intensive, requiring hundreds of man-hours of maintenance after each flight. The DC-X, however, is very cheap to build, easy to maintain, and much cheaper to operate. If the DC-X was used as NASA’s vehicle of choice, NASA could afford to put more payloads into orbit, and manned space missions wouldn’t be the relative rarity they are now. Since not much remains in order to complete the DC-X, a new private organization dedicated solely to the DC-X would be the ideal choice for the company that would build it.
    [Show full text]
  • Rockets for Education 5 June 2019
    Rockets for education 5 June 2019 Technology, Poland. Several modular experiments are held in the circular containers imaged here. Called Hedgehog, the experiment tested patented instruments for measuring acceleration, vibration and heat flow during launch. The team hopes to refine the tools for use on ground-based qualification tests that all payloads must pass before launch. At launch, Rexus produces a peak vertical acceleration of around 17 times the force of gravity. Once the rocket motors shut off, the experiments enter freefall. On the downward arc parachutes deploy, lowering the experiments to the ground for transport back to the launch site by helicopter as quickly as possible. Credit: European Space Agency A service module sends data and receives commands from the ground to keep everything on course while sending videos and data to ground Why rockets are so captivating is not exactly rocket stations. science. Watching a chunk of metal defy the forces of gravity satisfies many a human's wish to soar ESA has used sounding rockets for over 30 years through the air and into space. to investigate phenomena under microgravity from the state-of-the-art facilities are available at Today there are countless rockets to satisfy the Esrange. The laboratories include microscopes, itch, and they are not all big launchers delivering centrifuges and incubators so investigators can heavy satellites into space, like Europe's Ariane 5 prepare and analyse their experiments around and the upcoming Ariane 6. flight. Sounding rockets, like this Rexus (Rocket Coordinated by ESA Education, the Rexus/Bexus Experiments for University Students) being programme launches two sounding rockets a year assembled at the ZARM facilities in Bremen, and provides an experimental near-space platform Germany, are launched regularly in the name of for students who can work on different research science from the Esrange Space Center in areas from atmospheric research and fluid physics, northern Sweden.
    [Show full text]
  • Columbia Accident Investigation Board
    COLUMBIA ACCIDENT INVESTIGATION BOARD Report Volume I August 2003 COLUMBIA ACCIDENT INVESTIGATION BOARD On the Front Cover This was the crew patch for STS-107. The central element of the patch was the microgravity symbol, µg, flowing into the rays of the Astronaut symbol. The orbital inclination was portrayed by the 39-degree angle of the Earthʼs horizon to the Astronaut symbol. The sunrise was representative of the numerous science experiments that were the dawn of a new era for continued microgravity research on the International Space Station and beyond. The breadth of science conduct- ed on this mission had widespread benefits to life on Earth and the continued exploration of space, illustrated by the Earth and stars. The constellation Columba (the dove) was chosen to symbolize peace on Earth and the Space Shuttle Columbia. In addition, the seven stars represent the STS-107 crew members, as well as honoring the original Mercury 7 astronauts who paved the way to make research in space possible. The Israeli flag represented the first person from that country to fly on the Space Shuttle. On the Back Cover This emblem memorializes the three U.S. human space flight accidents – Apollo 1, Challenger, and Columbia. The words across the top translate to: “To The Stars, Despite Adversity – Always Explore“ Limited First Printing, August 2003, by the Columbia Accident Investigation Board Subsequent Printing and Distribution by the National Aeronautics and Space Administration and the Government Printing Office Washington, D.C. 2 Report Volume I August 2003 COLUMBIA ACCIDENT INVESTIGATION BOARD IN MEMORIAM Rick D. Husband Commander William C.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • Virgin Galactic Holdings, Inc. (SPCE) Putting the Zero in Zero-G
    June 2021 Virgin Galactic Holdings, Inc. (SPCE) Putting the Zero in Zero-G We are short shares of Virgin Galactic Holdings, Inc., often described as the only publicly traded space-tourism company. After going public in October 2019 by way of a merger with a “blank check” company, Virgin Galactic has seen its share price and trading volume soar. It’s become a retail darling, with day traders captivated by images of billionaires donning space suits, blasting off from launchpads, and looking down on the blue marble of Earth. But Virgin Galactic’s $250,000+ commercial “spaceflights” – if they ever actually happen, after some 17 years of delays and disasters – will offer only the palest imitations of these experiences. In lieu of pressurized space suits with helmets – unnecessary since so little time will be spent in the upper atmosphere – the company commissioned Under Armour to provide “high-tech pajamas.” In lieu of vertical takeoff, Virgin’s “spaceship” must cling to the underside of a specialized airplane for the first 45,000 feet up, because its rocket motor is too weak to push through the lower atmosphere on its own. In lieu of the blue-marble vista and life in zero-g, Virgin’s so-called astronauts will at best be able to catch a glimpse of the curvature of Earth and a few minutes of weightlessness before plunging back to ground. This isn’t “tourism,” let alone Virgin’s more grandiose term, “exploration”; it’s closer to a souped- up roller coaster, like the “Drop of Doom” ride at Six Flags.
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]
  • Developing the Space Shuttle1
    ****EU4 Chap 2 (161-192) 4/2/01 12:45 PM Page 161 Chapter Two Developing the Space Shuttle1 by Ray A. Williamson Early Concepts of a Reusable Launch Vehicle Spaceflight advocates have long dreamed of building reusable launchers because they offer relative operational simplicity and the potential of significantly reduced costs com- pared to expendable vehicles. However, they are also technologically much more difficult to achieve. German experimenters were the first to examine seriously what developing a reusable launch vehicle (RLV) might require. During the 1920s and 1930s, they argued the advantages and disadvantages of space transportation, but were far from having the technology to realize their dreams. Austrian engineer Eugen M. Sänger, for example, envi- sioned a rocket-powered bomber that would be launched from a rocket sled in Germany at a staging velocity of Mach 1.5. It would burn rocket fuel to propel it to Mach 10, then skip across the upper reaches of the atmosphere and drop a bomb on New York City. The high-flying vehicle would then continue to skip across the top of the atmosphere to land again near its takeoff point. This idea was never picked up by the German air force, but Sänger revived a civilian version of it after the war. In 1963, he proposed a two-stage vehi- cle in which a large aircraft booster would accelerate to supersonic speeds, carrying a rel- atively small RLV to high altitudes, where it would be launched into low-Earth orbit (LEO).2 Although his idea was advocated by Eurospace, the industrial consortium formed to promote the development of space activities, it was not seriously pursued until the mid- 1980s, when Dornier and other German companies began to explore the concept, only to drop it later as too expensive and technically risky.3 As Sänger’s concepts clearly illustrated, technological developments from several dif- ferent disciplines must converge to make an RLV feasible.
    [Show full text]
  • Facing the Heat Barrier: a History of Hypersonics First Thoughts of Hypersonic Propulsion
    Facing the Heat Barrier: A History of Hypersonics First Thoughts of Hypersonic Propulsion Republic’s Aerospaceplane concept showed extensive engine-airframe integration. (Republic Aviation) For takeoff, Lockheed expected to use Turbo-LACE. This was a LACE variant that sought again to reduce the inherently hydrogen-rich operation of the basic system. Rather than cool the air until it was liquid, Turbo-Lace chilled it deeply but allowed it to remain gaseous. Being very dense, it could pass through a turbocom- pressor and reach pressures in the hundreds of psi. This saved hydrogen because less was needed to accomplish this cooling. The Turbo-LACE engines were to operate at chamber pressures of 200 to 250 psi, well below the internal pressure of standard rockets but high enough to produce 300,000 pounds of thrust by using turbocom- pressed oxygen.67 Republic Aviation continued to emphasize the scramjet. A new configuration broke with the practice of mounting these engines within pods, as if they were turbojets. Instead, this design introduced the important topic of engine-airframe integration by setting forth a concept that amounted to a single enormous scramjet fitted with wings and a tail. A conical forward fuselage served as an inlet spike. The inlets themselves formed a ring encircling much of the vehicle. Fuel tankage filled most of its capacious internal volume. This design study took two views regarding the potential performance of its engines. One concept avoided the use of LACE or ACES, assuming again that this craft could scram all the way to orbit. Still, it needed engines for takeoff so turbo- ramjets were installed, with both Pratt & Whitney and General Electric providing Lockheed’s Aerospaceplane concept.
    [Show full text]
  • Into the Unknown Together the DOD, NASA, and Early Spaceflight
    Frontmatter 11/23/05 10:12 AM Page i Into the Unknown Together The DOD, NASA, and Early Spaceflight MARK ERICKSON Lieutenant Colonel, USAF Air University Press Maxwell Air Force Base, Alabama September 2005 Frontmatter 11/23/05 10:12 AM Page ii Air University Library Cataloging Data Erickson, Mark, 1962- Into the unknown together : the DOD, NASA and early spaceflight / Mark Erick- son. p. ; cm. Includes bibliographical references and index. ISBN 1-58566-140-6 1. Manned space flight—Government policy—United States—History. 2. National Aeronautics and Space Administration—History. 3. Astronautics, Military—Govern- ment policy—United States. 4. United States. Air Force—History. 5. United States. Dept. of Defense—History. I. Title. 629.45'009'73––dc22 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the editor and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public re- lease: distribution unlimited. Air University Press 131 West Shumacher Avenue Maxwell AFB AL 36112-6615 http://aupress.maxwell.af.mil ii Frontmatter 11/23/05 10:12 AM Page iii To Becky, Anna, and Jessica You make it all worthwhile. THIS PAGE INTENTIONALLY LEFT BLANK Frontmatter 11/23/05 10:12 AM Page v Contents Chapter Page DISCLAIMER . ii DEDICATION . iii ABOUT THE AUTHOR . ix 1 NECESSARY PRECONDITIONS . 1 Ambling toward Sputnik . 3 NASA’s Predecessor Organization and the DOD . 18 Notes . 24 2 EISENHOWER ACT I: REACTION TO SPUTNIK AND THE BIRTH OF NASA . 31 Eisenhower Attempts to Calm the Nation .
    [Show full text]
  • Space Launch Vehicles: Government Activities, Commercial Competition, and Satellite Exports
    Order Code IB93062 CRS Issue Brief for Congress Received through the CRS Web Space Launch Vehicles: Government Activities, Commercial Competition, and Satellite Exports Updated March 22, 2002 Marcia S. Smith Resources, Science, and Industry Division Congressional Research Service The Library of Congress CONTENTS SUMMARY MOST RECENT DEVELOPMENTS BACKGROUND AND ANALYSIS U.S. Launch Vehicle Policy From “Shuttle-Only” to “Mixed Fleet” Clinton Administration Policy U.S. Launch Vehicle Programs and Issues NASA’s Space Shuttle Program Future Launch Vehicle Development Programs DOD’s Evolved Expendable Launch Vehicle (EELV) Program Government-Led Reusable Launch Vehicle (RLV) Programs Private Sector RLV Development Efforts U.S. Commercial Launch Services Industry Congressional Interest Foreign Competition (Including Satellite Export Issues) Europe China Russia Ukraine India Japan LEGISLATION IB93062 03-22-02 Space Launch Vehicles: Government Activities, Commercial Competition, and Satellite Exports SUMMARY Launching satellites into orbit, once the Since 1999, projections for launch services exclusive domain of the U.S. and Soviet gov- demand have decreased dramatically, however. ernments, today is an industry in which compa- At the same time, NASA’s main RLV nies in the United States, Europe, China, Rus- program, X-33, suffered delays. NASA termi- sia, Ukraine, Japan, and India compete. In the nated the program in March 2001. Companies United States, the National Aeronautics and developing new launch vehicles are reassessing Space Administration (NASA) continues to be their plans, and NASA has initiated a new responsible for launches of its space shuttle, and “Space Launch Initiative” (SLI) to broaden the the Air Force has responsibility for launches choices from which it can choose a new RLV associated with U.S.
    [Show full text]
  • 1 Design of an Integral Thermal Protection System
    DESIGN OF AN INTEGRAL THERMAL PROTECTION SYSTEM FOR FUTURE SPACE VEHICLES By SATISH KUMAR BAPANAPALLI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007 1 © 2007 Satish Kumar Bapanapalli 2 To my loving wife Debamitra, my parents Nagasurya and Adinarayana Bapanapalli, brother Gopi Krishna and sister Lavanya 3 ACKNOWLEDGMENTS I would like to express my sincere gratitude to my advisor and mentor Dr. Bhavani Sankar for his constant support (financial and otherwise) and motivation throughout my PhD studies. He allowed me to work with freedom, was always supportive of my ideas and provided constant motivation for my research work, which helped me grow into a mature and confident researcher under his tutelage. I also thank my committee co-chair Dr. Rafi Haftka for his invaluable inputs and guidance, which have been instrumental for my research work. I am also grateful to him for getting my interest into the field of Structural Optimization, which I hope would be a huge part of all my future research endeavors. I am also thankful to Dr. Max Blosser (NASA Langley) for his crucial inputs in my research work, which kept us on track with the expectations of NASA. I sincerely thank my dissertation committee members Dr. Ashok Kumar and Dr. Gary Consolazio for evaluating my research work and my candidature for the PhD degree. I also would like to acknowledge Dr. Peter Ifju and Dr. Nam-Ho Kim for their useful inputs and comments.
    [Show full text]
  • Round Trip to Orbit: Human Spaceflight Alternatives
    Round Trip to Orbit: Human Spaceflight Alternatives August 1989 NTIS order #PB89-224661 Recommended Citation: U.S. Congress, Office of Technology Assessment, Round Trip to Orbit: Human Spaceflight Alternatives Special Report, OTA-ISC-419 (Washington, DC: U.S. Government Printing Office, August 1989). Library of Congress Catalog Card Number 89-600744 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this special report) Foreword In the 20 years since the first Apollo moon landing, the Nation has moved well beyond the Saturn 5 expendable launch vehicle that put men on the moon. First launched in 1981, the Space Shuttle, the world’s first partially reusable launch system, has made possible an array of space achievements, including the recovery and repair of ailing satellites, and shirtsleeve research in Spacelab. However, the tragic loss of the orbiter Challenger and its crew three and a half years ago reminded us that space travel also carries with it a high element of risk-both to spacecraft and to people. Continued human exploration and exploitation of space will depend on a fleet of versatile and reliable launch vehicles. As this special report points out, the United States can look forward to continued improvements in safety, reliability, and performance of the Shuttle system. Yet, early in the next century, the Nation will need a replacement for the Shuttle. To prepare for that eventuality, NASA and the Air Force have begun to explore the potential for advanced launch systems, such as the Advanced Manned Launch System and the National Aerospace Plane, which could revolutionize human access to space.
    [Show full text]