Ornine on the Aiectli Iodides. by ~VILLIAMNORMAN RAE

Total Page:16

File Type:pdf, Size:1020Kb

Ornine on the Aiectli Iodides. by ~VILLIAMNORMAN RAE View Article Online / Journal Homepage / Table of Contents for this issue 1286 RAE : THE ACTION OF BROMINE ON THE ALKAT,I IODIDES. CX LIV.-The Action of &-ornine on the AIEctli Iodides. By ~VILLIAMNORMAN RAE. INa paper by Jackson and Derby on ferrous iodide (Amer. Chem. J., 1900, 24, 15), mention is made of the action of bromine vapour on solid ammonium iodide; these authors state that the ammonium iodide first turned black, but as the absorption went on it finally became converted into the scarlet ammonium bronio-iodo-bromide, NH,BrIBr. A curve constructed from the increase in weight of the ammonium iodide and the time of exposure to bromine showed that therel was a marked diminution in the speed of absorption after the first atom of bromine had been added, and they were unable to decide whether th4e black intermediate1 product was another compound, NH,BrI, or only a mixture of ammoniuni bromide and free iodine. The present investigation was under- taken in order to settle this point, and also to determine whether the action of bromine on other solid iodides follows a similar course. Ammonium bromo-iodo-bromide, NH,BrIBr, was prepared by dissolving the calculated quantities of ammonium bromide, iodine, and bromine in a small quantity of water; the solution was a deep ruby-red colour, and when left in a desiccator over phosphoric oxide slowly deposited crystals of the salt. A similar result was obtained starting with ammonium iodide and bromine. A specimen was analysed by adding a weighed quantity to a Published on 01 January 1915. Downloaded by East Carolina University 14/09/2015 20:03:56. potassium iodide solution, making up to a fixed volume, and titrating with standard sodium arsenite solution ; the results are expressed by comparing the equivalent weight found in this way with that calculated from the formula. Tbe crystals gave E=156*7 (calc. E=l52.4). Too high a value for B denotes loss of halogen; the specimen analysed had been kept for some weeks iu a desiccator, and showed slight decomposition. The crystals obtained in the above manner were of a fine, ruby- red colour, but when examined by reflected light showed a distinct green lustre. The crystals consisted of aggregates, often 3 cm. long and 1 cm. broad, and made up of long prisms arranged parallel to one another. If the compound is sealed up in a glass tube it, is perfectly stable, but when exposed to dry air it loses iodine bromide, and if this is absorbed by potassium hydroxide, the loss continues until only white ammonium bromide is left. View Article Online RAE : THE ACTION OF BROMINR ON THE ALKALI IODIDES. 1287 The compound, like all the polyhaloids, is extremely deliquescent, and very readily soluble in water. If an aqueous solution is treated with successive equal volumes of ether, almost all the colour is removed after the second treatment. Action of Bromine Vapour on Bry Ammortium Iodide. Ammonium iodide crystals were first dried, and then were finely powdered; about 5 grams were placed in a weighed weighing bottle, 4 cm. in diameter and 2 em. high; this was then dried for two days in a desiccator containing phosphoric oxide, and weighed. A beaker of dry bromine was then placed in the desiccator, arid the weighing bottle was weighed at first every ten minutes, and later at longer intervals; previous to each weighing, it was placed in a desiccator containing potassium hydroxide, to remove bromine adhering to the glass. At the commencement of the reaction, which appears to take place more slowly the drier the materials, the dark colour of iodiue at first appears on the top of the solid. The first action, therefore, consists in the replacement of iodine by bromine. That the black solid is iodine is shown by the colour of the vapour and by the fact that iodine is removed by shaking with chloroform, leaving a mixture of white iodide and bromide. As the reaction proceeds, the black colour works its way down through the mass, and the top becomes covered with a red powder, into which, eventually, the whole of the solid is converted. The red solid must be either a compound, ammonium bromo-iodo- bromide, NH,BrIBr, or else a mixture of ammonium bromide and iodine bromide; that the former is actually the case is shown by the colour: iodine bromide is almost black with a brown vapour, Published on 01 January 1915. Downloaded by East Carolina University 14/09/2015 20:03:56. whilst this solid has a very low vapour pressure. Furthermore, the absorption of bromine ceases when the composition reaches NH,BrIBr, whilst if iodine monobromide is exposed to bromine, it continues to take up bromine, forming a liquid, which may consist of higher bromides of iodine or a solution of iodine bromide in bromine (Fig. 1). It appears, therefore, that there is no poly- haloid stable at the ordinary temperature having the composition XIBr, corresponding with the well-known series of compounds XICl, [all the polyhaloids seem to be additive compounds of haloids with one or two molecules either of a single halogen or of a compound of two halogens, and the existence of iodine tribromide corresponding with iodine trichloride seems doubtful (Roscoe and Schorlemmer)]. The red powder was analysed in the same way as the crystals, and gave E=151*5 (calc. E=l52.4). Jackson and Derby state that they found a marked diminution in speed of the reaction after the absorption of the first atom of View Article Online 1288 RAE : THE ACTION OF BROMINE ON THE ALKALI IODIDES bromine, but this result was not observed (Fig. 2); in fact, from the observed colours during the absorption, it was obvious that in the lower layers iodine was being set free, whilst at the same time in the upper ones the iodo-bromide was being formed, so that, a definite break iii the absorption curve was Iiartlly t,o bc expected unless the material was in a very thin layer. A large number of experiments have been made on the rates at which polyhaloids in the solid state ar.e formed and decomposed, but definite and conclusive breaks in the weight-time curves are only obtained when two polyhaloids of the same elements exist in which the polyhaloid halogen has very different vapour pressures A. Gram-atoms of bromine absorbed by one gram-atom of iodine. E. Gram-atoms of bromine lost by exposing the residling liquid iiz n ve.we7 coii- taining potassium hydroxide. 0 10 20 30 40 0 12 24 36 48 60 ho&s 7wws (A) 0 2 4 6 8 ho?crs( R) Published on 01 January 1915. Downloaded by East Carolina University 14/09/2015 20:03:56. FIG.1. (A) Absorption of Frc..2. Ab*qorption of hro- bromine by iodine, and mane by ammni~cm (B) loss of bromine by iodide. the resulting liquid. in the two compounds. Examples of this kind are shown in the curves showing the rate of loss of iodine by czsium pentaiodide and the loss of chlorine and iodine chloride by msium iodochloride, CsIC1, (Figs. 3 and 4). In the first case, the compound was prepared by Wells and Wheeler’s method: the crystals were powdered, placed in a desic- cator over potassium hydroxide, and weighed at intervals of a few days. The pentaiodide lost iodine at the rate of 0.31 gram (1 atom of iodine) in twenty-eight days, until the composition was that of the tri-iodide, and then continued to lose iodine at the rate of 0.01 gram in forty-five days, that is, fifty times as slowly; the View Article Online RAE : TEE ACTION OF BROMINE ON THE ATXALI IODIDES. 1289 temperature was then raised from the room temperature (28.) to 63O by placing an electric lamp iii the desiccator and jacketing tlie latter with cotton wool; the remaining 2 atoms of iodine were lost in thirty-seven days at the higher temperature. Chiurn iodochloride, CsICl,, was prepared by a, method which can be used to prepare tlie corresponding compounds of any of the alkali metals, namely, by passing a large excess of chlorine into a concentrated solution of the iodide of the metal and evaporating in a desiccator containing phosphoric oxide and filled with chlorine. The golden-yellow, needle-shaped crystals were dried aiid powdered, and the rate of loss was determined as in the previous case. The CSIS CsCI,T renll'. 3%" Temp 28" \ CSCIJ CST : Temp. 116" Temp. 62' I I .i I I CSCl Csl 60 120 0 60 120 days Published on 01 January 1915. Downloaded by East Carolina University 14/09/2015 20:03:56. Days. FIG.3. Rate of decomposi- FIG.4. Rate of decornposi- tion of CSJ,. tion of csci,r. curve shows a very well-marked break at the composition CsICl,, and a sample analysed at this point had the composition 99.3 per cent. CsIC1,. The loss of weight of the compound CsICl, was almost negligible at 28O, and the experiment was completed at 118O, czesium chloride being left. The reactions here are there- fore : CsICl, = CsICl, + c1, ; CsICl, = QCl + ICl, the former proceeding much more rapidly than the latter. The curve (Fig. 1) showing the absorption of bromine by iodine show no breaks, although the compound IBr is well known, whereas the loss curve gives a definite break at the composition IBr. View Article Online 1290 RAE : THE ACTION OF BROMINE ON THE ALKALI IODIDES. The curve (Fig. 2) shows no break at the composition NH,IBr, but the absorption of bromine ceases at, NH41Br,.
Recommended publications
  • (12) United States Patent (10) Patent N0.: US 8,304,580 B2 Nanmyo Et A]
    US008304580B2 (12) United States Patent (10) Patent N0.: US 8,304,580 B2 Nanmyo et a]. (45) Date of Patent: Nov. 6, 2012 (54) METHOD FOR PRODUCING TRIS(PER FOREIGN PATENT DOCUMENTS FLUORO-ALKANESULFONYL)METHIDE EP 0813521 B1 * 9/2000 ACID SALT JP 2000-226392 A 8/2000 JP 2000-256348 A 9/2000 (75) Inventors: Tsutomu Nanmyo, Ube (JP); Shintaro JP 2000-256348 A * 9/2000 Sasaki, Ube (JP); Takashi Kume, OTHER PUBLICATIONS KaWagoe (JP) English translation of JP-2000-256348-A; “machine translation” (73) Assignee: Central Glass Company, Limited, from JPO link at: http://WWW4.ipd1.inpit.go.jp/Tokujitu/ Ube-shi (JP) tj sogodbenkipdl accessed Oct. 25, 201 1; relevant part of document.* European Search Report dated Jun. 8, 2011 (four (4) pages). ( * ) Notice: Subject to any disclaimer, the term of this Waller et al., “Tris (tri?uoromethanesulfonyl) methide (“Tri?ide”) patent is extended or adjusted under 35 Anion: Convenient Preparation, X-ray Crystal Structures, and U.S.C. 154(b) by 528 days. Exceptional Catalytic Activity as a Counterion With Ytterbium (III) and Scandium (111)”, Journal of Organic Chemistry, vol. 64, 1999, pp. (21) Appl. N0.: 12/520,17s 2910-2913, XP-002636992. Turowsky et al., “Tris ((tri?uoromethyl) sulfonyl) methane, HC (22) PCT Filed: Dec. 18, 2007 (SO2CF3)3”, Journal of Inorganic Chemistry, vol. 27, 1988, pp. 2135-2137, XP-002636993. (86) PCT No.: PCT/JP2007/074296 International Search Report and PCT/ISN237 W/translation dated Feb. 12, 2008 (Seven (7) pages). § 371 (0X1)’ LutZ Turowsky et al., “Tris((tri?uoromethyl)sulfonyl)methane, (2), (4) Date: Jun.
    [Show full text]
  • Safety Data Sheet 1
    Safety Data Sheet 1. Waters Corporation EU: Waters Chromatography Europe B.V. FOR CHEMICAL EMERGENCY 34 Maple Street Mon Plaisir 12, Postbus 215 24 Hours per Day, 7 Days per Week Milford, MA 01757 U.S.A. 4870 AE Etten-Leur N B, The Netherlands Call CHEMTREC 1-800-424-9300 Tel: +1 508 478-2000 Tel: +31 76 508 1800 Outside USA & Canada (collect calls accepted) FAX: +1 508 872-1990 Waters Technologies Ireland Ltd +1 703-741-5970 www.waters.com Drinagh, Wexford, Ireland MSDS email inquiries: Tel: +353 53 91 60400 [email protected] 1. IDENTIFICATION Product: MassPREP™ Calibration Mix - DIOS Low Mass, PN 186002820 MSDS #: 715001038 Product Use: For laboratory use only. Date: Rev B, December 1, 2014 2. HAZARDS IDENTIFICATION: The calibration kit mixtures are not classified as hazardous per GHS and OSHA. Not dangerous according to the criteria set by the European Union (EU); not listed in Table 3.1 Annex VI of regulation 1272/2008/EU, as amended. The mixtures are not hazardous in the form in which they are placed on the market and under the normal and recommended conditions of storage and use. The small quantities supplied in our products are unlikely to cause severe or immediate health effects. However idodide compounds can be irritating to eyes and skin. Use only as directed and in accordance with safe laboratory practices. 3. COMPOSITION/INFORMATION ON INGREDIENTS: EXPOSURE LIMITS CAS EC % by OSHA ACGIH EU CHEMICAL INGREDIENT NAME NUMBER NUMBER Weight IOELV Polyethylene Glycol (PEG) 25322-68-3 203-989-9 100 NA NE NA Sodium Iodide 7681-82-5 231-679-3 99.9 NA 0.01 ppm NA (iodides) Cesium Iodide 7789-17-5 232-145-2 99.9 NA 0.01 ppm NA (iodides) Rubidium Iodide 7790-29-6 232-198-1 99.9 NA 0.01 ppm NA (iodides) Notes: Kit contains dried calibration mixtures: Polyethylene Glycol in a range of molecular weights (MW 200, 600, 1000); 50 ug of Sodium Iodide; 50 ug Rubidium Iodide; and 12.5 ug Cesium Iodide.
    [Show full text]
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • The Structure and Stability of Simple Tri-Iodides
    THE STRUCTURE AND STABILITY OF SIMPLE TRI -IODIDES by ANTHONY JOHN THOMPSON FINNEY B.Sc.(Hons.) submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy UNIVERSITY OF TASMANIA HOBART OCTOBER, 1973 . r " • f (i) Frontispiece (reproduced as Plate 6 - 1, Chapter 1) - two views of a large single crystal of KI 3 .H20. The dimensions of this specimen were approximately 3.0 cm x 1.5 cm x 0.5 cm. • - - . ;or • - This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by another person, except where reference is made in the text of this thesis. Anthony John Finney Contents page Abstract (iv) Acknowledgements (vii) Chapter 1 - The Structure and Stability of Simple 1 Tri-iodides Chapter 2 - The Theoretical Basis of X-Ray Structural 32 Analysis Chapter 3 - The Crystallographic Program Suite 50 Chapter 4 - The Refinement of the Structure of NH I 94 4 3 Chapter 5 - The Solution of the Structure of RbI 115 3 Chapter 6 - The Solution of the Structure of KI 3 .1120 135 Chapter 7 Discussion of the Inter-relation of 201 Structure and Stability Bibliography 255 Appendix A - Programming Details 267 Appendix B - Density Determinations 286 Appendix C - Derivation of the Unit Cell Constants of 292 KI .H 0 3 2 Appendix D - I -3 force constant Calculation 299 Appendix E - Publications 311 ( iv) THE STRUCTURE AND STABILITY OF SIMPLE TRI-IODIDES Abstract In this work the simple tri-iodides are regarded as being those in which the crystal lattice contains only cations, tri-iodide anions and possibly solvate molecules.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • CHEM 1411 Nomenclature Homework - Answers Part I
    1 CHEM 1411 Nomenclature Homework - Answers Part I 1. The following are a list of binary and pseudobinary ionic compounds. Write the name when the formula is given. Write the formula when the name is given. (a) AlCl3 aluminum chloride (k) rubidium oxide Rb2O (b) AuBr3 gold (III) bromide (l) chromium (III) selenide Cr2Se3 (c) Na2S sodium sulfide (m) barium iodide BaI2 (d) Cu3P2 copper (II) phosphide (n) copper (I) fluoride CuF (e) Fe(OH)2 iron (II) hydroxide (o) copper (II) fluoride CuF2 (f) NH4OH ammonium hydroxide (p) strontium cyanide Sr(CN)2 (g) Co(CH3COO)3 cobalt (III) acetate (q) mercury (II) bromide HgBr2 (h) Zn(SCN)2 zinc thiocyanate (r) mercury (I) bromide Hg2Br2 (i) CaCrO4 calcium chromate (s) magnesium permanganate Mg(MnO4)2 (j) K2Cr2O7 potassium dichromate (t) lithium nitride Li3N 2. The following are lists of covalent compounds. Write the name when a formula is given. Write the formula when given a name. (a) CSe2 carbon diselenide (h) dichlorine heptoxide Cl2O7 (b) SF6 sulfur hexafluoride (i) xenon tetrafluoride XeF4 (c) BrF5 bromine pentafluoride (j) carbon monoxide CO (d) P4O10 tetraphosphorous decoxide (k) oxygen O2 (e) Cl2O dichlorine oxide (l) diboron trioxide B2B O3 (f) NH3 ammonia (m) arsenic trifluoride AsF3 (g) N2 dinitrogen or nitrogen (n) diiodine I2 2 3. The following are lists of acids or acid-forming compounds. Write the name when the formula is given. Write the formula when the name is given. (a) H3PO2 hypophosphorous acid (k) hydrogen cyanide HCN (g) (b) H2SO4 sulfuric acid (l) periodic acid HIO4 (c) HClO hypochlorous acid (m) hypochlorous acid HClO (d) H3PO4 phosphoric acid (n) nitric acid HNO3 (e) HBrO4 perbromic acid (o) acetic acid CH3CO2H (f) HIO2 iodous acid (p) chloric acid HClO3 (g) HI (g) hydrogen iodide (q) perbromic acid HBrO4 (h) HI (aq) hydroiodic acid (r) hydrofluoric acid HF (aq) (i) HCN (aq) hydrocyanic acid (s) phosphorous acid H3PO3 (j) HBrO hypobromous acid (t) hydrosulfuric acid H2S (aq) 4.
    [Show full text]
  • Crystal Structure Transformations in Binary Halides
    1 A UNITED STATES DEPARTMENT OF A111D3 074^50 IMMERCE JBLICAT10N NSRDS—NBS 41 HT°r /V\t Co^ NSRDS r #C£ DM* ' Crystal Structure Transformations in Binary Halides u.s. ARTMENT OF COMMERCE National Bureau of -QC*-| 100 US73 ho . 4 1^ 72. NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation’s physical measure- ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scien- tific community, industry, and commerce. The Institute consists of a Center for Radia- tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation 2—Nuclear Radiation 2—Applied Radiation 2—Quantum Electronics 3— Electromagnetics 3—Time and Frequency 3—Laboratory Astrophysics 3—Cryo- 3 genics .
    [Show full text]
  • Chemical Toxicology File
    L1618Ch10Frame Page 211 Tuesday, August 13, 2002 5:47 PM CHAPTER 10 Toxic Elements 10.1 INTRODUCTION It is somewhat difficult to define what is meant by a toxic element. Some elements, such as white phosphorus, chlorine, and mercury, are quite toxic in the elemental state. Others, such as carbon, nitrogen, and oxygen, are harmless as usually encountered in their normal elemental forms. But, with the exception of those noble gases that do not combine chemically, all elements can form toxic compounds. A prime example is hydrogen cyanide. This extremely toxic compound is formed from three elements that are nontoxic in the uncombined form, and produce compounds that are essential constituents of living matter, but when bonded together in the simple HCN molecule constitute a deadly substance. The following three categories of elements are considered here: • Those that are notable for the toxicities of most of their compounds • Those that form very toxic ions • Those that are very toxic in their elemental forms Elements in these three classes are discussed in this chapter as toxic elements, with the qualification that this category is somewhat arbitrary. With a few exceptions, elements known to be essential to life processes in humans have not been included as toxic elements. 10.2 TOXIC ELEMENTS AND THE PERIODIC TABLE It is most convenient to consider elements from the perspective of the periodic table, which is shown in Figure 1.3 and discussed in Section 1.2. Recall that the three main types of elements, based on their chemical and physical properties as determined by the electron configurations of their atoms, are metals, nonmetals, and metalloids.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • The Specific Heats of the Alkali Halides and Their Spectroscopic Behaviour
    THE SPECIFIC HEATS OF THE ALKALI HALIDES AND THEIR SPECTROSCOPIC BEHAVIOUR Part XH. The Potassium and Rubidium Salts BY SIR C. V. RAMAN (Memoir No. 131 of the Raman Research Institute, Bangalore-6) Received July 7, 1962 TABLE I below reproduces the atomic vibration frequencies of the halides of potassium and rubidium calculated by the approximate method set out in Part V of the memoir. Only two force-constants a and fl appear in the formul~e; a is a measure of the resistance to a change of bond-lengths and q to a change of the bond-angles in the crystal structure. The figures in Table I are the same as those listed in Part VI of the memoir but they are arranged in a slightly different manner. The highest frequency appears first, then the four frequencies of vibration of the octahedral layers and TABLE I The Atomic Vibration Frequencies (cm. -1) Degeneracies 1 8 3 " 6 KF 202 166 166 116 t 116 182 167 114 87 KC1 133 96 96 92 92 119 102 85 60 KBr 105 86 86 60 60 96 88 58 43 KI 90 79 79 44 44 84 8O 42 32 RbF 167 1 151 151 71 71 158 152 69 55 RbCI 103 87 87 56 56 95 89 53 39 78 56 56 54 54 71 63 47 RbBr I i 33 RbI 64 I 49 49 40 40 59 36 26 60 Specific Heats of Alkali Halides and their Spectroscopic Behavio,lr--XII 61 finally the frequencies of the four modes of coupled vibration of the atoms in the cubic layers.
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds
    EPA/690/R-16/012F l Final 9-02-2016 Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (CASRN 7440-17-7, Rubidium) (CASRN 7791-11-9, Rubidium Chloride) (CASRN 1310-82-3, Rubidium Hydroxide) (CASRN 7790-29-6, Rubidium Iodide) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGERS Puttappa R. Dodmane, BVSc&AH, MVSc, PhD National Center for Environmental Assessment, Cincinnati, OH Scott C. Wesselkamper, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY SRC, Inc. 7502 Round Pond Road North Syracuse, NY 13212 PRIMARY INTERNAL REVIEWER Paul G. Reinhart, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC This document was externally peer reviewed under contract to: Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this PPRTV assessment should be directed to the EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). ii Rubidium Compounds TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS AND ACRONYMS .................................................. iv BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1
    [Show full text]
  • Nitrogen Tribromide Polar Or Nonpolar
    Nitrogen tribromide polar or nonpolar Continue Nitrogen Tribromid Names IUPAC Name Nitrogen Tribromid Identifiers CAS Number 15162-90-0 3D Model (JSmol) Interactive Image ChemSpider 20480821 PubChem CID 3082084 CompTox Dashboard (EPA) DTXSID901648 In22 InChI InChIBrH.N/h3'1H;/p-3 SMILES N(Br)(Br)Br Properties Chemical Formula NBr3 Molar Mass 253.7187 g/mol Appearance Deep-red solid melting point explodes at -100 degrees Celsius, except when otherwise noted, the data is given for materials in their standard state (at 25 degrees Celsius), 100 kPa). Infobox links nitrogen tribromid is a chemical compound with the NBr3 formula. It is extremely explosive in its purest form, even at 100 degrees Celsius, and was not isolated until 1975. It's deep-red and volatile solid. The drug NBr3 was first prepared by the reaction of bistrimetligrilbramamin (bis (trimethylsil)amin bromide) with bromine monochloride (with trimethylylyl chloride as a by-product) at 87 degrees on the following equations: (Me3Si)2NBr2 BrCl → NBr3 and 2 Me3SiCl, Where Me is He instantly reacts with ammonia in a dichloromethane solution at 87 degrees Celsius to give NBrH2. Links - Lide, David R. (1998), Handbook on Chemistry and Physics (87 Ed.), Boca-Raton, Florida: CRC Press, p. 4-73, ISBN 0-8493-0594-2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of elements (2nd st. Butterworth-Keinmann. page 439. ISBN 978-0-08-037941-8. vteSalts and covalent derivatives of nitrid ion NH3N2H4 He (N2)11 Li3N Be3N2 BN β-C3N4g- C3N4CxNy N2 NxOy NF3 Ne Na3N Mg3 NN2 AlN Si3N4 PNP3N5 SxNySNS4N4 NCl3 Ar K3N Ca3N2 ScN VN CrNCr2N MnxNy FexNy Ni3N CuN n3N2 GaN Ge3N4 as Se NBr3 Kr Rb3 Yn Sr3N2 yn srn NbN β-Mo2N Tc Ru Rh PdN AgN CdN InN Sb Te NI3 Xe Cs3N Ba3N2 Hf3N4 TaN WN Re Os Au Hg3N2 TlN Pb BiN Po At At Rn Fr3N Ra3N2 Rf Db Sg Bh Hs Mt D rg Cn Nh Fl Mc Lv Ts Og s La CeN Pr Nd Pm Sm Eu GdN Tb Dy Er Tm Yb Lu Ac Th Pa UN Np Pu Am Cm Bk Cf Es Fm No Lr Lr Extracted from the Is NBr3 (Nitrogen Tribromid) polar or non-polar? NBr3 (Nitrogen Tribromid) is a polar I'll tell you the polar or nonpolar list below.
    [Show full text]