Iodine Chemistry and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Iodine Chemistry and Applications IODINE CHEMISTRY AND APPLICATIONS IODINE CHEMISTRY and APPLICATIONS Edited by TATSUO KAIHO Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/ permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging-in-Publication Data: Kaiho, Tatsuo. Iodine chemistry and applications / edited by Dr. Tatsuo Kaiho, Kanto Natural Gas Development Co., Ltd., Brine Resources R&D Division, Chiba, Japan. pages cm Includes index. ISBN 978-1-118-46629-2 (cloth) 1. Iodine. 2. Iodine–Industrial applications. 3. Iodine–Therapeutic use. I. Title. TP245.I6K35 2014 661′.1–dc23 2014017643 Cover Image: Courtesy of Tatsuo Kaiho Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 CONTENTS LIST OF CONTRIBUTORS ix PREFACE xiii 1 Overview 1 Tatsuo Kaiho PArt I CHARACTERISTICS, ELEMENTAL OF IODINE 7 2 Physical Properties of Iodine 9 Tatsuo Kaiho 3 Analytical Methods for Iodine and Iodides 15 Hirofumi Kanoh and Takehisa Konishi 4 Ion Chromatography 25 Anna Błażewicz 5 Inorganic Iodides 55 Tatsuo Kaiho 6 Organic Iodides 75 Tsugio Kitamura v vi CONTENTS 7 Hypervalent Iodine 103 Toshifumi Dohi and Yasuyuki Kita 8 Iodine and Halogen Bonding 159 Giancarlo Terraneo, Giuseppe Resnati, and Pierangelo Metrangolo PArt II ProDUCTION OF IODINE 195 9 History of Iodine 197 James L. Marshall and Virginia R. Marshall 10 Production Process in the Past 207 Tatsuo Kaiho 11 Iodine Production from Caliche 213 Armin Lauterbach 12 Iodine Production from Oilfield Brine 221 Stanley T. Krukowski 13 Iodine Production from Natural Gas Brine 231 Nobuyuki Kaneko and Tatsuo Kaiho 14 Recycling of Iodine 243 Tatsuo Kaiho PArt III SYNTHESIS OF IODINE COMPOUNDS 249 15 Iodinating Reagents 251 Haruhiko Taguchi 16 Oxidizing Agents 277 Toshifumi Dohi and Yasuyuki Kita 17 Reaction of Iodo Compounds 303 Toshifumi Dohi and Yasuyuki Kita 18 Metal Iodides–Mediated Reaction 329 Makoto Shimizu, Iwao Hachiya, and Junji Inanaga CONTENTS vii PArt IV BIOLOGICAL APPLICATION OF IODINE 353 19 Iodinated X-Ray Contrast Agents 355 Werner Krause 20 Iodine as Disinfectant 375 Waldemar Gottardi 21 Synthetic Thyroid Hormone 411 Steven E. Rokita 22 Iodine Deficiency Disorders and Their Correction Using Iodized Salt and/or Iodine Supplements 421 Michael B. Zimmermann 23 Pharmaceuticals: Therapeutic Agents 433 Tatsuo Kaiho 24 Agrochemicals and Anthelmintics 439 Peter Jeschke and Tatsuo Kaiho PArt V INDUSTRIAL APPLICATION OF IODINE 457 25 Diaryliodonium Salt Photoacid Generators 459 James V. Crivello 26 Polarizing Films 479 Bart Kahr and Kevin M. Knowles 27 Iodine in Polymer Synthesis: An Important Element for Precision Polymerizations 489 Mitsuo Sawamoto 28 Iodine in Dye-Sensitized Solar Cells 501 Lars Kloo 29 Fluorinated Repellents 513 Toyomichi Shimada 30 Etching Gas 523 Seiji Samukawa 31 Other Industrial Applications 547 Tatsuo Kaiho viii CONTENTS PArt VI BIOINORGANIC CHEMISTRY AND EnvironMENTAL CHEMISTRY OF IODINE 555 32 Iodine Bioinorganic Chemistry: Physiology, Structures, and Mechanisms 557 Frithjof C. Küpper and Peter M.H. Kroneck 33 Atmospheric Chemistry of Iodine 591 Lucy J. Carpenter PArt VII RADioisotope OF IODINE 603 34 Radioactive Iodine 605 Yoshifumi Shirakami INDEX 625 LIST OF CONTRIBUTORS Anna BłażewiczDepartment of Analytical Chemistry, Medical University of Lublin, Lublin, Poland Lucy J. Carpenter Wolfson Atmospheric Chemistry Laboratories, University of York, Heslington, York, UK James V. Crivello Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, NY, USA Toshifumi Dohi College of Pharmaceutial Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan Waldemar Gottardi Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria Iwao Hachiya Department of Chemistry for Materials, Mie University, Tsu, Mie, Japan Junji Inanaga Institute for Molecular Chemistry and Engineering, Kyushu University, Fukuoka, Japan Peter Jeschke Bayer CropScience AG, Monheim am Rhein, Germany Bart Kahr Department of Chemistry and Molecular Design Institute, New York University, New York, NY, USA Tatsuo Kaiho Nihon Tennen Gas Co., Ltd., Chiba, Japan ix x LIST OF CONTRIBUTORS Nobuyuki Kaneko Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, Tsukuba, Ibaraki, Japan Hirofumi Kanoh Chiba University, Chiba, Japan Yasuyuki Kita Emeritus Professor of Osaka University, Ritsumeikan University, Kusatsu, Shiga, Japan Tsugio Kitamura Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga, Japan Lars Kloo KTH Royal Institute of Technology, Stockholm, Sweden Kevin M. Knowles Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK Takehisa Konishi Chiba University, Chiba, Japan Werner Krause Bayer Healthcare Pharmaceuticals, Berlin, Germany Peter M.H. Kroneck Department of Biology, University of Konstanz, Konstanz, Germany Stanley T. Krukowski Oklahoma Geological Survey, Mewbourne College of Earth and Energy, The University of Oklahoma, Norman, OK, USA Frithjof C. Küpper Oceanlab, University of Aberdeen, Newburgh, UK Armin Lauterbach SQM, Santiago, Chile James L. Marshall Department of Chemistry, University of North Texas, Denton, TX, USA Virginia R. Marshall Department of Chemistry, University of North Texas, Denton, TX, USA Pierangelo Metrangolo Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy Giuseppe Resnati Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy Steven E. Rokita Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA Seiji Samukawa Tohoku University, Sendai, Japan Mitsuo Sawamoto Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan Toyomichi Shimada Asahi Glass Co., Ltd., Tokyo, Japan LIST OF CONTRIBUTORS xi Makoto Shimizu Department of Chemistry for Materials, Mie University, Tsu, Mie, Japan Yoshifumi Shirakami Research Centre Nihon Medi-Physics, Co., Ltd., Sodegaura, Chiba, Japan Haruhiko Taguchi Tokyo Chemical Industry Co., Ltd., Tokyo, Japan Giancarlo Terraneo Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy Michael B. Zimmermann Laboratory for Human Nutrition, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland PREFACE A member of the halogen group on the periodic table, iodine is found in seaweeds, the brine extracted along with natural gas, and Chilean caliche deposits. Iodine is a micronutrient element that is fundamental to a living body and is essential for the subsistence and growth of humans and animals. The goiter-preventing effects of iodine in seaweeds were known to the legendary Chinese emperor Shen-Nung as early as around 3000 BC, and the knowledge of this treatment was available in Greece by the time of Hippocrates. Nevertheless, iodine was not isolated and recog- nized as an element until the early nineteenth century. In 1811, Barnard Courtois of France found that violet vapor with a strong smell was generated while producing niter from seaweed ashes, and that when the vapor was cooled down,
Recommended publications
  • Ni33nh3+3Nhi
    Pure & Appi. Chem., Vol. 49, pp.67—73. Pergamon Press, 1977. Printed in Great Britain. NON-AQJEOUS SOLVENTS FOR PREPARATION AND REACTIONS OF NITROGEN HALOGEN COMPOUNDS Jochen Jander Department of Chemistry, University of Heidelberg, D 69 Heidelberg, Germany Abstract -Theimportance of non—aqueous solvents for the chemistry of haloamines is shown in more recent reaction examples. The solvents must be low-melting because of the general temperature sensitivity of the haloamines. They may take part in the reaction (formation of CH NI •CH NH (CH )2NI, NI-,.5 NH-, and NH0I.NH-)ormay e ner (ormation of I .quinuiilidin, 2 NI •1 trithylenediamine, [I(qunuclidine),] salts pure NBr, and compounds of the type R1R2NC103 with R1 and R2 =orgnicgroup or hydrogen). INTRODUCTION Non-aqueous solvents play an important role in preparation and reactions of nitrogen halogen compounds. Due to the fact, that all haloamines are derivatives of ammonia or amines, liquid ammonia or liquid organic amines are used as solvents very often. Liquid ammonia and the lower organic amines reveal, in addition, the advantage of low melting points (liquid ammonia -78, liquid monomethylamine -93.5, liquid dimethylamine -92, liquid tn-. methylamine -12k°C); these meet the general temperature sensitivity of the nitrogen halogen compounds, especially of the pure .lorganic ones. Ammonia and amines are very seldom inert solvents; they mostly take part in the reaction planned for synthesis or conversion of the haloamine. In case a reaction of the solvent is to be avoided, one has to look for a low melting inert solvent, for example methylene chloride (m.p.
    [Show full text]
  • WO 2015/095882 Al 25 June 2015 (25.06.2015) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/095882 Al 25 June 2015 (25.06.2015) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.0 1) C12Q 1/70 (2006.0 1) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/07 1963 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 22 December 2014 (22. 12.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/ 19,663 20 December 201 3 (20. 12.20 13) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: THE REGENTS OF THE UNIVERSITY GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, OF CALIFORNIA [US/US]; 1111 Franklin Street, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Twelfth Floor, Oakland, CA 94607-5200 (US).
    [Show full text]
  • The Identification of Olefins As Thiocyanates
    THE IDENTIFICATION OF OLEFI NS AS THIOCYANATES 1 .. .SEP 2"/ i 938 THE IDENTIFICATION OF OLEFINS AS THIOCYANAT ES/ ( ' By George A. Dysinger I\ Bachelor of Science Oklahoma Agricultural and Mechanical College Stillwater, Oklahoma 1937 Submitted to the Department of Chemistry Oklahoma Agricultural and Mechanical College In partial fulfillme.nt of the requirements for the Degree of MASTER OF SCIENCE 1938 . ... .. '.'' .. ~ . ..... .. • • • • • • • • J • : ... ·:· .· ~- . .. ,. r f • • • - • • • • •• J • •• ; • • • ii !)fp 27 1938 APPROVED: HeadOttinm~- of : e Department of Onemistry ~~~e~ 108550 iii ACKNOWLEDGEMENT The author wishes to expres.s his sincere appreciation to Dr. o. c. Dermer under whose direction and with whose help this work has been done. He also wishes to acknowledge the assistance rendered by Everett L. Ada.ms in supplying apparatus and chemicals. iv TABLE OF CONTENTS Page Introduotion • . .. • . • • • 1 Historical Review. • . • • . • . 2 Experimental . • • • • . • . • . • • 6 Discussion of Results . .. ao Summary • • • • . • • • 22 Bibliography • • • • • • • • • • • • • • • • • • 23 Autobiography • • • • • . • • • • • • • • • . • 24 1 INTRODUCTION At present, the identification of low boiling unsatu­ rated hydrocarbons which yield only liquid addition products with the halogens and hydrogen halides is often a matter of considerable difficulty. This f'aot is sufficient reason for the study here described. In some cases, espeoially among terpen.es, the compounds formed by adding NOCl, 1203 , or »2o4 at one or more of the double bonds have been used as derivatives but these are i nconvenient to make,. of un­ certain composition, and decidedly unstable! This work con- '\, sists of (l) a'ttempts to find a convenient samll scale meth- od for adding (S0N)2 to olef1ns, (2) the determinations of the melting points of the derivatives, and (3) quantitatiye analysis of derivatives to prove their structure and purity.
    [Show full text]
  • Theoretical Study on the Molecular and Crystal Structures of Nitrogen Trifluoride and It’S Adduct with BF3
    J. Chem. Sci. Vol. 127, No. 8, August 2015, pp. 1491–1496. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0857-3 Theoretical study on the molecular and crystal structures of nitrogen trifluoride and it’s adduct with BF3 HONGCHEN DUa,b,c aSchool of Science, Zhejiang A & F University, Linan, 311300, China bZhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin’an, 311300, China cPresent address: Weifang University of Science and Technology, Jinguang Street 1299, Shouguang, 262700, China e-mail: [email protected]; [email protected] MS received 30 April 2014; revised 30 October 2014; accepted 27 January 2015 Abstract. The molecular and crystal structure of the adduct NF3·BF3 was studied computationally using density functional theory. It shows that the adduct exists in the form of a complex but is not ionic. The heats of formation in the gas and the condensed phase of the adduct are −1266.09 and −1276.37 kJ·mol−1, respectively, which indicates that it is stable under atmospheric conditions. The crystal form belongs to P 21/c space group. The calculated large band gap (Eg) of the crystal proves that it is stable. The conduction band (LUCO) is mainly contributed by the p orbital of N atom and the valence band (HOCO) from the p orbital of F atom. Keywords. Molecular; crystal; structure; property; theoretical study. 1. Introduction investigation even though there is limited information on the structure–property relationship, especially on the Molecular complexes containing boron trifluoride as a crystal structure of NF3 with BF3.
    [Show full text]
  • The Application of the Iodine - Azide Reaction in Thin-Layer Chromatography Studies of Pesticide Preparations
    THE APPLICATION OF THE IODINE - AZIDE REACTION IN THIN-LAYER CHROMATOGRAPHY STUDIES OF PESTICIDE PREPARATIONS By T. CSEHHATI* and F.OHSI Department of Biochemistry and Food Chemistry, Technical University Budapest Received October 3, 1981 Presented by Prof. Dr. R. LASZTITY Introduction With chemicals bcing uscd in wider and wider areas for plant protection, toxicologieal and ecological aspects become increasingly important. The formulation analysis of pesticides cannot be limitcd nowadays to the selective determination of the active agent: the identification and quantitative determi­ nation of impurities is becoming equally significant. The process is of particular importance with phosphoric ester derivatives, since they are more ore less toxic to human beings. Gas chromatographic analysis (GC) of these active agents has been developed many years ago [1]. However, the technique could not supplant thin-layer chromatography (TLC) [2] for the following reasons: a) thermally unstable phosphoric ester derivatives cannot be analyzed by GC; b) if flame ionization detectors are used, one cannot state whether the peaks indicating impurities correspond to presumably toxic side products of the active agents, or to othcr, non-toxic components of the formulation; c) a substantial part of the decomposition products formed in hydrolysis or oxidation proccsses are non-volatile. Consequently, GC methods can only be used when combined with additional processes to yield volatile products; d) the TLC technique, using non-destructive, selective detection processes, allows to isolate, in a much simpler manner as ~ompared to traditional GC, volatile and non-volatile organic phosphoric ester derivatives in amounts in the order of milligrams for further studies of structure identification and toxic properties.
    [Show full text]
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • Compound Formula Tin (II) Nitride Silver Oxide Lithium Sulfide Magnesium Sulfide
    Ionic Bonding Drill Write the correct formula for the following compounds Compound Formula tin (II) nitride silver oxide lithium sulfide magnesium sulfide copper (I) nitride AgCl boron iodide potassium fluoride copper (I) chloride is CuCl iron (II) oxide is FeO tin (IV) fluoride is SnF4 nickel (II) fluoride is NiF2 lead (IV) oxide is PbO2 silver chloride is calcium iodide is CaI2 potassium bromide sodium phosphide iron (II) chloride copper (I) bromide lead (II) sulfide lead (IV) nitride beryllium nitride potassium bromide is KBr sodium phosphide is Na3P iron (II) chloride is FeCl2 copper (I) bromide is CuBr lead (II) sulfide is PbS lead (IV) nitride is Pb3N4 beryllium nitride is Be3N2 copper (I) chloride iron (II) oxide tin (IV) fluoride nickel (II) fluoride lead (IV) oxide Ag2O silver chloride calcium iodide Answers copper (I) nitride is Cu3N boron iodide is BI3 potassium fluoride is KF silver oxide is lithium sulfide is Li2S magnesium sulfide is MgS tin (II) nitride is Sn3N2 Ionic Bonding Drill Write the correct formula for the following compounds Compound Formula lithium bromide sodium sulfide lead (II) chloride nickel (II) oxide AlBr3 copper (II) oxide AlI3 iron (II) fluoride tin (II) oxide iron (II) oxide is FeO lead (II) oxide is PbO aluminum bromide is potassium oxide is K2O potassium oxide is K2O aluminum iodide is lead (II) nitride is Pb3N2 tin (IV) sulfide iron (III) sulfide lead (II) nitride copper (II) oxide silver fluoride AgF sodium chloride magnesium bromide tin (IV) sulfide is SnS2 iron (III) sulfide is Fe2S3 lead (II)
    [Show full text]
  • Naming Compounds Practice Problems KEY Naming Simple Ionic Compounds
    Chemistry HS/Science Unit: 05 Lesson: 01 Naming Compounds Practice Problems KEY Naming Simple Ionic Compounds Name the following compounds: 1) KCl potassium chloride 2) MgI2 magnesium iodide 3) FeO iron (II) oxide 4) Fe2O3 iron (III) oxide 5) Cu3P copper (I) phosphide 6) SnSe2 tin (IV) selenide 7) TiBr3 titanium (III) bromide 8) GaAs gallium arsenide 9) BeF2 beryllium fluoride 10) Cs3N cesium nitride Write the formulas for the following compounds: 1) lithium iodide LiI 2) cobalt (III) oxide Co2O3 3) calcium fluoride CaF2 4) silver bromide AgBr 5) sodium hydride NaH 6) vanadium (V) sulfide V2S5 7) lead (II) nitride Pb3N2 8) titanium (II) selenide TiSe 9) manganese (VII) arsenide Mn3As7 10) gallium chloride GaCl3 ©2013, TESCCC 06/17/13 page 1 of 4 Chemistry HS/Science Unit: 05 Lesson: 01 Naming Compounds Practice Problems Naming Complex (polyatomic) Ionic Compounds Name the following compounds: 1) NH4Cl ammonium chloride 2) Fe(NO3)3 iron (III) nitrate 3) Pb(SO4)2 lead (IV) sulfate 4) Ag3PO4 silver phosphate 5) Be(HCO3)2 beryllium hydrogen carbonate 6) Al(CN)3 aluminum cyanide 7) Mn2(SO3)3 manganese (III) sulfite 8) Sr(C2H3O2)2 strontium acetate 9) Ti(CN)4 titanium (IV) cyanide 10) YClO3 yttrium chlorate Write the formulas for the following compounds: 1) lead (IV) sulfate Pb(SO4)2 2) silver cyanide AgCN 3) copper (II) chlorate Cu(ClO3)2 4) chromium (IV) phosphate Cr3(PO4)4 5) vanadium (IV) carbonate V(CO3)2 6) ammonium oxide (NH4)2O 7) tin (II) nitrite Sn(NO2)2 8) chromium (III) hydroxide Cr(OH)3 9) titanium (II) acetate Ti(C2H3O2)2 10)
    [Show full text]
  • Used at Rocky Flats
    . TASK 1 REPORT (Rl) IDENTIFICATION OF CHEMICALS AND RADIONUCLIDES USED AT ROCKY FLATS I PROJECT BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1 will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats. Using this inventory, chemicals and radionuclides of concern will be selected under Task 2, based on such factors as the relative toxicity of the materials, quantities used, how the materials might have been released into the environment, and the likelihood for transport of the materials off-site. An historical activities profile of the plant will be constructed under Task 3. Tasks 4, 5, and 6 will address the identification of where in the facility activities took place, how much of the materials of concern were released to the environment, and where these materials went after the releases. Task 7 addresses historic land-use in the vicinity of the plant and the location of off-site populations potentially affected by releases from Rocky Flats.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • CHEM 1411 Nomenclature Homework - Answers Part I
    1 CHEM 1411 Nomenclature Homework - Answers Part I 1. The following are a list of binary and pseudobinary ionic compounds. Write the name when the formula is given. Write the formula when the name is given. (a) AlCl3 aluminum chloride (k) rubidium oxide Rb2O (b) AuBr3 gold (III) bromide (l) chromium (III) selenide Cr2Se3 (c) Na2S sodium sulfide (m) barium iodide BaI2 (d) Cu3P2 copper (II) phosphide (n) copper (I) fluoride CuF (e) Fe(OH)2 iron (II) hydroxide (o) copper (II) fluoride CuF2 (f) NH4OH ammonium hydroxide (p) strontium cyanide Sr(CN)2 (g) Co(CH3COO)3 cobalt (III) acetate (q) mercury (II) bromide HgBr2 (h) Zn(SCN)2 zinc thiocyanate (r) mercury (I) bromide Hg2Br2 (i) CaCrO4 calcium chromate (s) magnesium permanganate Mg(MnO4)2 (j) K2Cr2O7 potassium dichromate (t) lithium nitride Li3N 2. The following are lists of covalent compounds. Write the name when a formula is given. Write the formula when given a name. (a) CSe2 carbon diselenide (h) dichlorine heptoxide Cl2O7 (b) SF6 sulfur hexafluoride (i) xenon tetrafluoride XeF4 (c) BrF5 bromine pentafluoride (j) carbon monoxide CO (d) P4O10 tetraphosphorous decoxide (k) oxygen O2 (e) Cl2O dichlorine oxide (l) diboron trioxide B2B O3 (f) NH3 ammonia (m) arsenic trifluoride AsF3 (g) N2 dinitrogen or nitrogen (n) diiodine I2 2 3. The following are lists of acids or acid-forming compounds. Write the name when the formula is given. Write the formula when the name is given. (a) H3PO2 hypophosphorous acid (k) hydrogen cyanide HCN (g) (b) H2SO4 sulfuric acid (l) periodic acid HIO4 (c) HClO hypochlorous acid (m) hypochlorous acid HClO (d) H3PO4 phosphoric acid (n) nitric acid HNO3 (e) HBrO4 perbromic acid (o) acetic acid CH3CO2H (f) HIO2 iodous acid (p) chloric acid HClO3 (g) HI (g) hydrogen iodide (q) perbromic acid HBrO4 (h) HI (aq) hydroiodic acid (r) hydrofluoric acid HF (aq) (i) HCN (aq) hydrocyanic acid (s) phosphorous acid H3PO3 (j) HBrO hypobromous acid (t) hydrosulfuric acid H2S (aq) 4.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses A spectroscopic study of some halogeno-complexes of tellurium (IV) Gorrell, Ian Barnes How to cite: Gorrell, Ian Barnes (1983) A spectroscopic study of some halogeno-complexes of tellurium (IV), Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7890/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk A SPECTROSCOPIC STUDY OF SOME HALOGENO- COMPLEXES OF TELLURIUM (IV) by Ian Barnes Gorrell A thesis submitted in part fulfilment of the requirements for the degree of Master of Science in the University of Durham. The copyright of this thesis rests with the author. April 19 8 3 No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. -5. OFC. 1983 TO MY MOTHER and MY FATHER1 S MEMORY' iii ACKNOWLEDGMENTS I wish to express my gratitude towards the late Professor T.C.
    [Show full text]