Chemical Toxicology File

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Toxicology File L1618Ch10Frame Page 211 Tuesday, August 13, 2002 5:47 PM CHAPTER 10 Toxic Elements 10.1 INTRODUCTION It is somewhat difficult to define what is meant by a toxic element. Some elements, such as white phosphorus, chlorine, and mercury, are quite toxic in the elemental state. Others, such as carbon, nitrogen, and oxygen, are harmless as usually encountered in their normal elemental forms. But, with the exception of those noble gases that do not combine chemically, all elements can form toxic compounds. A prime example is hydrogen cyanide. This extremely toxic compound is formed from three elements that are nontoxic in the uncombined form, and produce compounds that are essential constituents of living matter, but when bonded together in the simple HCN molecule constitute a deadly substance. The following three categories of elements are considered here: • Those that are notable for the toxicities of most of their compounds • Those that form very toxic ions • Those that are very toxic in their elemental forms Elements in these three classes are discussed in this chapter as toxic elements, with the qualification that this category is somewhat arbitrary. With a few exceptions, elements known to be essential to life processes in humans have not been included as toxic elements. 10.2 TOXIC ELEMENTS AND THE PERIODIC TABLE It is most convenient to consider elements from the perspective of the periodic table, which is shown in Figure 1.3 and discussed in Section 1.2. Recall that the three main types of elements, based on their chemical and physical properties as determined by the electron configurations of their atoms, are metals, nonmetals, and metalloids. Metalloids (B, Si, Ge, As, Sb, Te, At) show some characteristics of both metals and nonmetals. The nonmetals consist of those few elements in groups 4A to 7A above and to the right of the metalloids. The noble gases, only some of which form a limited number of very unstable chemical compounds of no toxicological significance, are in group 8A. All the remaining elements, including the lanthanide and actinide series, are metals. Elements in the periodic table are broadly distinguished between representative elements in the A groups of the periodic table and transition metals constituting the B groups, the lanthanide series, and the actinide series. Copyright © 2003 by CRC Press LLC L1618Ch10Frame Page 212 Tuesday, August 13, 2002 5:47 PM 10.3 ESSENTIAL ELEMENTS Some elements are essential to the composition or function of the body. Since the body is mostly water, hydrogen and oxygen are obviously essential elements. Carbon (C) is a component of all life molecules, including proteins, lipids, and carbohydrates. Nitrogen (N) is in all proteins. The other essential nonmetals are phosphorus (P), sulfur (S), chlorine (Cl), selenium (Se), fluorine (F), and iodine (I). The latter two are among the essential trace elements that are required in only small quantities, particularly as constituents of enzymes or as cofactors (nonprotein species essential for enzyme function). The metals present in macro amounts in the body are sodium (Na), potassium (K), and calcium (Ca). Essential trace elements are chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), magnesium (Mg), molybdenum (Mo), nickel (Ni), and perhaps more elements that have not yet been established as essential. 10.4 METALS IN AN ORGANISM Metals are mobilized and distributed through environmental chemical processes that are strongly influenced by human activities. A striking example of this phenomenon is illustrated by the lead content of the Greenland ice pack. Starting at very low levels before significant industrialization had occurred, the lead content of the ice increased in parallel with the industrial revolution, showing a strongly accelerated upward trend beginning in the 1920s, with the introduction of lead into gasoline. With the curtailment of the use of leaded gasoline, some countries are now showing decreased lead levels, a trend that hopefully will extend globally within the next several decades. Metals in the body are almost always in an oxidized or chemically combined form; mercury is a notable exception in that elemental mercury vapor readily enters the body through the pulmonary route. The simplest form of a chemically bound metal in the body is the hydrated cation, of which + Na(H2O)6 is the most abundant example. At pH values ranging upward from somewhat less than seven (neutrality), many metal ions tend to be bound to one or more hydroxide groups; an example + + is iron(II) in Fe(OH)(H2O)5 . Some metal ions have such a strong tendency to lose H that, except at very low pH values, they exist as the insoluble hydroxides. A common example of this phenom- enon is iron(III), which is very stable as the insoluble hydrated iron(III) oxide, Fe2O3·xH2O, or hydroxide, Fe(OH)3. Metals can bond to some anions in body fluids. For example, in the strong hydrochloric acid medium of the stomach, some iron(III) may be present as HFeCl4, where the acid in the stomach prevents formation of insoluble Fe(OH)3 and a high concentration of chloride ion is available to bond to iron(III). Ion pairs may exist that consist of positively charged metal cations and negatively charged anions endogenous to body fluids. These do not involve covalent bonding between cations and anions, but rather an electrostatic attraction, such as in the ion pairs 2+ ¯ 2+ ¯ Ca HCO 3 or Ca Cl . 10.4.1 Complex Ions and Chelates With the exception of group lA metals and the somewhat lesser exception of group 2A metals, there is a tendency for metals to form complexes with electron donor functional groups on ligands consisting of anionic or neutral inorganic or organic species. In such cases, covalent bonds are formed between the central metal ion and the ligands. Usually the resulting complex has a net – charge and is called a complex ion; FeCl4 is such an ion. In many cases, an organic ligand has two or more electron donor functional groups that may simultaneously bond to a metal ion to form a complex with one or more rings in its structure. A ligand with this capability is called a chelating agent, and the complex is a metal chelate. Copper(II) ion forms such a chelate with the anion of the amino acid glycine, as shown in Figure 10.1. This chelate is very stable. Copyright © 2003 by CRC Press LLC L1618Ch10Frame Page 213 Tuesday, August 13, 2002 5:47 PM H O H O H H CC – CC NO* NO * H H H H + Cu2+ Cu H – H H H * O N * O N CC H CC H O H O H Glycinate anions Copper chelate Figure 10.1 Chelation of Cu2+ by glycinate anion ligands to form the glycinate chelate. Each electron donor group on the glycinate anion chelating agents is designated with an asterisk. In the chelate, the central copper(II) metal ion is bonded in four places and the chelate has two rings composed of the five-atom sequence Cu–O–C–C–N. Organometallic compounds constitute a large class of metal-containing species with properties quite different from those of the metal ions. These are compounds in which the metal is covalently bonded to carbon in an organic moiety, such as the methyl group, –CH3. Unlike metal complexes, which can reversibly dissociate to the metal ions and ligands, the organic portions of organometallic compounds are not normally stable by themselves. The chemical and toxicological properties of organometallic compounds are discussed in detail in Chapter 12, so space will not be devoted to them here. However, it should be mentioned that neutral organometallic compounds tend to be lipid soluble, a property that enables their facile movement across biologic membranes. They often remain intact during movement through biological systems and so become distributed in these systems as lipid-soluble compounds. A phenomenon not confined to metals, methylation is the attachment of a methyl group to an element and is a significant natural process responsible for much of the environmental mobility of some of the heavier elements. Among the elements for which methylated forms are found in the environment are cobalt, mercury, silicon, phosphorus, sulfur, the halogens, germanium, arsenic, selenium, tin, antimony, and lead. 10.4.2 Metal Toxicity Inorganic forms of most metals tend to be strongly bound by protein and other biologic tissue. Such binding increases bioaccumulation and inhibits excretion. There is a significant amount of tissue selectivity in the binding of metals. For example, toxic lead and radioactive radium are accumulated in osseous (bone) tissue, whereas the kidneys accumulate cadmium and mercury. Metal ions most commonly bond with amino acids, which may be contained in proteins (including enzymes) or polypeptides. The electron-donor groups most available for binding to metal ions are amino and carboxyl groups (see Figure 10.2). Binding is especially strong for many metals to thiol (sulfhydryl) groups; this is particularly significant because the –SH groups are common components of the active sites of many crucial enzymes, including those that are involved in cellular energy output and oxygen transport. The amino acid that usually provides –SH groups in enzyme active sites is cysteine, as shown in Figure 10.2. The imidazole group of the amino acid histidine is a common feature of enzyme active sites with strong metal-binding capabilities. The absorption of metals is to a large extent a function of their chemical form and properties. Pulmonary intake results in the most facile absorption and rapid distribution through the circulatory system. Absorption through this route is often very efficient when the metal is in the form of respirable particles less than 100 µm in size, as volatile organometallic compounds (see Chapter 12) or (in the case of mercury) as the elemental metal vapor.
Recommended publications
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • CHEM 1411 Nomenclature Homework - Answers Part I
    1 CHEM 1411 Nomenclature Homework - Answers Part I 1. The following are a list of binary and pseudobinary ionic compounds. Write the name when the formula is given. Write the formula when the name is given. (a) AlCl3 aluminum chloride (k) rubidium oxide Rb2O (b) AuBr3 gold (III) bromide (l) chromium (III) selenide Cr2Se3 (c) Na2S sodium sulfide (m) barium iodide BaI2 (d) Cu3P2 copper (II) phosphide (n) copper (I) fluoride CuF (e) Fe(OH)2 iron (II) hydroxide (o) copper (II) fluoride CuF2 (f) NH4OH ammonium hydroxide (p) strontium cyanide Sr(CN)2 (g) Co(CH3COO)3 cobalt (III) acetate (q) mercury (II) bromide HgBr2 (h) Zn(SCN)2 zinc thiocyanate (r) mercury (I) bromide Hg2Br2 (i) CaCrO4 calcium chromate (s) magnesium permanganate Mg(MnO4)2 (j) K2Cr2O7 potassium dichromate (t) lithium nitride Li3N 2. The following are lists of covalent compounds. Write the name when a formula is given. Write the formula when given a name. (a) CSe2 carbon diselenide (h) dichlorine heptoxide Cl2O7 (b) SF6 sulfur hexafluoride (i) xenon tetrafluoride XeF4 (c) BrF5 bromine pentafluoride (j) carbon monoxide CO (d) P4O10 tetraphosphorous decoxide (k) oxygen O2 (e) Cl2O dichlorine oxide (l) diboron trioxide B2B O3 (f) NH3 ammonia (m) arsenic trifluoride AsF3 (g) N2 dinitrogen or nitrogen (n) diiodine I2 2 3. The following are lists of acids or acid-forming compounds. Write the name when the formula is given. Write the formula when the name is given. (a) H3PO2 hypophosphorous acid (k) hydrogen cyanide HCN (g) (b) H2SO4 sulfuric acid (l) periodic acid HIO4 (c) HClO hypochlorous acid (m) hypochlorous acid HClO (d) H3PO4 phosphoric acid (n) nitric acid HNO3 (e) HBrO4 perbromic acid (o) acetic acid CH3CO2H (f) HIO2 iodous acid (p) chloric acid HClO3 (g) HI (g) hydrogen iodide (q) perbromic acid HBrO4 (h) HI (aq) hydroiodic acid (r) hydrofluoric acid HF (aq) (i) HCN (aq) hydrocyanic acid (s) phosphorous acid H3PO3 (j) HBrO hypobromous acid (t) hydrosulfuric acid H2S (aq) 4.
    [Show full text]
  • Nitrogen Tribromide Polar Or Nonpolar
    Nitrogen tribromide polar or nonpolar Continue Nitrogen Tribromid Names IUPAC Name Nitrogen Tribromid Identifiers CAS Number 15162-90-0 3D Model (JSmol) Interactive Image ChemSpider 20480821 PubChem CID 3082084 CompTox Dashboard (EPA) DTXSID901648 In22 InChI InChIBrH.N/h3'1H;/p-3 SMILES N(Br)(Br)Br Properties Chemical Formula NBr3 Molar Mass 253.7187 g/mol Appearance Deep-red solid melting point explodes at -100 degrees Celsius, except when otherwise noted, the data is given for materials in their standard state (at 25 degrees Celsius), 100 kPa). Infobox links nitrogen tribromid is a chemical compound with the NBr3 formula. It is extremely explosive in its purest form, even at 100 degrees Celsius, and was not isolated until 1975. It's deep-red and volatile solid. The drug NBr3 was first prepared by the reaction of bistrimetligrilbramamin (bis (trimethylsil)amin bromide) with bromine monochloride (with trimethylylyl chloride as a by-product) at 87 degrees on the following equations: (Me3Si)2NBr2 BrCl → NBr3 and 2 Me3SiCl, Where Me is He instantly reacts with ammonia in a dichloromethane solution at 87 degrees Celsius to give NBrH2. Links - Lide, David R. (1998), Handbook on Chemistry and Physics (87 Ed.), Boca-Raton, Florida: CRC Press, p. 4-73, ISBN 0-8493-0594-2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of elements (2nd st. Butterworth-Keinmann. page 439. ISBN 978-0-08-037941-8. vteSalts and covalent derivatives of nitrid ion NH3N2H4 He (N2)11 Li3N Be3N2 BN β-C3N4g- C3N4CxNy N2 NxOy NF3 Ne Na3N Mg3 NN2 AlN Si3N4 PNP3N5 SxNySNS4N4 NCl3 Ar K3N Ca3N2 ScN VN CrNCr2N MnxNy FexNy Ni3N CuN n3N2 GaN Ge3N4 as Se NBr3 Kr Rb3 Yn Sr3N2 yn srn NbN β-Mo2N Tc Ru Rh PdN AgN CdN InN Sb Te NI3 Xe Cs3N Ba3N2 Hf3N4 TaN WN Re Os Au Hg3N2 TlN Pb BiN Po At At Rn Fr3N Ra3N2 Rf Db Sg Bh Hs Mt D rg Cn Nh Fl Mc Lv Ts Og s La CeN Pr Nd Pm Sm Eu GdN Tb Dy Er Tm Yb Lu Ac Th Pa UN Np Pu Am Cm Bk Cf Es Fm No Lr Lr Extracted from the Is NBr3 (Nitrogen Tribromid) polar or non-polar? NBr3 (Nitrogen Tribromid) is a polar I'll tell you the polar or nonpolar list below.
    [Show full text]
  • Naming Grab Bag 1. Barium Selenide Base 2. Chlorine Cl2 3. SO Sulfur
    Naming Grab Bag 1. barium selenide BaSe 2. chlorine Cl2 3. SO3 sulfur trioxide 4. Fe(NO3)2 iron(II) nitrate 5. Cs2O cesium oxide 6. silicon monocarbide SiC 7. lithium nitride Li3N 8. Al4C3 aluminum carbide 9. NaBr sodium bromide 10. iron(III) chloride FeCl3 11. dinitrogen pentaoxide N2O5 12. diphosphorus pentasulfide P2S5 13. CaS calcium sulfide 14. NO nitrogen monoxide 15. magnesium hydride MgH2 16. dihydrogen monoxide H2O 17. P4O8 tetraphosphorus octaoxide 18. ammonium sulfate (NH4)2SO4 19. Al2S3 aluminum sulfide 20. AlN aluminum nitride 21. sodium iodide NaI 22. Cr2(CO3)3 chromium(III) carbonate 23. Ba3(PO4)2 barium phosphate 24. silicon tetrahydride SiH4 25. SnCl4 tin(IV) chloride 26. lead(II) sulfite PbSO3 27. HgS mercury(II) sulfide 28. copper(II) carbonate CuCO3 29. Zn(OH)2 zinc hydroxide 30. SO2 sulfur dioxide 31. oxygen dibromide OBr2 32. CF4 carbon tetrafluoride 33. iron(III) oxide Fe2O3 34. silver nitrite AgNO2 35. NH4NO3 ammonium nitrate 36. barium carbonate BaCO3 37. calcium carbonate CaCO3 38. KNO3 potassium nitrate 39. KNO2 potassium nitrite 40. K3N potassium nitride 41. Mg(OH)2 magnesium hydroxide 42. NaHCO3 sodium hydrogen carbonate 43. sodium hydroxide NaOH 44. KBr potassium bromide 45. lithium chloride LiCl 47. calcium phosphate Ca3(PO4)2 CuS 48. copper(II) sulfide iron(III) hydroxide 49. Fe(OH)3 MgSO4 7H2O 50. magnesium sulfate heptahydrate ZnS 51. zinc sulfide NaF 52. sodium fluoride Sn(NO3)2 SF6 carbonic 53. tin(II) nitrate acid FeS diphosphorus 54. sulfur hexafluoride tetraoxide oxygen 55. H2CO3(aq) difluoride 56. iron(II) sulfide chromium(III) oxide carbon disulfide 57.
    [Show full text]
  • Ornine on the Aiectli Iodides. by ~VILLIAMNORMAN RAE
    View Article Online / Journal Homepage / Table of Contents for this issue 1286 RAE : THE ACTION OF BROMINE ON THE ALKAT,I IODIDES. CX LIV.-The Action of &-ornine on the AIEctli Iodides. By ~VILLIAMNORMAN RAE. INa paper by Jackson and Derby on ferrous iodide (Amer. Chem. J., 1900, 24, 15), mention is made of the action of bromine vapour on solid ammonium iodide; these authors state that the ammonium iodide first turned black, but as the absorption went on it finally became converted into the scarlet ammonium bronio-iodo-bromide, NH,BrIBr. A curve constructed from the increase in weight of the ammonium iodide and the time of exposure to bromine showed that therel was a marked diminution in the speed of absorption after the first atom of bromine had been added, and they were unable to decide whether th4e black intermediate1 product was another compound, NH,BrI, or only a mixture of ammoniuni bromide and free iodine. The present investigation was under- taken in order to settle this point, and also to determine whether the action of bromine on other solid iodides follows a similar course. Ammonium bromo-iodo-bromide, NH,BrIBr, was prepared by dissolving the calculated quantities of ammonium bromide, iodine, and bromine in a small quantity of water; the solution was a deep ruby-red colour, and when left in a desiccator over phosphoric oxide slowly deposited crystals of the salt. A similar result was obtained starting with ammonium iodide and bromine. A specimen was analysed by adding a weighed quantity to a Published on 01 January 1915.
    [Show full text]
  • Inorganic, Organic and Physical Chemistry- Iv
    UNIT I HALOGEN FAMILY AND ZERO GROUP ELEMENTS TWO MARKS 1.What are halogens? Give an oxidation states of halogens. 2.What are interhalogens? 3.How chlorine monofluoride is prepared? 4.What are pseudohalogens?Give an example. 5.How thiocyanogen is prepared?What are its properties? 6.Write the characteristics of interhalogens. 7.What are noble gases? 8. Write the uses of xenon compound. INORGANIC, ORGANIC AND 9.How XeOF4 is prepared? PHYSICAL CHEMISTRY- IV 10.How XeF6 is prepared in laboratory? FIVE MARKS Subject Code: 18K4CH06 1.Explain the AX3 type of interhalogen compounds. 2.Explain the preparation and properties of IF7. 3.Explain the characteristics of interhalogen compounds. 4.Explain the preparation and properties of XeF4. 5. Explain the preparation and properties of cyanogens. 6.Explain the position of noble gases in the periodic table. TEN MARKS 1.Discuss the structures and uses of interhalogen compounds. 2.Describe the AX type of interhalogen compound. 3.Explain the comparative study of halogen compounds. 4.Describe the methods of preparation and properties of XeF6 and XeF2. HALOGEN FAMILY AND ZERO GROUP ELEMENTS contains two or more different halogen atoms (fluorine, chlorine, bromine, iodine, or astatine) and no atoms of elements from any other group. The halogens are a group in the periodic table consisting of five chemically Most interhalogen compounds known are binary (composed of only two distinct elements). related elements: fluorine (F), chlorine(Cl), bromine (Br), iodine (I), and astatine (At). The Their formulae are generally XYn, where n = 1, 3, 5 or 7, and X is the less electronegative of artificially created element 117, tennessine (Ts), may also be a halogen.
    [Show full text]
  • Total of 10 Pages Only May Be Xeroxed
    TholE PREPARATION AND SOME REACTIONS -OF BROMINATED PYRROLE DERIVATIVES CENTRE FOR NEWFOUNDLAND STUDIES TOTAL OF 10 PAGES ONLY MAY BE XEROXED (Without Author's Permission) S~U-FAN LIU n~r. 10 1965 . ~~ 095903 ~ ' c.-:t· The Preparation and Some Reactions of Brominated Pyrrole Derivatives by Shu-fan (Lee) Liu Submitted in partial fulfillment of the require­ ments for the degree of Master of Science, Memorial University of Newfoundland March, 1965 S'tt..~cf- -1-c on L-n. .n ~~ C't-S i ~ n x ined and pprov ~ TABLE OF CONTENTS Preface Page PART I DISCUSSION Section I Bromination of Methyl 2-pyrrolecarboxylate and 1 2-pyrrolecarboxaldehyde. (a) Introduction. 1 (b) Structure determination of the bromo-pyrrole 4 derivatives. (c) Bromination with molecular bromine. 8 (d) Bromina.tion with positively charged bromine. 11 (e) Bromination with free radical bromine. 13 (f) Bromination with other brominating agents. 15 Section II Some reactions of methyl monobromo-2-pyrrole- 17 carboxylate and methyl dibromo-2-pyrrole-carboxylate. (a) Carbonation of the Grignard reagent. 17 (b) Hydrolysis. 18 (c) Decarboxylation. 19 Section III Reduction of bromo-pyrrole derivatives. 20 (a) Replacement of halogen by hydrogen. 20 (b) Replacement of halogen by deuterium. 22 (a) With aluminum chloride as catalyst. 4 2 (b) With iron pm.vder as catalyst. '+3 (c) With iodine as cata lyst. 43 (11) The isolation of brominated products. Lt- 3 Section II Some attempte d reactions of mono- and di-brominated 44 methyl 2-pyrrolecarboxylate. (1) Carbonation of the Grignard reagent. 44 (2) Preparation of acids. 45 ( 3) Decarboxylation.
    [Show full text]
  • Assessment of Biocide Impacts on Life Support (LS) and Extravehicular Activity (EVA) Architectures
    NASA/TM-20210013644 NESC-RP-01518 Assessment of Biocide Impacts on Life Support (LS) and Extravehicular Activity (EVA) Architectures Morgan B. Abney/NESC Langley Research Center, Hampton, Virginia Kevin S. McCarley Marshall Space Flight Center, Huntsville, Alabama Lance D. Delzeit Ames Research Center, Moffett Field, California Eliza L. Montgomery Kennedy Space Center, Kennedy Space Center, Florida Daniel B. Gazda and Spencer Williams Johnson Space Center, Houston, Texas Martin S. Feather and Steven L. Cornford Jet Propulsion Laboratory, Pasadena, California John W. Steele Jacobs Technology Inc., Dallas, Texas April 2021 NASA STI Program Report Series Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and technical NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the auspices • SPECIAL PUBLICATION. Scientific, of the Agency Chief Information Officer. It collects, technical, or historical information from NASA organizes, provides for archiving, and disseminates programs, projects, and missions, often NASA’s STI. The NASA STI program provides access concerned with subjects having substantial to the NTRS Registered and its public interface, the public interest. NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space • TECHNICAL TRANSLATION. science STI in the world. Results are published in both English-language translations of foreign non-NASA channels and by NASA in the NASA STI scientific and technical material pertinent to Report Series, which includes the following report NASA’s mission.
    [Show full text]
  • Iodine Chemistry and Applications
    IODINE CHEMISTRY AND APPLICATIONS IODINE CHEMISTRY and APPLICATIONS Edited by TATSUO KAIHO Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/ permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
    [Show full text]