A NARROW- BEAM X - RAY ATTENUATION of PHOTONS 0.05 - 0.5 Mev in CHEMICAL EXPLOSIVES

Total Page:16

File Type:pdf, Size:1020Kb

A NARROW- BEAM X - RAY ATTENUATION of PHOTONS 0.05 - 0.5 Mev in CHEMICAL EXPLOSIVES The Sixth International Conference "Modern Problems of Nuclear Physics", September 19-22,2006 _ _ _ INP-SO A NARROW- BEAM X - RAY ATTENUATION OF PHOTONS 0.05 - 0.5 MeV IN CHEMICAL EXPLOSIVES Cherkasov A.S. National University, Kharkov, Ukraine UZ0603199 Basic explosives [1] are - Tetryl (CeHsNsOg); Hexamethylenetetramine (urotropin) (HMT- C6Hi2N4); 2,4,6 - Trinitrotoluene (TNT - C7H5N3O3); 1,3 - Dinitrobenzene (DNB - C6H4N2O4); Picric acid (2,4,6 - trinitrophenol - C6H3N3O7); TATP (C9Hig06); Hexogen (RDX - C3H6N6O6); Pentaeritronitrate-Nitropenta (PETN - C5H8N4O12); Octogen (HMX - C^NgOg). RDX and/or PETN are usually used in plastic explosives. Examples include C-4, Detasheet, and Semtex). HMX (Octogen) is a very powerful and expensive military explosive, which has been employed in solid-fuel rocket propellants and in military high performance warheads. Currently used military explosives are mostly a combination of TNT, RDX, PETN, HMX, with a number of organic compounds (waxes (e.g. nitroparaffine - C10H8N2O4), plasticizers, stabliers, oil, etc.); example Composition B (RDX, TNT), Composition C-4 (or PE-4) (RDX), Detasheet (PETN), Octol (HMX, TNT), Semtex-H (RDX, PETN), etc. Nitroglycerin (NG - C3H5N3O9)5 Nitrocellulose (QKWMONCfefc. C6H803(ON02)2, C6H9O4(ONO2)) and Ammonium Nitrate (AN - H4N2C>3) are used as a basis of other families of explosives: a) dynamites in case of NG with nitroglycol (C4H8N2O2), powders of Al or Mg, with TNT and ammonal (TNT with Al-powder), wood flour, etc.; b) white(smokeless) gunpowders(guncotton-nitrocotton - collodion cotton, pyroxylinies (e.g. tetranitrate of pulp - colodion wool - C^HigOeONTC^), cordites, ballistites with ammonium perclorate (NH4CIO4) as oxidizer. Dynamites are typically used as a high explosive for industrial applications and in solid rocket propellants. Note that pure AN does not contain carbon; it has been widely used to fabricate bombs, but it is also widely diffused as a fertiliser. Ethylene glycol dinitrate (EGDN - C2H4N2O6) is a trasparent, colourless liquid explosive, which has been used in mixtures with NG for low-temperature dynamites. Its use has greatly decreased due to the replacement of dynamites with ammonium nitrate-fuel oil (ANFO) and slurry explosives. Black powder is a low-order explosive consisting of potassium nitrate (KNO3) or sodium nitrate (NaNO3), charcoal, and sulphur (it does therefore probably not contain hydrogen). Materials that initiate explosions are hydrazine (N2H4), lead azide (PbN3), nitrogen trichloride (NCI3), nitrogen triiodide (NJ3), fulminate of mercury (Hg(ONC)2). An analysis of mass narrow-beam X-ray attenuation coefficients for photons 0.05-0.5 MeV which were carried out on the basis of handbook [2] shows : 1. For 17 basic kinds explosives as well as for the second explosives (TNT, NG, Octogen, Hexogen, Picric acid, pyroxylines (1,2), Tetyl, PETN, nitronaphtalene, nitroglycol, EGDN, nitrourle, nitrocellulose (1,2,3), AN), with the exception of HMT, and for explosive-proof melamine (C3H6N6) and polyurethane (micromolecula - CHNO2) mass attenuation coefficients for photon with energies indicated above are in coincidence in fact with accuracy 1 -3 %. The average values (through 19 kinds of substances) of these mass coefficients ( ,w(cm2/g) = ,'n, •> where o, - the weight part of element / in the chemical combination) are in this table (Group 1). The most divergences from average values are for AN and melamine (~ 4.8% at 0.06 MeV and ~ 6.5% at 0.5 MeV accordingly). The more of hydrogen, the more value of p. In the table the group of materials used for production explosives or fire- and explosion- dangerous ones adjoins to group 1 with HMT. Then the substances used for production black 300 Section III. Nuclear Applications <^ The Sixth International Conference "Modern Problems of Nuclear Physics", September 19-22,2006 MPNP'2006 1NP-S0 powders, initiative explosives, dangerous and explosion-dangerous gases as well as some widely used organic compounds, for comparison, follow. Ey, MeV 0.05 0.06 0.08 0.1 0.15 0.2 0.3 0.4 0.5 Substance Group-] 0.204 0.187 0.170 0.157 0.139 0.125 0.109 0.098 0.089 HMT 0.203 0.197 0.176 0.164 0.139 0.133 0.116 0.104 0.101 Benzine(CeH6) 0.198 0.187 0.178 0.162 0.145 0.132 0.128 0.104 0.094 Peroxide(H2O2) 0.217 0.206 0.171 0.163 0.143 0.130 0.113 0.098 0.090 Alcogol(C2H6O) 0.218 0.199 0.195 0.171 0.152 0.135 0.116 0.108 0.098 Alcogol(C2H4O) 0.216 0.201 0.185 0.170 0.152 0.138 0.120 0.107 0.098 Eth. GIycol(C2H6O2) 0.213 0.197 0.181 0.167 0.148 0.134 0.116 0.104 0.095 Dieth.Glucol(C4Hi0O3) 0.211 0.196 0.181 0.166 0.148 0.131 0.117 0.104 0.096 Urle (CH4ON2) 0.207 0.189 0.175 0.162 0.144 0.131 0.114 0.085 0.076 Am.perchl.(NH4C104) 0.338 0.264 0.201 0.174 0.144 0.128 0.110 0.098 0.086 Sodium (Na) 0.275 0.224 0.179 0.158 0.134 0.120 0.103 0.092 0.084 Magnesium (Mg) 0.320 0.253 0.193 0.168 0.130 0.124 0.107 0.095 0.086 Aluminium (Al) 0.355 0.270 0.200 0.169 0.138 0.122 0.104 0.093 0.084 Potassium (K) 0.836 0.550 0.320 0.233 0.159 0.132 0.108 0.095 0.086 Carbon (C) 0.186 0.175 r0.169 0.151 r 0.135 0.123 0.107 0.096 0.087 Sulphur(S) 0.562 0.393 0.254 0.199 0.150 0.130 0.109 0.097 0.088 Sod. Nitrate. (NaNO3) 0.201 0.197 0.170 0.154 0.135 0.122 0.106 0.095 0.086 Potas. nitrate (KNO3) 0.444 0.327 0.226 0.185 0.145 0.117 0.108 0.095 0.087 Hydrazine (N2H2) fo.213 0.199 0.182 0.171 0.151 0.138 0.120 0.107 0.067 Lead azide(PbN3) 6.634 4.096 1.985 4.575 1.679 0.839 0.346 0.202 0.147 Nitrog. trichlor.(NCl3) 0.575 0.395 0.253 0.196 0.146 0.126 0.105 0.093 0.085 Nitrogen triiodite(NJ3) 11.77 7.890 3.372 1.882 0.687 0.363 0.174 0.122 0.097 Fulm.merc. (Hg(OC)2) 5.327 3.312 1.639 3.726 1.373 0.697 0.298 0.182 0.134 Hydrogen (H) 0.335 0.326 0.308 0.294 0.265 0.243 0.211 0.189 0.173 Oxygen (0) 0.210 0.189 0.167 0.155 0.136 0.123 0.107 0.096 0.087 Chlorine (Cl) 0.625 0.426 0.265 0.202 0.148 0.126 0.105 0.093 0.084 Methane (CH4) 0.223 0.213 0.204 0.186 0.168 0.153 0.133 0.113 0.108 Nitrocarbin.(CH3NO2) 0.210 0.191 0.173 0.161 0.142 0.129 0.112 0.100 0.090 Acetylene (C2H2) 0.198 0.187 0.180 0.177 0.143 0.134 0.117 0.103 0.093 Ammonia (NH3) 0.220 0.207 0.190 0.172 0.157 0.144 0.125 0.111 0.103 Water (H2O) 0.224 0.204 0.183 0.171 0.151 0.137 0.119 0.106 0.097 Polyethylene (CH2) 0.207 0.197 0.180 0.171 0.153 0.140 0.121 0.102 0.099 Polystyrene (C8H8) 0.197 0.188 0.180 0.162 0.145 0.132 0.115 0.103 0.093 Pol.Methac.(C5H8O2) 0.205 0.195 0.179 0.163 0.146 0.127 0.115 0.103 0.094 Saccharose (Ci2H22O4) 0.208 0.189 0.180 0.165 0.144 0.131 0.114 0.102 0.093 301 Section III. Nuclear Applications The Sixth International Conference "Modern Problems of Nuclear Physics", September 19-22, 2006 [ MPNF2006 ..... INP-50 Note that in the table the values of /*(cm2/g) for lead azide 1.564 and 6.396 at Ey = 0.088 MeV (X-line) and for fulminate of mercury 1.458 and 5.725 at Ey = 0.083 MeV (iT-line) are not indicated. 2. From this table you can see that mass attenuation coefficients for the basic (first) group of explosives are the least with the exception, of course, of helium, lithium, beryllium, boron, carbon and nitrogen. The results of analysis can be used for designing of X-ray customs techniques for finding out of explosive's presence in the luggage without recognizing of the type of the explosive's material (group 1). The method is similar to the so-called dual energy method [3] which is widely used throughout the world in X-ray customs inspection systems for luggage control in airports is impossible to except from our consideration. References: 1. Grodzins L. Nuclear techniques for finding chemical explosives in airoport luggage. - Nucl. Instr. and Meth. in Phys. Research, B56/57, 1991, p.829 - 833. 2. Storm E., Jsrael H. Photon Cross Section from 0.001 to 100 MeV for Elements 1 through 100. - Los Alamos Scientific Laboratory, New Mexico, 1967. 3. Novikov V., Ogorodnikov S., Petrunin V. Dual energy method of material recognition in high energy introscopy systems.-Topics on Atomic Science and Technique . 1999. N° 4.
Recommended publications
  • Ni33nh3+3Nhi
    Pure & Appi. Chem., Vol. 49, pp.67—73. Pergamon Press, 1977. Printed in Great Britain. NON-AQJEOUS SOLVENTS FOR PREPARATION AND REACTIONS OF NITROGEN HALOGEN COMPOUNDS Jochen Jander Department of Chemistry, University of Heidelberg, D 69 Heidelberg, Germany Abstract -Theimportance of non—aqueous solvents for the chemistry of haloamines is shown in more recent reaction examples. The solvents must be low-melting because of the general temperature sensitivity of the haloamines. They may take part in the reaction (formation of CH NI •CH NH (CH )2NI, NI-,.5 NH-, and NH0I.NH-)ormay e ner (ormation of I .quinuiilidin, 2 NI •1 trithylenediamine, [I(qunuclidine),] salts pure NBr, and compounds of the type R1R2NC103 with R1 and R2 =orgnicgroup or hydrogen). INTRODUCTION Non-aqueous solvents play an important role in preparation and reactions of nitrogen halogen compounds. Due to the fact, that all haloamines are derivatives of ammonia or amines, liquid ammonia or liquid organic amines are used as solvents very often. Liquid ammonia and the lower organic amines reveal, in addition, the advantage of low melting points (liquid ammonia -78, liquid monomethylamine -93.5, liquid dimethylamine -92, liquid tn-. methylamine -12k°C); these meet the general temperature sensitivity of the nitrogen halogen compounds, especially of the pure .lorganic ones. Ammonia and amines are very seldom inert solvents; they mostly take part in the reaction planned for synthesis or conversion of the haloamine. In case a reaction of the solvent is to be avoided, one has to look for a low melting inert solvent, for example methylene chloride (m.p.
    [Show full text]
  • Explosives and Terminal Ballistics
    AND TERMINAL BALLISTICS A REPORT PREPARED FOR THE AAF SCIEN'rIFIC ADVISORY GROUP By D. P. MAC DOUGALL Naval Ordnance Laboratory, Washington, D. C. N. M. NEWMARK Department oj Civil Engineering, University oj Illinois • PMblished May, 1946 by HEADQUARTERS AIR MATERIEL COMMAND PUBLICATIONS BRANCH, INTEJtJYiE~9) '1001 WRIGHT FIELD, DAYTON, OHIO V-46579 The AAF Scientific Advisory Group was activated late in 1944 by General of the Army H. H. Arnold. He se­ cured the services of Dr. Theodore von Karman, re­ nowned scientist and consultant in aeronautics, who agreed to organize and direct the group. Dr. von Karman gathered about him a group of Ameri­ can scientists from every field of research having a bearing on air power. These men then analyzed im­ portant developments in the basic sciences, both here and abroad, and attempted to evaluate the effects of their application to air power. This volume is one of a group of reports made to the Army Air Forces by the Scientific Advisory Group. Thil document contolnl Information affecting the notional defenle of the United Statel within the meaning of the Espionage Ad, SO U. S. C., 31 and 32, 01 amended. Its tronsmiulon or the revelation of Its contents In any manner to on unauthorized person II prohibited by low. AAF SCIENTIFIC ADVISORY GROUP Dr. Th. von Karman Director Colonel F. E. Glantzberg Dr. H. L. Dryden Deputy Director, Military Deputy Director, Scientific Lt Col G. T. McHugh, Executive Capt C. H. Jackson, Jr., Secretary CONSULTANTS Dr. C. W. Bray Dr. A. J. Stosick Dr. L. A.
    [Show full text]
  • Theoretical Study on the Molecular and Crystal Structures of Nitrogen Trifluoride and It’S Adduct with BF3
    J. Chem. Sci. Vol. 127, No. 8, August 2015, pp. 1491–1496. c Indian Academy of Sciences. DOI 10.1007/s12039-015-0857-3 Theoretical study on the molecular and crystal structures of nitrogen trifluoride and it’s adduct with BF3 HONGCHEN DUa,b,c aSchool of Science, Zhejiang A & F University, Linan, 311300, China bZhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin’an, 311300, China cPresent address: Weifang University of Science and Technology, Jinguang Street 1299, Shouguang, 262700, China e-mail: [email protected]; [email protected] MS received 30 April 2014; revised 30 October 2014; accepted 27 January 2015 Abstract. The molecular and crystal structure of the adduct NF3·BF3 was studied computationally using density functional theory. It shows that the adduct exists in the form of a complex but is not ionic. The heats of formation in the gas and the condensed phase of the adduct are −1266.09 and −1276.37 kJ·mol−1, respectively, which indicates that it is stable under atmospheric conditions. The crystal form belongs to P 21/c space group. The calculated large band gap (Eg) of the crystal proves that it is stable. The conduction band (LUCO) is mainly contributed by the p orbital of N atom and the valence band (HOCO) from the p orbital of F atom. Keywords. Molecular; crystal; structure; property; theoretical study. 1. Introduction investigation even though there is limited information on the structure–property relationship, especially on the Molecular complexes containing boron trifluoride as a crystal structure of NF3 with BF3.
    [Show full text]
  • Recent Developments in Composition C-4: Towards an Alternate Binder and Reduced Sensitivity
    Recent Developments in Composition C-4: Towards an Alternate Binder and Reduced Sensitivity NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2009 Jim Owens* BAE SYSTEMS OSI, Holston Army Ammunition Plant Paul Vinh RDECOM-ARDEC, Picatinny Arsenal IMEMTS 2009 – Tucson, AZ Cleared for Public Release by BAE Systems 1 Presentation Outline • Research Extrudable Moldable Insensitive eXplosive (OSX-REMIX) • Background • Program Objectives • Technical Approach • Formulation and Evaluation • Summary • Alternate Plastic-binder Extrudable eXplosive (OSX-APEX) • Background • Program Objectives • Technical Approach • Formulation • Modified Accelerated Aging Trial • Summary IMEMTS 2009 – Tucson, AZ Cleared for Public Release by BAE Systems 2 Acknowledgement • PM-CCS • Mr. Felix Costa • RDECOM-ARDEC • Mr. Paul Vinh • Mr. Sanjeev Singh • Mr. Gregory Tremarco • BAE SYSTEMS OSI • Mr. Jim Haynes • Ms. Kelly Guntrum • Mr. Alberto Carrillo • Mr. Matt Hathaway • Mr. Brian Alexander IMEMTS 2009 – Tucson, AZ Cleared for Public Release by BAE Systems 3 OSX-REMIX – Program Objectives • Composition C-4 already fares well in the arena of insensitivity, due to relatively large amount of binder. • Passes Bullet Impact and Fragment Impact (Army) sensitivity tests at ambient temperature. • Fails shock stimulus – Sympathetic Detonation and Shaped Charge Jet. • BAE’s task – to develop an alternate extrudable formulation with similar physical and energy output characteristics, while enhancing its insensitivity. • Maintain current binder configuration for comparison to standard C-4. • Identify modifications to process or alternate input energetics. • Formulate and evaluate physical and energetic properties. IMEMTS 2009 – Tucson, AZ Cleared for Public Release by BAE Systems 4 OSX-REMIX – Technical Approach • Modification to manufacturing process. • Maintain aqueous slurry-coating process. • Premixing RDX with fluid portion of binder (DOA/Oil).
    [Show full text]
  • Naming Compounds Practice Problems KEY Naming Simple Ionic Compounds
    Chemistry HS/Science Unit: 05 Lesson: 01 Naming Compounds Practice Problems KEY Naming Simple Ionic Compounds Name the following compounds: 1) KCl potassium chloride 2) MgI2 magnesium iodide 3) FeO iron (II) oxide 4) Fe2O3 iron (III) oxide 5) Cu3P copper (I) phosphide 6) SnSe2 tin (IV) selenide 7) TiBr3 titanium (III) bromide 8) GaAs gallium arsenide 9) BeF2 beryllium fluoride 10) Cs3N cesium nitride Write the formulas for the following compounds: 1) lithium iodide LiI 2) cobalt (III) oxide Co2O3 3) calcium fluoride CaF2 4) silver bromide AgBr 5) sodium hydride NaH 6) vanadium (V) sulfide V2S5 7) lead (II) nitride Pb3N2 8) titanium (II) selenide TiSe 9) manganese (VII) arsenide Mn3As7 10) gallium chloride GaCl3 ©2013, TESCCC 06/17/13 page 1 of 4 Chemistry HS/Science Unit: 05 Lesson: 01 Naming Compounds Practice Problems Naming Complex (polyatomic) Ionic Compounds Name the following compounds: 1) NH4Cl ammonium chloride 2) Fe(NO3)3 iron (III) nitrate 3) Pb(SO4)2 lead (IV) sulfate 4) Ag3PO4 silver phosphate 5) Be(HCO3)2 beryllium hydrogen carbonate 6) Al(CN)3 aluminum cyanide 7) Mn2(SO3)3 manganese (III) sulfite 8) Sr(C2H3O2)2 strontium acetate 9) Ti(CN)4 titanium (IV) cyanide 10) YClO3 yttrium chlorate Write the formulas for the following compounds: 1) lead (IV) sulfate Pb(SO4)2 2) silver cyanide AgCN 3) copper (II) chlorate Cu(ClO3)2 4) chromium (IV) phosphate Cr3(PO4)4 5) vanadium (IV) carbonate V(CO3)2 6) ammonium oxide (NH4)2O 7) tin (II) nitrite Sn(NO2)2 8) chromium (III) hydroxide Cr(OH)3 9) titanium (II) acetate Ti(C2H3O2)2 10)
    [Show full text]
  • Tnt Equivalence of C-4 and Pe4: a Review of Traditional Sources and Recent Data
    TNT EQUIVALENCE OF C-4 AND PE4: A REVIEW OF TRADITIONAL SOURCES AND RECENT DATA D. Bogosian1, M. Yokota1, S. Rigby2 1Baker Engineering and Risk Consultants, 360 N. Sepulveda Blvd., Ste 1090, El Segundo, CA 90245, USA; 2University of Sheffield, Department of Civil & Structural Engineering, Sir Frederick Mappin Building, Mappin Street, Sheffield, S1 3JD, United Kingdom ABSTRACT Since standard engineering-level blast models are typically developed to predict airblast parameters (pressure and impulse) from TNT bursts, prediction of airblast from other materials uses an equivalence factor by which an equivalent TNT weight is computed and used in the source term of the model. This approach is widespread in the industry and has been codified in numerous manuals, books, and papers. A recent effort co-sponsored by TSWG (U.S.) and FSTD (Singapore) collected and compiled equivalence data for a wide variety of explosive materials (both military grade as well as home-made) into a single software tool named STREET. The database thus assembled provides a comprehensive and expandable repository for equivalence data. Two of the main achievements in STREET are the consideration of equivalence as a function of scaled standoff (rather than a scalar), and the documentation of uncertainty in the estimated value. In this paper, we consider specifically the manual- and test-derived data related to Composition C-4, and as a first step, we draw some judgments regarding the equivalence implicit in blast curves provided by UFC 3-340-02, for both pressure and impulse. Next, we consider PE4, which is similar in composition to C-4 and is used widely in the UK.
    [Show full text]
  • Plastic Explosives
    History and Present DIRECTORS of VUPCH Plastic Explosives Research Institute of Industrial Chemistry (VÚPCH) with its seat in Pardubice-Semtín was established by the Ministry of Defense Decree of November 2nd, 1953 to In the fifties of the last century the research and later the industrial production January 1st 1954 as a state administration facility with the scope of activities - research and development of explosives. VÚPCH was entitled to administrate research of plastic explosives based on High explosives and non-explosive plasticizer workplaces of national enterprise Synthesia, and experts were centralized there from the original research department, the so-called Central Laboratories of the was started in VCHZ (today known as Explosia). ® company, and technological groups of the former Explosia. The activity of VÚPCH continuously linked up to the activity of departments R and X that had been entrusted Plastic explosives from Explosia are known under the trade name Semtex . with research, development and testing within the framework of Explosia a.s. since 1923. From the beginning, the newly established research institute (VÚPCH) was the author of the technical solutions of plastic explosives as well as most of the By the Ministry of Chemical Industry Decree of December 30th, 1958 VÚPCH was abolished as an independent budgetary organization and to the date of January 1st, production equipment. 1959 transferred into administration of national enterprise East Bohemian Chemical Works Synthesia. Within the framework of Synthesia there were, however, some changes in actual organizational incorporation of VÚPCH, especially in connexion with establishing the position of Deputy for Special Production in the 1970s, and the Pl Np 10 (The Black Semtex) Plant 05 Special Production in the 1980s.
    [Show full text]
  • Texhuka U Memodbi Hdepho-(Pii3weckozo 3Kcnepumehma
    TexHUKa u Memodbi HdepHO-(pii3wecKozo 3KcnepuMeHma HanpaBJieHHoro pacxoxgieHHa. Jljin BbiMHCJieHHfl Marpmrbi OTKJiHKa HaimcaHa nporpaMMa, OCHO- BaHHaa Ha Hcnonb30BaHHH Meroaa MoHTe-Kapjio. IlpH pacneTe MaipHUbi yHHTbmaioTca npaKTH- qecKH Bee 4>H3HHecKHe npoixeccbi, npOTeicaiomHe B CHeraiKax no,zjo6Horo THna. H3JiyHeHHe npaiamecKH JiK>6oro HCTOHHHKa HefirpOHOB conpoBO^caaeTca HcnycKaHHeM conyrcTByiomHx y-KBaHTOB. IIponopUHOHajibHbie ra30Bbie cneTHHKH, KaK H 6ojibuiHHCTBO aerrcK- TOpOB, HCnOJIb3yeMbIX JUW perHCTpaUHH HeHTpOHOB, HyBCTBHTeJIbHbl H K Y"H3JiyHeHHK). Il03T0My Y-(J)OH MOHcer BHOCHTB HCKa^ceHHfl B BoccTaHaBJiHBaeMbie HeihpoHHbie pacnpeaejieHHa. B HC- nojib3yeMOM HeihpoHHOM cneicrpoMeTpe raMMa-4)OH OKa3biBaeT BJIHHHHC B zmana30He SHeprafi OT 0 flo 0,5 MsB. J\o HacToamero BpeMeHH yneT Y-4>0Ha npOBOflHJica pacneTHbiM nyreM. OflHaico BbiHHCJieHHe Y-OTKJiHKa He Bceraa flaer HafleacHbie pe3ynbTaTbi H BHOCHT aonojiHHTejibHbie norpeumocTH B o6jiacTH 3HepraH H©HTPOHOB HHMce 0,5 MsB. KapflHHajibHMM peiueHHeM 3TOH npo6jieMU HBJM- 0113 eTCH pa3pa6oTKa CHCTCMW zmcKpHMHHauHH y-^ ' npHHUHn fleficTBHa KOTopofi ocHOBaH Ha CymeCTBCHHOM pa3JIHHHH yfl&IIbHOH HOHH3aUHH, BbI3BaHHOH npOTOHOM OTflaHH OT HeirrpoHa n sjieinpoHOM, o6pa3yiomHMCfl npn B3aHM0fleHCTBHH Y-KBairra c BemecTBOM. OflHaKO JlO C03flaHHH TaKOH CHCTeMbI Heo6xOflHMO 6bIJIO HCCJieflOBaTb B03MOHCHOCTb flHC- 0Ha 1 KpHMHHauHH Y-<J> W * Hcnojib3yeMoro cHeTHHKa H oueHHTb HHXCHHH 3HepreTHHecKHH nopor pa3fleJieHHfl HMnyjlbCOB OT HeHTpOHOB H Y-KBaHTOB. JiflSL 3TOrO C nOMOIUbK) UH(^pOBOrO 0CUHJ1J10- rpacj)a c naMflTbio 6bin nojiyneH MaccHB aaHHbix o 4>opMe HMnyjlbCOB cneTHHKa npH ero o6jiy*ie- HHH HeiiTpoHaMH H Y"KBaHTaMH. B KanecTBe HCTOHHHKa CMeuiaHHoro HefiTpoHHoro H Y-H3Jiy- 252 HeHHH Hcnojib3o8ajicfl Cf, HCTOHHHKOM Y-H3Jiy4eHHH cjiyaauiH CJIOH H3 Ha6opa o6pa3UOBbix cneinpoMeTpHHecKHX Y-HCTOHHHKOB. Bcero 3a BpeMa npoBe,aeHHa H3MepeHHH 6buio 3anncaHO 4 =5-10 ocuHJiJiorpaMM HMnyjlbCOB mix HCTOHHHKa CMeuiaHHoro HefiTpoHHoro H Y-H3JiyieHH« 252 4 Cf H ~ 1 • 10 OCUHJIJIOrpaMM flfla HCTOHHHKa Y-KBaHTOB.
    [Show full text]
  • Potentially Explosive Chemicals*
    Potentially Explosive Chemicals* Chemical Name CAS # Not 1,1’-Diazoaminonaphthalene Assigned 1,1-Dinitroethane 000600-40-8 1,2,4-Butanetriol trinitrate 006659-60-5 1,2-Diazidoethane 000629-13-0 1,3,5-trimethyl-2,4,6-trinitrobenzene 000602-96-0 1,3-Diazopropane 005239-06-5 Not 1,3-Dinitro-4,5-dinitrosobenzene Assigned Not 1,3-dinitro-5,5-dimethyl hydantoin Assigned Not 1,4-Dinitro-1,1,4,4-tetramethylolbutanetetranitrate Assigned Not 1,7-Octadiene-3,5-Diyne-1,8-Dimethoxy-9-Octadecynoic acid Assigned 1,8 –dihydroxy 2,4,5,7-tetranitroanthraquinone 000517-92-0 Not 1,9-Dinitroxy pentamethylene-2,4,6,8-tetramine Assigned 1-Bromo-3-nitrobenzene 000585-79-5 Not 2,2',4,4',6,6'-Hexanitro-3,3'-dihydroxyazobenzene Assigned 2,2-di-(4,4,-di-tert-butylperoxycyclohexyl)propane 001705-60-8 2,2-Dinitrostilbene 006275-02-1 2,3,4,6- tetranitrophenol 000641-16-7 Not 2,3,4,6-tetranitrophenyl methyl nitramine Assigned Not 2,3,4,6-tetranitrophenyl nitramine Assigned Not 2,3,5,6- tetranitroso nitrobenzene Assigned Not 2,3,5,6- tetranitroso-1,4-dinitrobenzene Assigned 2,4,6-Trinitro-1,3,5-triazo benzene 029306-57-8 Not 2,4,6-trinitro-1,3-diazabenzene Assigned Not 2,4,6-Trinitrophenyl trimethylol methyl nitramine trinitrate Assigned Not 2,4,6-Trinitroso-3-methyl nitraminoanisole Assigned 2,4-Dinitro-1,3,5-trimethyl-benzene 000608-50-4 2,4-Dinitrophenylhydrazine 000119-26-6 2,4-Dinitroresorcinol 000519-44-8 2,5-dimethyl-2,5-diydroperoxy hexane 2-Nitro-2-methylpropanol nitrate 024884-69-3 3,5-Dinitrosalicylic acid 000609-99-4 Not 3-Azido-1,2-propylene glycol dinitrate
    [Show full text]
  • Extraction-Based Recovery of RDX from Obsolete Composition B
    G Model JIEC 3540 1–5 Journal of Industrial and Engineering Chemistry xxx (2017) xxx–xxx Contents lists available at ScienceDirect Journal of Industrial and Engineering Chemistry journal homepage: www.elsevier.com/locate/jiec 1 Extraction-based recovery of RDX from obsolete Composition B 2 Q1 a a a a, b Hyewon Kang , Hyejoo Kim , Chang-Ha Lee , Ik-Sung Ahn *, Keun Deuk Lee 3 a Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, South Korea 4 b Agency for Defense Development, Daejeon 305-600, South Korea A R T I C L E I N F O A B S T R A C T Article history: Received 3 November 2016 Recovery of explosives from obsolete ammunition has been considered an eco-friendly alternative to Received in revised form 20 July 2017 conventional dumping or detonation disposal methods Composition B, made of 2,4,6-trinitrotoluene Accepted 26 July 2017 (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and paraffin wax, has been used as the main Available online xxx explosive filling in various munitions. It was selected as a model explosive for this study. TNT was extracted from Composition B by exploiting the different solubilities of TNT and RDX in acetonitrile. After Keywords: removing paraffin wax by hexane washing, RDX was recovered from unused Composition B with a purity Composition B higher than 99% and a yield of 84%. Recovery © 2017 Published by Elsevier B.V. on behalf of The Korean Society of Industrial and Engineering RDX Chemistry. Extraction Demilitarization 5 29 Introduction destroyed using the following techniques: dumping at sea, outdoor 30 burning, open detonation, and detonation in a mine tunnel [9,10].
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Guide for the Selection of Commercial Explosives Detection Systems For
    2.5.3.8 EXPRAY Field Test Kit EXPRAY is a unique, aerosol-based field test kit for the detection of what the manufacturer refers to as Group A explosives (TNT, DNT, picric acid, etc.), Group B explosives (Semtex H, RDX, PETN, NG, smokeless powder, etc.), and compounds that contain nitrates that are used in improvised explosives. Detection of explosive residue is made by observing a color change of the test paper. EXPRAY can be used in a variety of applications, and although in some aspects it does not perform as well as many of the other trace detectors discussed in this section, it costs only $250. This very low cost, coupled with simplicity and ease of use, may make it of interest to many law enforcement agencies (see the EXPRAY kit in fig. 13). The EXPRAY field kit2 is comprised of the following items: - one can of EXPRAY-1 for Group A explosives, - one can of EXPRAY-2 for Group B explosives, - one can of EXPRAY-3 for nitrate-based explosives (ANFO, black powder, and commercial and improvised explosives based on inorganic nitrates), - special test papers which prevent cross contamination. Figure 13. Photo of the EXPRAY Field Test Kit for explosives Initially, a suspected surface (of a package, a person’s clothing, etc.) is wiped with the special test paper. The paper is then sprayed with EXPRAY-1. The appearance of a dark violet-brown color indicates the presence of TNT, a blue-green color indicates the presence of DNT, and an orange color indicates the presence of other Group A explosives.
    [Show full text]