Reactive Chlorine Compounds in the Atmosphere
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1, 1, 1, 3, 3-Pentafluoropropane (HFC-245Fa) (CAS No. 460-73-1)
1, 1, 1, 3, 3-Pentafluoropropane (HFC-245fa) (CAS No. 460-73-1) JACC Report No. 44 Brussels, June 2004 1, 1, 1, 3, 3-Pentafluoropropane (HFC-245fa) ECETOC JACC REPORT No. 44 © Copyright - ECETOC European Centre for Ecotoxicology and Toxicology of Chemicals 4 Avenue E. Van Nieuwenhuyse (Bte 6), B-1160 Brussels, Belgium. All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication. ECETOC JACC No. 44 1, 1, 1, 3, 3-Pentafluoropropane (HFC-245fa) 1,1,1,3,3-Pentafluoropropane (HFC-245fa) (CAS No. 460-73-1) CONTENTS EXECUTIVE SUMMARY 1 THE ECETOC SCHEME FOR THE JOINT ASSESSMENT OF COMMODITY CHEMICALS 2 1. SUMMARY AND CONCLUSIONS 3 2. IDENTITY, PHYSICAL, AND CHEMICAL PROPERTIES, ANALYTICAL METHODS 5 2.1 Identity 5 2.2 EC classification and labelling 5 2.3 Physical and chemical properties 5 2.4 Conversion factors 6 2.5 Analytical methods 7 2.5.1 In air 7 2.5.2 In water 7 3. -
Oceanography and Marine Biology an Annual Review Volume 56
Oceanography and Marine Biology An Annual Review Volume 56 S.J. Hawkins, A.J. Evans, A.C. Dale, L.B. Firth & I.P. Smith First Published 2018 ISBN 978-1-138-31862-5 (hbk) ISBN 978-0-429-45445-5 (ebk) Chapter 5 Impacts and Environmental Risks of Oil Spills on Marine Invertebrates, Algae and Seagrass: A Global Review from an Australian Perspective John K. Keesing, Adam Gartner, Mark Westera, Graham J. Edgar, Joanne Myers, Nick J. Hardman-Mountford & Mark Bailey (CC BY-NC-ND 4.0) Oceanography and Marine Biology: An Annual Review, 2018, 56, 2-61 © S. J. Hawkins, A. J. Evans, A. C. Dale, L. B. Firth, and I. P. Smith, Editors Taylor & Francis IMPACTS AND ENVIRONMENTAL RISKS OF OIL SPILLS ON MARINE INVERTEBRATES, ALGAE AND SEAGRASS: A GLOBAL REVIEW FROM AN AUSTRALIAN PERSPECTIVE JOHN K. KEESING1,2*, ADAM GARTNER3, MARK WESTERA3, GRAHAM J. EDGAR4,5, JOANNE MYERS1, NICK J. HARDMAN-MOUNTFORD1,2 & MARK BAILEY3 1CSIRO Oceans and Atmosphere, Indian Ocean Marine Research Centre, M097, 35 Stirling Highway, Crawley, 6009, Australia 2University of Western Australia Oceans Institute, Indian Ocean Marine Research Centre, M097, 35 Stirling Highway, Crawley, 6009, Australia 3BMT Pty Ltd, PO Box 462, Wembley, 6913, Australia 4Aquenal Pty Ltd, 244 Summerleas Rd, Kingston, 7050, Australia 5Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, 7001, Australia *Corresponding author: John K. Keesing e-mail: [email protected] Abstract Marine invertebrates and macrophytes are sensitive to the toxic effects of oil. Depending on the intensity, duration and circumstances of the exposure, they can suffer high levels of initial mortality together with prolonged sublethal effects that can act at individual, population and community levels. -
State of the Fisheries Report 2000-2001 to the Hon
State of the Fisheries Report 2000-2001 To the Hon. Kim Chance MLC Minister for Agriculture, Forestry and Fisheries Sir In accordance with Section 263 of the Fish Resources Management Act 1994, I submit for your information and presentation to Parliament the report State of the Fisheries which forms part of the Annual Report of Fisheries WA for the financial year ending 30 June 2001. Peter P Rogers EXECUTIVE DIRECTOR Edited by Dr J. W. Penn Produced by the Fisheries Research Division based at the WA Marine Research Laboratories Published by the Department of Fisheries 3rd Floor, SGIO Atrium 168 St. Georges Terrace Perth WA 6000 Webiste: http://www.wa.gov.au/westfish Email: [email protected] ISSN 1446 - 5906 (print) ISSN 1446 - 5914 (online) ISSN 1446 - 5922 (CD) Cover photographs: (top) The Department of Fisheries’ new 23m research vessel Naturaliste, constructed and launched in 2001. Photo courtesy Tenix Defence Pty Ltd (shipbuilders). (bottom) Reef habitat at the Houtman Abrolhos Islands. Photo: Clay Bryce State of the Fisheries Report 2000-2001 Glossary of Acronyms yms on ADF Aquaculture Development Fund JASDGDLF Joint Authority Southern Demersal Gillnet and Demersal Longline AFMA Australian Fisheries Management Managed Fishery Authority LML legal minimum length AIMWTMF Abrolhos Islands and Mid West y of Acr Trawl Managed Fishery MAC management advisory committee AQIS Australian Quarantine and MOP mother-of-pearl Inspection Service MSC Marine Stewardship Council Glossar ATSIC Aboriginal and Torres Strait NDSMF Northern Demersal -
Aldrich Vapor
Aldrich Vapor Library Listing – 6,611 spectra This library is an ideal tool for investigator using FT-IR to analyze gas phase materials. It contains gas phase spectra collected by Aldrich using a GC-IR interface to ensure chromatographically pure samples. The Aldrich FT-IR Vapor Phase Library contains 6,611 gas phase FT-IR spectra collected by Aldrich Chemical Company using a GC interface. The library includes compound name, molecular formula, CAS (Chemical Abstract Service) registry number, Aldrich catalog number, and page number in the Aldrich Library of FT-IR Spectra, Edition 1, Volume 3, Vapor-Phase. Aldrich Vapor Index Compound Name Index Compound Name 6417 ((1- 3495 (1,2-Dibromoethyl)benzene; Styrene Ethoxycyclopropyl)oxy)trimethylsilane dibromide 2081 (+)-3-(Heptafluorobutyryl)camphor 3494 (1-Bromoethyl)benzene; 1-Phenylethyl 2080 (+)-3-(Trifluoroacetyl)camphor bromide 262 (+)-Camphene; 2,2-Dimethyl-3- 6410 (1-Hydroxyallyl)trimethylsilane methylenebicyclo[2.2.1]heptane 6605 (1-Methyl-2,4-cyclopentadien-1- 2828 (+)-Diisopropyl L-tartrate yl)manganese tricarbonyl 947 (+)-Isomenthol; [1S-(1a,2b,5b)]-2- 6250 (1-Propynyl)benzene; 1-Phenylpropyne Isopropyl-5-methylcyclohexano 2079 (1R)-(+)-3-Bromocamphor, endo- 1230 (+)-Limonene oxide, cis + trans; (+)-1,2- 2077 (1R)-(+)-Camphor; (1R)-(+)-1,7,7- Epoxy-4-isopropenyl-1- Trimethylbicyclo[2.2.1]heptan- 317 (+)-Longifolene; (1S)-8-Methylene- 976 (1R)-(+)-Fenchyl alcohol, endo- 3,3,7-trimethyltricyclo[5.4.0 2074 (1R)-(+)-Nopinone; (1R)-(+)-6,6- 949 (+)-Menthol; [1S-(1a,2b,5a)]-(+)-2- Dimethylbicyclo[3.1.1]heptan-2- -
Quantum Chemical Study of the Mechanism of the Catalytic
ISSN 00231584, Kinetics and Catalysis, 2013, Vol. 54, No. 2, pp. 157–167. © Pleiades Publishing, Ltd., 2013. Original Russian Text © D.E. Zavelev, G.M. Zhidomirov, R.A. Kozlovskii, 2013, published in Kinetika i Kataliz, 2013, Vol. 54, No. 2, pp. 166–176. Quantum Chemical Study of the Mechanism of the Catalytic Oxyethylation of Ethylene Glycol on PhosphorusDoped Titanium Dioxide: The Role of the Surface Phosphoryl and Hydroxyl Groups of the Catalyst D. E. Zaveleva,*, G. M. Zhidomirovb,c, and R. A. Kozlovskiid a Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991 Russia b Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia c Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia d Mendeleev University of Chemical Technology of Russia, Moscow, 125047 Russia *email: [email protected] Received June 25, 2012 Abstract—DFT calculations of the oxyethylation pathways of monoethylene glycol (MEG) and diethylene glycol (DEG) were performed on a model fragment of phosphorusdoped titanium dioxide (anatase). It was shown that the surface hydroxyl group of titanium dioxide, whose proton initiates C–O bond cleavage in the ethylene oxide molecule, plays the key role in the activation of the molecule. At the same time, the phospho ryl group –P(OH)2O activates the reactant molecule R (MEG, DEG, etc.) and carries out the synchronous proton transfer from R to the hydroxyl oxygen atom of titanium dioxide, thus restoring the catalyst structure and closing the catalytic cycle. This restructuring occurs synchronously in one step. The substitution of the catalyst hydroxyl groups by alkoxyl groups can influence oxyethylation occurring via the bimolecular nucleo philic substitution mechanism and can poison the catalyst in some cases. -
WO 2015/095882 Al 25 June 2015 (25.06.2015) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/095882 Al 25 June 2015 (25.06.2015) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.0 1) C12Q 1/70 (2006.0 1) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/07 1963 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 22 December 2014 (22. 12.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/ 19,663 20 December 201 3 (20. 12.20 13) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: THE REGENTS OF THE UNIVERSITY GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, OF CALIFORNIA [US/US]; 1111 Franklin Street, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Twelfth Floor, Oakland, CA 94607-5200 (US). -
Web Td 15.Pdf
SCIENTIFIC COOPERATION TO SUPPORT MiPAF RESPONSIBLE FISHERIES IN THE ADRIATIC SEA Food and Italian Ministry Agriculture of Agriculture Organization and of the Forestry United Nations Policies AdriaMed GCP/RER/010/ITA Adriatic Sea Small-Scale Fisheries Report of the AdriaMed Technical Consultation on Adriatic Sea Small-Scale Fisheries Split, Croatia, 14th – 15th October 2003 AdriaMed Technical Documents No. 15 GCP/RER/010/ITA/TD-15 Termoli (Italy), July 2005 The conclusions and recommendations given in this and in other documents in the Scientific Cooperation to Support Responsible Fisheries in the Adriatic Sea Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained in subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or MiPAF concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. ii Preface The Regional Project “Scientific Cooperation to Support Responsible Fisheries in the Adriatic Sea” (AdriaMed) is executed by the Food and Agriculture Organization of the United Nations (FAO) and funded by the Italian Ministry of Agriculture and Forestry Policies (MiPAF). AdriaMed was conceived to contribute to the promotion of cooperative fishery management between the participating countries (Republics of Albania, Croatia, Italy, Serbia-Montenegro and Slovenia), in line with the Code of Conduct for Responsible Fisheries adopted by the UN-FAO. Particular attention is given to encouraging and sustaining a smooth process of international collaboration between the Adriatic Sea coastal countries in fishery management, planning and implementation. -
The High Cost of Cheap Shipping
The High Cost of Cheap Shipping: International Transport Workers Federation – Australia Submission to the Inquiry into the increasing use of so-called Flag of Convenience shipping in Australia September 21, 2015 Submitted by email: [email protected] Dean Summers, ITF Australia Coordinator 365 Sussex St, Level 2, Sydney, NSW, 2000 For inquiries contact: [email protected] Website: www.itfglobal.org 2 1. Introduction 1.1. This submission is made on behalf of the International Transport Workers' Federation (ITF) - Australia. The ITF is an international federation of transport workers' trade unions. Around 700 unions representing over 4.5 million transport workers from some 150 countries are members of the ITF. It is one of several Global Union Federations allied with the International Trade Union Confederation (ITUC). 1.2. The ITF has a particular focus on the shipping industry due to the early globalisation of the shipping industry. The ITF’s origins lie in unions representing seafarers. The ITF administers a unique system of global union agreements that cover approximately 12,000 FOC ships and protect the social, human rights and dignity of more than 250,000 seafarers from around the world. 1.3. In Australia, the ITF has four Inspectors that are employed full-time to inspect international ships and assist international seafarers in Australian ports, and a network of ITF Contacts that are trained in this work and assist on a part-time basis. These inspectors board approximately 700 ships per year, in addition to assisting multiple seafarers that contact them by text, email and telephone and through maritime workers in Australian ports. -
Marine Stewardship Council Full Assessment Report Western
Western Australian Marine Stewardship Council Report Series No. 8, 2017 Marine Stewardship Council Full Assessment Report Western Australian Abalone Managed Fishery Hart, A., Strain, L., Hesp, A., Fisher, E., Webster, F., Brand-Gardner, S., and Walters, S. Western Australian Marine Stewardship Council Report Series No. 8, 2017 Marine Stewardship Council Full Assessment Report Western Australian Abalone Managed Fishery Hart, A., Strain, L., Hesp, A., Fisher, E., Webster, F., Brand-Gardner, S., and Walters, S. Western5284/16 Australian Marine Stewardship Council Report Series No.8, 2017 i Correct citation: Hart, A., Strain, L., Hesp, A., Fisher, E., Webster, F., Brand-Gardner, S. and Walters, S. (2017). Marine Stewardship Council Full Assessment Report Western Australian Abalone Managed Fishery. Department of Fisheries, Western Australia. 288pp. Department of Fisheries 3rd floor, The Atrium 168 – 170 St Georges Terrace PERTH WA 6000 Telephone: (08) 9482 7333 Facsimile: (08) 9482 7389 Website: www.fish.wa.gov.au ABN: 55 689 794 771 © Department of Fisheries, Western Australia. April 2017. ISSN: 2205-3670 (Print) ISBN: 978-1-877098-57-4 (Print) ISSN: 2205-3689 (Online) ISBN: 978-1-877098-58-1 (Online) ii Western Australian Marine Stewardship Council Report Series No.8, 2017 Overview This report provides a comprehensive description of the Abalone Managed Fishery (AMF) in Western Australia (WA) and contains information relevant to assist with the assessment of this fishery against the Marine Stewardship Council (MSC) standard (v2.0) for sustainable fishing. Fishers in the AMF harvest three species; Roe’s abalone (Haliotis roei), Greenlip abalone (H. laevigata) and Brownlip abalone (H. conicopora), through hand collection by diving in shallow waters off the south-western and southern coasts of WA. -
Novel Synthesis of Partially Fluorinated Ethers
Issue in Honor of Prof. Sukh Dev ARKIVOC 2003 (iii) 104-119 Alkylation of in situ generated fluorinated alkoxides: novel synthesis of partially fluorinated ethers G. K. Surya Prakash*, Jinbo Hu and George A. Olah Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089-1661 E-mail: [email protected] Dedicated to Professor Sukh Dev on the occasion of his 80th birthday (received 07 Jan 03; accepted 24 Feb 03; published on the web 27 Feb 03) Abstract Fluorinated ethers RfCF2OR were prepared from acyl chlorides RfCOCl, alkylating agents (such as dimethyl sulfate, alkyl triflates, alkyl mesylates and tosylates, etc.) and potassium fluoride in diglyme at 80~100 oC. The success and the efficiency of the reaction are affected by two factors: the stability and nucleophilicity of the fluorinated alkoxide generated in situ; and the other is the electrophilicity of the alkylating agents used. Keywords: Fluoroethers, fluoroacyl halides, fluoride ion, alkylation Introduction In general, carbon-fluorine bonds (C-F, ~116 kcal/mol) are stronger than carbon-hydrogen bonds (C-H, ~99 kcal/mol).1 However, not all organofluorine compounds are more stable than their non-fluorinated analogs, and sometimes they are even less stable. For instance, if a partially or fully fluorinated organic compounds contains an acidic hydrogen at the β position, HF elimination is observed. This is the main reason that α-fluoro alcohols are thermally unstable and 2 difficult to be synthesized or isolated. Formation of fluoromethanol (FCH2OH) from ethyl fluoroformate and from formyl fluoride was first reported by Olah and Pavlath3 in 1953, and Weinmayer4 in 1963 claimed the formation of fluoromethanol (25-30% in equilibrium) from a solution of paraformaldehyde in excess hydrogen fluoride. -
Fluoro-Silane As a Functional Monomer for Protein Conformational Imprinting
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2011 Fluoro-Silane as a Functional Monomer for Protein Conformational Imprinting Yun Peng Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Peng, Yun, "Fluoro-Silane as a Functional Monomer for Protein Conformational Imprinting" (2011). All Graduate Theses and Dissertations. 906. https://digitalcommons.usu.edu/etd/906 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. FLUORO-SILANE AS A FUNCTIONAL MONOMER FOR PROTEIN CONFORMATIONAL IMPRINTING by Yun Peng A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Engineering Approved: David W. Britt, Ph.D. Timothy E. Doyle, Ph.D. Major Professor Committee Member Marie K. Walsh, Ph.D. Soonjo Kwon, Ph.D. Committee Member Committee Member Jixun Zhan, Ph.D. Byron Burnham Committee Member Dean of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2011 ii Copyright © Yun Peng 2011 All Rights Reserved iii ABSTRACT Fluoro-silane as a Functional Monomer for Protein Conformational Imprinting by Yun Peng, Doctor of Philosophy Utah State University, 2011 Major Professor: Dr. David W. Britt Department: Biological Engineering By using the technology of molecularly imprinted polymer (MIP), we propose to synthesize a protein conformational imprint that also acts as a plastic enzyme, inducing protein structural transitions. -
(12) United States Patent (10) Patent No.: US 8,501,891 B2 Nozue Et Al
US008501891B2 (12) United States Patent (10) Patent No.: US 8,501,891 B2 NOZue et al. (45) Date of Patent: Aug. 6, 2013 (54) ETHYLENE-o-OLEFIN COPOLYMER AND (56) References Cited MOLDED ARTICLE U.S. PATENT DOCUMENTS (75) Inventors: Yoshinobu Nozue, Ichihara (JP); 5,962,615 A 10/1999 Kojoh et al. Yasutoyo Kawashima, Ichihara (JP); 2002/0143124 A1 10/2002 Ogane 2003/0060579 A1 3/2003 Oshima et al. Naoko Ochi, Chiba (JP) 2006, OO89476 A1 4/2006 Iseki et al. 2006/O199925 A1 9/2006 Matsuura et al. (73) Assignee: Sumitomo Chemical Company, 2007/0093.627 A1 4/2007 Iseki et al. Limited, Tokyo (JP) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this CN 1765943. A 5, 2006 CN 1939.943. A 4/2007 patent is extended or adjusted under 35 EP O339571 A1 11, 1989 U.S.C. 154(b) by 423 days. JP 1-292009 A 11, 1989 JP O7-238114 A 9, 1995 (21) Appl. No.: 12/745,178 JP 08-0597O6 A 3, 1996 JP 2003-0961.25 A 4/2003 JP 2003-171412 A 6, 2003 (22) PCT Filed: Nov. 27, 2008 JP 2005-2333 A 1, 2005 JP 2005-206777 A 8, 2005 (86). PCT No.: PCT/UP2008/072000 JP 2005-24.8013. A 9, 2005 JP 2005-281541. A * 10, 2005 S371 (c)(1), JP 2006-233208 A 9, 2006 (2), (4) Date: Jul. 16, 2010 OTHER PUBLICATIONS (87) PCT Pub. No.: WO2009/069823 Mino et al., (JP 2005-281541) Oct. 13, 2005; abstract and translation in English.* PCT Pub.