Space Policy Directive 1 New Shepard Flies Again 5
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mr. Jeffrey Manber Testimony.Pdf
Testimony of Mr. Jeffrey Manber Chief Executive Officer, Nanoracks LLC before the Senate Committee on Commerce, Science and Transportation Subcommittee on Aviation and Space Tuesday, November 5, 2019 Building NASA’s Workforce of the Future: STEM Engagement for a 21st Century Education Chairman Cruz, Ranking Member Sinema, and other distinguished members of the Aviation and Space Subcommittee, thank you for giving me the opportunity to return to this room to testify before you. I look forward to discussing how commercial access to the International Space Station has provided an unprecedented educational experience to over a million students across the United States. Let me begin today by explaining that I am here in two different capacities. I am, of course, representing Nanoracks as the CEO, but I am also Chairman of the Board for DreamUp, Nanoracks’ educational sister company. Once just a division in Nanoracks, we spun DreamUp out to be a standalone public benefit corporation because the business of providing educational access to space was, and remains today, strong and important. DreamUp’s sole focus is bringing space to the classroom, and the classroom to space. We opened the doors at Nanoracks in 2009 with the goal to make space accessible to everyone. I am proud to say today that the very first customers that brought Nanoracks into business were in fact, schools. Our very first experiments were small projects that were developed by middle school students. These kids quite literally held bake sales - not to sponsor their soccer team, or raise money for the school dance, but to send their very own science experiment to the International Space Station via a Nanoracks Space Act Agreement with NASA. -
Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates -
Gnc 2021 Abstract Book
GNC 2021 ABSTRACT BOOK Contents GNC Posters ................................................................................................................................................... 7 Poster 01: A Software Defined Radio Galileo and GPS SW receiver for real-time on-board Navigation for space missions ................................................................................................................................................. 7 Poster 02: JUICE Navigation camera design .................................................................................................... 9 Poster 03: PRESENTATION AND PERFORMANCES OF MULTI-CONSTELLATION GNSS ORBITAL NAVIGATION LIBRARY BOLERO ........................................................................................................................................... 10 Poster 05: EROSS Project - GNC architecture design for autonomous robotic On-Orbit Servicing .............. 12 Poster 06: Performance assessment of a multispectral sensor for relative navigation ............................... 14 Poster 07: Validation of Astrix 1090A IMU for interplanetary and landing missions ................................... 16 Poster 08: High Performance Control System Architecture with an Output Regulation Theory-based Controller and Two-Stage Optimal Observer for the Fine Pointing of Large Scientific Satellites ................. 18 Poster 09: Development of High-Precision GPSR Applicable to GEO and GTO-to-GEO Transfer ................. 20 Poster 10: P4COM: ESA Pointing Error Engineering -
Real-Time On-Orbit Calibration of Angles Between Star Sensor and Earth Observation Camera for Optical Surveying and Mapping Satellites
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands REAL-TIME ON-ORBIT CALIBRATION OF ANGLES BETWEEN STAR SENSOR AND EARTH OBSERVATION CAMERA FOR OPTICAL SURVEYING AND MAPPING SATELLITES Wei Liu 1*, Hui Wang 2, Weijiao Jiang 2, Fangming Qian 3, Leiming Zhu 4 1 Xi’an Research Institute of Surveying and Mapping, No.1 Middle Yanta Road, Xi’an, China - [email protected] 2 State Key Laboratory of Integrated Service Network, Xidian University, Xi’an, China - [email protected] 2 State Key Laboratory of Integrated Service Network, Xidian University, Xi’an, China - [email protected] 3 Information Engineering University, Zhengzhou, China - [email protected] 4 Centre of TH-Satellite of China, Beijing, China - [email protected] Commission I, WG I/4 KEY WORDS: Star Sensor, Attitude Measurement, Error Analysis, On-Orbit Calibration, Angle between Cameras, On-orbit Monitoring Device ABSTRACT: On space remote sensing stereo mapping field, the angle variation between the star sensor’s optical axis and the earth observation camera’s optical axis on-orbit affects the positioning accuracy, when optical mapping is without ground control points (GCPs). This work analyses the formation factors and elimination methods for both the star sensor’s error and the angles error between the star sensor’s optical axis and the earth observation camera’s optical axis. Based on that, to improve the low attitude stability and long calibration time necessary of current satellite cameras, a method is then proposed for real-time on-orbit calibration of the angles between star sensor’s optical axis and the earth observation camera’s optical axis based on the principle of auto-collimation. -
Co-Creating and Directing Innovation Ecosystems? Nasas Changing Approach to Public-Private Partnerships in Low-Earth Orbit Mariana Mazzucato1,2 and Douglas K.R
CORE Metadata, citation and similar papers at core.ac.uk Provided by UCL Discovery Co-creating and directing Innovation Ecosystems? NASAs changing approach to public-private partnerships in low-earth orbit Mariana Mazzucato1,2 and Douglas K.R. Robinson 1,3 * 1 Institute for Innovation and Public Purpose, University College London, UK 2 Science Policy Research Unit (SPRU), University of Sussex, UK 3 Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), CNRS-INRA-ESIEE- UPEM, Université Paris-Est Marne-la-Vallée, France * Corresponding author : [email protected] Abstract A recent report from NASA’s office of the chief technologist positions a self-sustained “low-earth-orbit ecosystem” as a desirable objective for NASA’s human spaceflight policy and linking to its larger aims of deeper exploration of the solar system. The report follows a wave of mission shifts and space policy directives which emphasize that the private sector should be given more power and receive public agency financial support to stimulate space services. To understand how US space innovation activities are changing, and to be able to make assessments and policy recommendations, we use an innovation ecosystems approach to help understand the types of relationships between actors in low-earth-orbit and to determine the ramifications for US space policy. Our findings reveal four new forms of relationships between NASAA and other parties in the emerging innovation ecosystem and we discuss how these lead to policy challenges for NASA as a mission-oriented public agency with the new additional objective of creating an economic zone in orbit. 1. Introduction Historically, NASA’s mission-oriented programs for innovation have been driven by security concerns and by the need for maintaining technical leadership over other nations. -
Aviation Week & Space Technology
$14.95 JUNE 29-JULY 12, 2020 Quest for Speed BOOM XB-1 TAKES SHAPE RICH MEDIA EXCLUSIVE Europe’s Hydrogen- Powered Aircraft Push PRIME TIME FOR How Safe Are HYPERSONICS Aircraft Cabins? Canada’s Fighter RICH MEDIA EXCLUSIVE Strategy Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa. -
Space Firms See Launch Risk from Low Oxygen Supply Amid Pandemic 30 August 2021, by Justin Bachman, Bloomberg News
Space firms see launch risk from low oxygen supply amid pandemic 30 August 2021, by Justin Bachman, Bloomberg News infections have filled hospitals. Some Florida cities, including Orlando and Tampa, have imposed water-use restrictions because some water-treatment plants use oxygen in the sanitizing process. Labor shortages among commercial truck drivers, which must have specialized training to transport some gasses such as oxygen, have also compounded the supply bottlenecks, Craig said. Beyond rocketry, liquid oxygen (commonly called LOX) is used in welding and in the production of steel, paper, glass, chemicals and pharmaceuticals. Credit: Unsplash/CC0 Public Domain Space Exploration Technologies Corp. President Gwynne Shotwell sounded the industry alarm earlier in the week at a conference in Colorado, calling for anyone with oxygen to spare to contact One consequence of the coronavirus pandemic is her. SpaceX uses methane and liquid oxygen to showing up in an unlikely place: the space fuel the Merlin engines on its workhorse Falcon 9 industry. rockets. The company's much larger next- generation rocket, Starship, also uses LOX as a A summer surge in COVID-19 patients is diverting propellant. liquid oxygen from rocket launch pads to hospitals, leading NASA to announce Friday it will delay the "We certainly are going to make sure the hospitals September launch of its next earth-surveillance are going to have the oxygen that they need but for satellite by a week. anybody who has liquid oxygen to spare, send me an email," Shotwell said Aug. 24 during a panel Oxygen chilled to its liquid form at minus 300 discussion at the 36th Space Symposium. -
U.S. Human Space Flight Safety Record As of July 20, 2021
U.S. Human Space Flight Safety Record (As of 20 July 2021) Launch Type Total # of Total # People Total # of Total # of People on Died or Human Space Catastrophic Space Flight Seriously Flights Failures6 Injured3 Orbital (Total) 9271 17 1664 3 Suborbital 2332 3 2135 2 (Total) Total 1160 20 379 5 § 460.45(c) An operator must inform each space flight participant of the safety record of all launch or reentry vehicles that have carried one or more persons on board, including both U.S. government and private sector vehicles. This information must include— (1) The total number of people who have been on a suborbital or orbital space flight and the total number of people who have died or been seriously injured on these flights; and (2) The total number of launches and reentries conducted with people on board and the number of catastrophic failures of those launches and reentries. Federal Aviation Administration AST Commercial Space Transportation Footnotes 1. People on orbital space flights include Mercury (Atlas) (4), Gemini (20), Apollo (36), Skylab (9), Space Shuttle (852), and Crew Dragon (6) a. Occupants are counted even if they flew on only the launch or reentry portion. The Space Shuttle launched 817 humans and picked up 35 humans from MIR and the International Space Station. b. Occupants are counted once reentry is complete. 2. People on suborbital space flights include X-15 (169), M2 (24), Mercury (Redstone) (2), SpaceShipOne (5), SpaceShipTwo (29), and New Shepard System (4) a. Only occupants on the rocket-powered space bound vehicles are counted per safety record criterion #11. -
NASA Begs Spectators for Astronaut Launch: Please Stay Home! 1 May 2020, by Marcia Dunn
NASA begs spectators for astronaut launch: Please stay home! 1 May 2020, by Marcia Dunn we want to keep everybody safe," he said. "And so we're asking people not to travel to the Kennedy Space Center, and I will tell you that makes me sad to even say it. Boy, I wish we could make this into something really spectacular." Bridenstine urged the public to watch the launch online or on TV from home. "We don't want an outbreak," of COVID-19, he told reporters during a remote news conference. SpaceX President Gwynne Shotwell agreed it's a In this image from video made available by NASA, shame more people won't be able to enjoy the astronauts Bob Behnken, left, and Doug Hurley give a launch from Florida. But she encouraged people to news conference at the Johnson Space Center in "be there for the ride with us." Houston on Friday, May 1, 2020. The two are scheduled for a May 27 launch aboard a SpaceX rocket to the International Space Station. (NASA via AP) NASA and SpaceX on Friday urged spectators to stay home for the first home launch of astronauts in nearly a decade because of the coronavirus pandemic. Top officials warned the public against traveling to Florida for the May 27 launch of two NASA astronauts aboard a SpaceX rocket to the International Space Station. It will be the first launch of astronauts from NASA's In this July 8, 2011 file photo, spectators watch the space Kennedy Space Center in nine years—ever since shuttle Atlantis lift off from the Kennedy Space Center at the last space shuttle flight in 2011. -
March 29, 2021 Ms. Lisa Felice Executive Secretary Michigan
8 8 KARL L. GOTTING PAULA K. MANIS PLLC JACK C. DAVIS MICHAEL G. OLIVA JAMES R. NEAL JEFFREY L. GREEN8 (1938-2020) [email protected] 8 MICHAEL G. OLIVA KELLY REED LUCAS DIRECT DIAL: 517-318-9266 8 MICHAEL H. RHODES RICHARD W. PENNINGS NOTES: MOBILE: 989-798-2650 EFFREY HEUER1 ICHAEL OLMES8 ______________________ J S. T M A. H 1 KEVIN J. RORAGEN YING BEHER8 ALSO LICENSED IN MD 2 REPLY TO LANSING OFFICE ED OZEBOOM ARREN EAN5,8 ALSO LICENSED IN FL T S. R W T. D 3 7,8 ALSO LICENSED IN CT SARA L. CUNNINGHAM JACK L. HOFFMAN 4 2 7,8 ALSO LICENSED IN NY JAMES F. ANDERTON, V HOLLY L. JACKSON 5 ALSO LICENSED IN OH 6 DOMINIC R. RIOS ALSO LICENSED BY USPTO 3,4,6 MIKHAIL MURSHAK 7 GRAND RAPIDS OFFICE GABRIELLE C. LAWRENCE 8 OF COUNSEL ALAN G. ABOONA6 AMIA A. BANKS HANNAH E. BUZOLITS March 29, 2021 Ms. Lisa Felice Executive Secretary Michigan Public Service Commission 7109 W. Saginaw Highway Lansing, MI 48917 Re: Starlink Services, LLC Application for CLEC License MPSC Case No U-21035 Dear Ms. Felice: Enclosed for filing on behalf of Starlink Services, LLC please find: • Application Of Starlink Services, LLC For A Temporary And Permanent License To Provide Basic Local Exchange Service In Michigan • Prefiled Testimony of Matt Johnson • Exhibits SLS-1, SLS-2, SLS-3 and Confidential Exhibit SLS-4 Confidential Exhibit SLS-4 is not being filed electronically, but a sealed copy of Confidential Exhibit SLS-4 is being delivered via overnight mail to the Commission’s offices. -
Outstanding Expertise at the Service of Your Ambitions
OUTSTANDING EXPERTISE AT THE SERVICE OF YOUR AMBITIONS #enablingyourambitions MILLION TURNOVER IN 2017 ambitions your EMPLOYEES INCLUDING ING 60% ENGINEERS OUR GOAL: L 70+ TO COMBINE‘‘ ENAB TECHNOLOGICAL EXCELLENCE AND 360 COMPETITIVENESS SODERN TO TRANSFORM OUR CUSTOMERS’ AMBITIONS 2 INTO REALITIES.‘‘ OUR DNA Franck Poirrier, CEO of Sodern We rely on more than 50 years of experience sharehoLDers: ArianeGroUP (90%) in optronics and neutron technology AND CEA (10%) 16600 to develop innovative and competitive solutions for our commercial and institutional customers. M2 OF FACILITIES 2 KEY AREAS As a subsidiary of the We preserve and enhance To meet the expectations of OF KNOW-HOW: European leader in access this exceptional technological changing markets, we set high OPTRONIC, to space, ArianeGroup, know-how by participating in competitive requirements for NEUtron we are operationally scientific programs that push ourselves: the implementation technoLOGY independent. the limits of the state of the of lean management, perfect art: the caesium atom clock understanding of our We are also a historical and Pharao, the seismometer of customers’ needs, agility and strategic defence supplier, a the Mars mission InSight, cells optimisation of production characteristic that guarantees of Pockels for the Megajoule costs are the commitments us a solid base of industrial laser, etc. that allow us to maintain a activities, thereby affirming competitive edge with a very durability and reliability. Sodern’s core business is the high level of customer Our institutional clients’ high series production of star satisfaction, and to consolidate level of requirements has led trackers that enable satellites our position as a world leader us to develop an extraordinary to orient themselves precisely in in several markets. -
982-R120461 October 1, 2005
982-R120461 October 1, 2005 PROMETHEUS PROJECT National Aeronautics and Space Administration Final Report Jet Propulsion Laboratory California Institute of Technology Pasadena, California [This page intentionally left blank] 982-R120461 PROMETHEUS PROJECT OCTOBER 1, 2005 FINAL REPORT Signature Page Name Title Date Signature Randall Taylor Prometheus Project Closeout Manager i 982-R120461 PROMETHEUS PROJECT OCTOBER 1, 2005 FINAL REPORT [This page intentionally left blank] ii 982-R120461 PROMETHEUS PROJECT OCTOBER 1, 2005 FINAL REPORT Acknowledgement The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology, manages the Prometheus Project for the National Aeronautics and Space Administration’s Prometheus Nuclear Systems Program. iii 982-R120461 PROMETHEUS PROJECT OCTOBER 1, 2005 FINAL REPORT [This page intentionally left blank] iv 982-R120461 PROMETHEUS PROJECT OCTOBER 1, 2005 FINAL REPORT TABLE OF CONTENTS 1. INTRODUCTION..............................................................................................................1 1.1 Project Identification................................................................................................1 1.2 Project Summary......................................................................................................1 1.3 Project History .........................................................................................................2 1.4 Scope of Final Report ..............................................................................................4