An Analysis of the Competitive Advantage of the United States of America in Commercial Human Orbital Spaceflight Markets

Total Page:16

File Type:pdf, Size:1020Kb

An Analysis of the Competitive Advantage of the United States of America in Commercial Human Orbital Spaceflight Markets University of Pennsylvania ScholarlyCommons Management Papers Wharton Faculty Research 2014 An Analysis of the Competitive Advantage of the United States of America in Commercial Human Orbital Spaceflight Markets Greg Autry Laura Hhuang Jeff Foust Follow this and additional works at: https://repository.upenn.edu/mgmt_papers Part of the Management Sciences and Quantitative Methods Commons Recommended Citation Autry, G., Hhuang, L., & Foust, J. (2014). An Analysis of the Competitive Advantage of the United States of America in Commercial Human Orbital Spaceflight Markets. Futron Corporation, Retrieved from https://repository.upenn.edu/mgmt_papers/222 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mgmt_papers/222 For more information, please contact [email protected]. An Analysis of the Competitive Advantage of the United States of America in Commercial Human Orbital Spaceflight Markets Abstract The “Public/Private Human Access to Space” / Human Orbital Markets (HOM) study group of the International Academy of Astronautics (IAA) has established a framework for the identification and analysis of relevant factors and structures that support a global human orbital spaceflight market. The HOM study group has called for analysis at the national level to be incorporated in their global study. This report, commissioned by the FAA Office of Commercial Space Transport, provides a review of demonstrated and potential Human Orbital Markets and an analysis of the U.S. industrial supply chain supporting commercial human orbital spaceflight. eW utilize a multi‐method, holistic approach incorporating primarily qualitative methodologies that also incorporates relevant statistical data. Our methodology parallels the National Competitive Advantage diamond model pioneered by economist Michael Porter. The study reveals that while the U.S. currently possesses significant competitive advantage in commercial human orbital spaceflight, there are several areas of note that present a challenge to the sustainability of this advantage. Disciplines Management Sciences and Quantitative Methods This thesis or dissertation is available at ScholarlyCommons: https://repository.upenn.edu/mgmt_papers/222 AN ANALYSIS OF THE COMPETITIVE ADVANTAGE OF THE UNITED STATES OF AMERICA IN COMMERCIAL HUMAN ORBITAL SPACEFLIGHT MARKETS Prepared for: The Federal Aviation Administration Office of Commercial Space Transport By: Futron Corporation, Bethesda Maryland Greg Autry Lloyd Greif Center for Entrepreneurial Studies, University of Southern California Laura Huang The Wharton School, University of Pennsylvania Jeff Foust Futron Corporation The “Public/Private Human Access to Space” / Human Orbital Markets (HOM) study group of the International Academy of Astronautics (IAA) has established a framework for the identification and analysis of relevant factors and structures that support a global human orbital spaceflight market. The HOM study group has called for analysis at the national level to be incorporated in their global study. This report, commissioned by the FAA Office of Commercial Space Transport, provides a review of demonstrated and potential Human Orbital Markets and an analysis of the U.S. industrial supply chain supporting commercial human orbital spaceflight. We utilize a multi‐method, holistic approach incorporating primarily qualitative methodologies that also incorporates relevant statistical data. Our methodology parallels the National Competitive Advantage diamond model pioneered by economist Michael Porter. The study reveals that while the U.S. currently possesses significant competitive advantage in commercial human orbital spaceflight, there are several areas of note that present a challenge to the sustainability of this advantage. 1 INTRODUCTION ........................................................................................................................................ 4 I. METHODOLOGY AND DATA .............................................................................................................. 5 II. NATIONAL COMPETITIVE ADVANTAGE ...................................................................................... 6 PORTER DIAMOND COMPONENTS ............................................................................................................... 7 FIRM STRATEGY, STRUCTURE AND RIVALRY ............................................................................................................ 7 DEMAND CONDITIONS .................................................................................................................................................. 7 FACTOR CONDITIONS .................................................................................................................................................... 7 RELATED AND SUPPORTING INDUSTRIES .................................................................................................................. 7 PORTER’S STAGES ......................................................................................................................................... 7 FACTOR‐DRIVEN ............................................................................................................................................................ 7 INVESTMENT‐DRIVEN .................................................................................................................................................. 8 INNOVATION‐DRIVEN ................................................................................................................................................... 8 WEALTH‐DRIVEN AND THE CURRENT U.S. STAGE .................................................................................................. 8 LEVELS OF ANALYSIS ..................................................................................................................................... 9 CLUSTER DATA ISSUES .............................................................................................................................................. 10 III. DEFINITION OF POTENTIAL HUMAN ORBITAL MARKETS .............................................. 11 EXISTING MARKET STUDIES ..................................................................................................................... 11 HISTORY OF HUMAN ORBITAL MARKETS ................................................................................................ 12 TOURISM ...................................................................................................................................................................... 12 U.S. DOMESTIC CREW TRANSPORTATION ............................................................................................................. 13 ASTRONAUT CORPS OF FOREIGN NATIONS ............................................................................................................ 14 RESEARCH AND DEVELOPMENT ............................................................................................................................... 14 MEDIA AND PROMOTION ........................................................................................................................................... 14 FUTURE MARKETS...................................................................................................................................................... 14 OTHER MARKETS ....................................................................................................................................................... 15 IV. COMMERCIAL U.S. HUMAN ORBITAL INDUSTRIES ............................................................. 15 GOVERNMENT FUNDED SPACE EFFORTS ............................................................................................................... 15 COMMERCIAL SPACE HISTORY ................................................................................................................................. 16 V. FACTOR CONDITIONS AND THE SUPPLY CHAIN .................................................................. 16 RELEVANT U.S. ENDOWED FACTORS ....................................................................................................... 16 HUMAN RESOURCES ................................................................................................................................................... 16 KNOWLEDGE RESOURCES ......................................................................................................................................... 18 BASIC EXTRACTIVE RESOURCES .............................................................................................................................. 21 CAPITAL RESOURCES ................................................................................................................................................. 23 INFRASTRUCTURE ....................................................................................................................................................... 24 FACTOR CREATION AND IMPROVEMENT MECHANISMS ...................................................................................... 25 THE AEROSPACE AND HOM SUPPLY CHAIN ............................................................................................ 25 THE COMMERCIAL HOM SUPPLY CHAIN ............................................................................................................... 27 U.S. HOM SPACECRAFT ...........................................................................................................................................
Recommended publications
  • Rules for the Heavens: the Coming Revolution in Space and the Laws of War
    RULES FOR THE HEAVENS: THE COMING REVOLUTION IN SPACE AND THE LAWS OF WAR John Yoo* Great powers are increasing their competition in space. Though Russia and the United States have long relied on satellites for surveillance of rival nations’ militaries and the detection of missile launches, the democratization of space through technological advancements has allowed other nations to assert greater control. This Article addresses whether the United States and other nations should develop the space-based weapons that these policies promise, or whether they should cooperate to develop new international agreements to ban them. In some areas of space, proposals for regulation have already come too late. The U.S.’s nuclear deterrent itself depends cru- cially on space: ballistic missiles leave and then re-enter the atmosphere, giving them a global reach without serious defense. As more nations develop nuclear weapons and intercontinental ballistic missile (ICBM) technology, outer space will become even more important as an arena for defense against weapons of mass destruction (WMD) proliferation. North Korea’s progress on ICBM and nuclear technology, for example, will prompt even greater in- vestment in space-based missile defense systems. This Article makes two contributions. First, it argues against a grow- ing academic consensus in favor of a prohibition on military activities in space. It argues that these scholars over-read existing legal instruments and practice. While nations crafted international agreements to bar WMDs in outer space, they carefully left unregulated reconnaissance and commu- nications satellites, space-based conventional weapons, antisatellite sys- tems, and even WMDs that transit through space, such as ballistic missiles.
    [Show full text]
  • The Orbital-Hub: Low Cost Platform for Human Spaceflight After ISS
    67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016. Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved. IAC-16, B3,1,9,x32622 The Orbital-Hub: Low Cost Platform for Human Spaceflight after ISS O. Romberga, D. Quantiusa, C. Philpota, S. Jahnkea, W. Seboldta, H. Dittusb, S. Baerwaldeb, H. Schlegelc, M. Goldd, G. Zamkad, R. da Costae, I. Retate, R. Wohlgemuthe, M. Langee a German Aerospace Center (DLR), Institute of Space Systems, Bremen, Germany, [email protected] b German Aerospace Center (DLR), Executive Board, Space Research and Technology, Cologne, Germany, c European Space Agency (ESA) Contractor, Johnson Space Center, Houston, USA, d Bigelow Aerospace, Las Vegas / Washington, USA, e Airbus DS, Bremen, Germany Abstract The International Space Station ISS demonstrates long-term international cooperation between many partner governments as well as significant engineering and programmatic achievement mostly as a compromise of budget, politics, administration and technological feasibility. A paradigm shift to use the ISS more as an Earth observation platform and to more innovation and risk acceptance can be observed in the development of new markets by shifting responsibilities to private entities and broadening research disciplines, demanding faster access by users and including new launcher and experiment facilitator companies. A review of worldwide activities shows that all spacefaring nations are developing their individual programmes for the time after ISS. All partners are basically still interested in LEO and human spaceflight as discussed by the ISECG. ISS follow-on activities should comprise clear scientific and technological objectives combined with the long term view on space exploration.
    [Show full text]
  • White House Frontiers Conference
    View the Conference Website Conference Mobile Site View the CMU Highlight Video Example Schedule: National Track Artificial Intelligence (AI), Machine Learning, Automation, Robotics October 13, 2016 | 8:30 AM – 12:00 PM Pittsburgh, PA| Carnegie Mellon University Welcome & Introduction Remarks on Harnessing Emerging Technologies at the State and Local Level Tom Wolf, Governor, Pennsylvania Ignite Talks: Artificial Intelligence (AI) For Good AI for Wildlife Preservation Tanya Berger-Wolf, Professor, Department of Computer Science, University of Illinois-Chicago AI to Relieve Pittsburgh Traffic Congestion Stephen F. Smith, Research Professor, Carnegie Mellon University AI in Healthcare Suchi Saria, Assistant Professor, Johns Hopkins Industry Panel: Best Practices in AI Moderator: Issie Lapowsky, Staff Writer, WIRED Jeannette M. Wing, Corporate Vice President, Microsoft Research Françoise Beaufays, Research Scientist, Google Yann LeCun, Director of Al Research, Facebook Guruduth Banavar, Vice President of Cognitive Computing, IBM Research Raffi Krikorian, Engineering Lead, Uber Advanced Technologies Center Ignite Talks: Artificial Intelligence (AI) For Good Drones for Search and Rescue Robin R. Murphy, Raytheon Professor of Computer Science and Engineering Texas A&M AI For Poverty Mapping Stefano Ermon, Assistant Professor of Computer Science, Stanford University Cyber Grand Challenge Michael Walker, Program Manager, Information Innovation Office, Defense Advanced Research Projects Agency Brain Computer Interfaces for Assistive Technology
    [Show full text]
  • Aviation Week & Space Technology
    $14.95 JUNE 29-JULY 12, 2020 Quest for Speed BOOM XB-1 TAKES SHAPE RICH MEDIA EXCLUSIVE Europe’s Hydrogen- Powered Aircraft Push PRIME TIME FOR How Safe Are HYPERSONICS Aircraft Cabins? Canada’s Fighter RICH MEDIA EXCLUSIVE Strategy Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • Space Policy Directive 1 New Shepard Flies Again 5
    BUSINESS | POLITICS | PERSPECTIVE DECEMBER 18, 2017 INSIDE ■ Space Policy Directive 1 ■ New Shepard fl ies again ■ 5 bold predictions for 2018 VISIT SPACENEWS.COM FOR THE LATEST IN SPACE NEWS INNOVATION THROUGH INSIGNT CONTENTS 12.18.17 DEPARTMENTS 3 QUICK TAKES 6 NEWS Blue Origin’s New Shepard flies again Trump establishes lunar landing goal 22 COMMENTARY John Casani An argument for space fission reactors 24 ON NATIONAL SECURITY Clouds of uncertainty over miltary space programs 26 COMMENTARY Rep. Brian Babin and Rep. Ami Ber We agree, Mr. President,. America should FEATURE return to the moon 27 COMMENTARY Rebecca Cowen- 9 Hirsch We honor the 10 Paving a clear “Path” to winners of the first interoperable SATCOM annual SpaceNews awards. 32 FOUST FORWARD Third time’s the charm? SpaceNews will not publish an issue Jan. 1. Our next issue will be Jan. 15. Visit SpaceNews.com, follow us on Twitter and sign up for our newsletters at SpaceNews.com/newsletters. ON THE COVER: SPACENEWS ILLUSTRATION THIS PAGE: SPACENEWS ILLUSTRATION FOLLOW US @SpaceNews_Inc Fb.com/SpaceNewslnc youtube.com/user/SpaceNewsInc linkedin.com/company/spacenews SPACENEWS.COM | 1 VOLUME 28 | ISSUE 25 | $4.95 $7.50 NONU.S. CHAIRMAN EDITORIAL CORRESPONDENTS ADVERTISING SUBSCRIBER SERVICES Felix H. Magowan EDITORINCHIEF SILICON VALLEY BUSINESS DEVELOPMENT DIRECTOR TOLL FREE IN U.S. [email protected] Brian Berger Debra Werner Paige McCullough Tel: +1-866-429-2199 Tel: +1-303-443-4360 [email protected] [email protected] [email protected] Fax: +1-845-267-3478 +1-571-356-9624 Tel: +1-571-278-4090 CEO LONDON OUTSIDE U.S.
    [Show full text]
  • Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
    Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation .
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Reusable Launch Vehicles Exos Aerospace Is Making
    Reusable Launch Vehicles Exos Aerospace is making SPACEavailable…TM The 4 FAA/AST The other 6 of 10 Licensed Reusable EXOS AEROSPACE is… “Non-Reusable Rocket Launch Rocket” Launch Providers Providers companies of companies of 1 4 IN THE 1 10 in the United WORLD with a licensed States with an Active reusable rocket. Launch License $ <10% reuse cost Access to space $$ 25% reuse cost is too inflexible Air Launch Provides for increased flexibility $$ reuse cost… % unknown (Exos, Virgin Orbit, Lockheed Martin) Reusability Enables increased ROI through cost reductions (Exos, SpaceX, Blue Origin) 1- Ignition 2- Clean Lox Ethanol Engine (launch) Apogee SARGE Flight 1 3- Drogue Return to 4.- Canopy Return from reenter the atmosphere Rocket flight 3 Our team has built hundreds of rocket engines and dozens of suborbital flying vehicles designed for reusability TEAM’S PAST EXPERIENCE Vehicle Evolution (20+ Years) Armadillo 4 Launches and 3 Rocket Racing st J Aerospace Lunar recoveries on 1 League SARGE vehicle Founded by Lander development SARGE a st John Carmack Challenge 1 Today program Super Mod Aug 2018 – Oct 2019 SARGE-LW Place g u a r 2000 2006 2008 2009 2010 2011 2015 2020 Apr 2020 Air Force X-Prize Lunar lander 2010-2013 Stig Exos Aerospace Hypersonic Challenge2009 flies to 95km acquires assets of Contract Competition Armadillo Aerospace Armadillo prize $ w/Pixel and and brings on the team Testing SARGE R2 J Texel Round 1 winner- NASA with new management for return to flight Winners Morpheus Sale supporting commercial post COVID 19 a objectives
    [Show full text]
  • A Leader's Journey: from Iran Into Space
    TESTIMONY A Leader’s Journey: From Iran Into Space Interview with Anousheh ANSARI, founder and chairman of Prodea Systems Anousheh Ansari has dreamed of travelling into the stars for as long as she can remember. In September 2006, she made this dream come true and became the first woman “space explorer”. Entrepreneur and business leader, Ansari was elected to the Forum of Young Global Leaders in 2007. The credo she lives by is form Gandhi and translates a distinct mindset: “Be the change you want to see in the world”. In this interview, Ansari shares her vision of global leadership. What do you consider the attributes of a global leader to be, and why do you define your- self as begin one of them? A global leader’s principal quality is a constant awareness that the world is far vaster than his or her local environment. People tend to restrict their viewpoint to routine activities and to information received that is primarily related to events that are close to home. As a result, people cannot help but develop biases. Any leader whose decisions will potentially have a global impact must repeatedly put him or herself in situations and positions that remind him that the world goes far beyond what is immediately perceptible to the eye. Personally, I travel very often, both for business and for pleasure, and I ensure that each trip is a learning opportunity. I was born in Iran and went to a French Catholic school. I thus became familiar with French and Canadian cultures—both of which are quite diffe- rent from my native culture—when I was quite young.
    [Show full text]
  • The Influence of Space Power Upon History (1944-1998)*
    * The Influence of Space Power upon History (1944-1998) by Captain John Shaw, USAF * My interest in this subject grew during my experiences as an Air Force Intern 1997-98, working in both the Office of the Deputy Undersecretary of Defense for Space, and in SAF/AQ, Space and Nuclear Deterrence Directorate. I owe thanks to Mr. Gil Klinger (acting DUSD(Space)) and BGen James Beale (SAF/AQS) for their advice and guidance during my internships. Thanks also to Mr. John Landon, Col Michael Mantz, Col James Warner, Lt Col Robert Fisher, and Lt Col David Spataro. Special thanks to Col Simon P. Worden for his insight on this topic. A primary task of the historian is to interpret events in the course of history through a unique lens, affording the scholar a new, and more intellectually useful, understanding of historical outcomes. This is precisely what Alfred Thayer Mahan achieved when he wrote his tour de force The Influence of Sea Power upon History (1660-1783). He interpreted the ebb and flow of national power in terms of naval power, and his conclusions on the necessity of sea control to guarantee national welfare led many governments of his time to expand their naval capabilities. When Mahan published his work in 1890, naval power had for centuries already been a central determinant of national military power.1 It remained so until joined, even eclipsed, by airpower in this century. Space, by contrast, was still the subject of extreme fiction a mere one hundred years ago, when Jules Verne’s From the Earth to the Moon and H.G.
    [Show full text]
  • The Space Race Continues
    The Space Race Continues The Evolution of Space Tourism from Novelty to Opportunity Matthew D. Melville, Vice President Shira Amrany, Consulting and Valuation Analyst HVS GLOBAL HOSPITALITY SERVICES 369 Willis Avenue Mineola, NY 11501 USA Tel: +1 516 248-8828 Fax: +1 516 742-3059 June 2009 NORTH AMERICA - Atlanta | Boston | Boulder | Chicago | Dallas | Denver | Mexico City | Miami | New York | Newport, RI | San Francisco | Toronto | Vancouver | Washington, D.C. | EUROPE - Athens | London | Madrid | Moscow | ASIA - 1 Beijing | Hong Kong | Mumbai | New Delhi | Shanghai | Singapore | SOUTH AMERICA - Buenos Aires | São Paulo | MIDDLE EAST - Dubai HVS Global Hospitality Services The Space Race Continues At a space business forum in June 2008, Dr. George C. Nield, Associate Administrator for Commercial Space Transportation at the Federal Aviation Administration (FAA), addressed the future of commercial space travel: “There is tangible work underway by a number of companies aiming for space, partly because of their dreams, but primarily because they are confident it can be done by the private sector and it can be done at a profit.” Indeed, private companies and entrepreneurs are currently aiming to make this dream a reality. While the current economic downturn will likely slow industry progress, space tourism, currently in its infancy, is poised to become a significant part of the hospitality industry. Unlike the space race of the 1950s and 1960s between the United States and the former Soviet Union, the current rivalry is not defined on a national level, but by a collection of first-mover entrepreneurs that are working to define the industry and position it for long- term profitability.
    [Show full text]
  • Iasinstitute for Advanced Study
    IAInsti tSute for Advanced Study Faculty and Members 2012–2013 Contents Mission and History . 2 School of Historical Studies . 4 School of Mathematics . 21 School of Natural Sciences . 45 School of Social Science . 62 Program in Interdisciplinary Studies . 72 Director’s Visitors . 74 Artist-in-Residence Program . 75 Trustees and Officers of the Board and of the Corporation . 76 Administration . 78 Past Directors and Faculty . 80 Inde x . 81 Information contained herein is current as of September 24, 2012. Mission and History The Institute for Advanced Study is one of the world’s leading centers for theoretical research and intellectual inquiry. The Institute exists to encourage and support fundamental research in the sciences and human - ities—the original, often speculative thinking that produces advances in knowledge that change the way we understand the world. It provides for the mentoring of scholars by Faculty, and it offers all who work there the freedom to undertake research that will make significant contributions in any of the broad range of fields in the sciences and humanities studied at the Institute. Y R Founded in 1930 by Louis Bamberger and his sister Caroline Bamberger O Fuld, the Institute was established through the vision of founding T S Director Abraham Flexner. Past Faculty have included Albert Einstein, I H who arrived in 1933 and remained at the Institute until his death in 1955, and other distinguished scientists and scholars such as Kurt Gödel, George F. D N Kennan, Erwin Panofsky, Homer A. Thompson, John von Neumann, and A Hermann Weyl. N O Abraham Flexner was succeeded as Director in 1939 by Frank Aydelotte, I S followed by J.
    [Show full text]