TexHUKa u Memodbi HdepHO-(pii3wecKozo 3KcnepuMeHma

HanpaBJieHHoro pacxoxgieHHa. Jljin BbiMHCJieHHfl Marpmrbi OTKJiHKa HaimcaHa nporpaMMa, OCHO- BaHHaa Ha Hcnonb30BaHHH Meroaa MoHTe-Kapjio. IlpH pacneTe MaipHUbi yHHTbmaioTca npaKTH- qecKH Bee 4>H3HHecKHe npoixeccbi, npOTeicaiomHe B CHeraiKax no,zjo6Horo THna. H3JiyHeHHe npaiamecKH JiK>6oro HCTOHHHKa HefirpOHOB conpoBO^caaeTca HcnycKaHHeM conyrcTByiomHx y-KBaHTOB. IIponopUHOHajibHbie ra30Bbie cneTHHKH, KaK H 6ojibuiHHCTBO aerrcK- TOpOB, HCnOJIb3yeMbIX JUW perHCTpaUHH HeHTpOHOB, HyBCTBHTeJIbHbl H K Y"H3JiyHeHHK). Il03T0My Y-(J)OH MOHcer BHOCHTB HCKa^ceHHfl B BoccTaHaBJiHBaeMbie HeihpoHHbie pacnpeaejieHHa. B HC- nojib3yeMOM HeihpoHHOM cneicrpoMeTpe raMMa-4)OH OKa3biBaeT BJIHHHHC B zmana30He SHeprafi OT 0 flo 0,5 MsB. J\o HacToamero BpeMeHH yneT Y-4>0Ha npOBOflHJica pacneTHbiM nyreM. OflHaico BbiHHCJieHHe Y-OTKJiHKa He Bceraa flaer HafleacHbie pe3ynbTaTbi H BHOCHT aonojiHHTejibHbie norpeumocTH B o6jiacTH 3HepraH H©HTPOHOB HHMce 0,5 MsB. KapflHHajibHMM peiueHHeM 3TOH npo6jieMU HBJM- 0113 eTCH pa3pa6oTKa CHCTCMW zmcKpHMHHauHH y-^ ' npHHUHn fleficTBHa KOTopofi ocHOBaH Ha CymeCTBCHHOM pa3JIHHHH yfl&IIbHOH HOHH3aUHH, BbI3BaHHOH npOTOHOM OTflaHH OT HeirrpoHa n sjieinpoHOM, o6pa3yiomHMCfl npn B3aHM0fleHCTBHH Y-KBairra c BemecTBOM. OflHaKO JlO C03flaHHH TaKOH CHCTeMbI Heo6xOflHMO 6bIJIO HCCJieflOBaTb B03MOHCHOCTb flHC- 0Ha 1 KpHMHHauHH Y- W * Hcnojib3yeMoro cHeTHHKa H oueHHTb HHXCHHH 3HepreTHHecKHH nopor pa3fleJieHHfl HMnyjlbCOB OT HeHTpOHOB H Y-KBaHTOB. JiflSL 3TOrO C nOMOIUbK) UH(^pOBOrO 0CUHJ1J10- rpacj)a c naMflTbio 6bin nojiyneH MaccHB aaHHbix o 4>opMe HMnyjlbCOB cneTHHKa npH ero o6jiy*ie- HHH HeiiTpoHaMH H Y"KBaHTaMH. B KanecTBe HCTOHHHKa CMeuiaHHoro HefiTpoHHoro H Y-H3Jiy- 252 HeHHH Hcnojib3o8ajicfl Cf, HCTOHHHKOM Y-H3Jiy4eHHH cjiyaauiH CJIOH H3 Ha6opa o6pa3UOBbix cneinpoMeTpHHecKHX Y-HCTOHHHKOB. Bcero 3a BpeMa npoBe,aeHHa H3MepeHHH 6buio 3anncaHO 4 =5-10 ocuHJiJiorpaMM HMnyjlbCOB mix HCTOHHHKa CMeuiaHHoro HefiTpoHHoro H Y-H3JiyieHH« 252 4 Cf H ~ 1 • 10 OCUHJIJIOrpaMM flfla HCTOHHHKa Y-KBaHTOB. B pe3yjibTaTe MaTeMaTHnecKOH o6pa6oTKH nojiyqeHHoro MaccHBa aaHHbix noKa3aHo, HTO cymecTByeT B03M0XH0CTb paarmneHHa HMnyjlbCOB OT npoTOHOB OTaanH H sjieicrpoHOB, o6pa- 3yiomHxca npn B3aHMOfleHCTBHH Y-KBaHTOB c BemecTBOM. B KanecTBe ocHOBHoro napaMeTpa, no3BOJiaiomero HaziexHo pa3flejiaTb HeirrpoHHbie HMnyjibcu H HMnyjibcw OT Y-KBaHTOB, cjieayeT Hcnojib30BaTb 3HaneHHe MaKCHMyMa nepBOH npoH3BOflHOH nepeflHero

A NARROW- BEAM X-RAY ATTENUATION OF PHOTONS 0,05-0,5 MeV IN CHEMICAL

A .S. Cherkasov Kharkov National University, Ukraine [email protected]

Basic explosives [1] are - (C6H5N5O8); Hexamethylenetetramine (urotropin) (HMT -

C6H12N4); 2,4,6 - Trinitrotoluene (TNT - C7H5N3O3); 1,3 - Dinitrobenzene (DNB - C^UN204)\

Picric acid (2,4,6 - trinitrophenol - C6H3N3O7); TATP (C9Hi806); Hexogen (RDX - C3H6N606);

Pentaeritronitrate-Nitropenta (PETN - C5H8N4O12); Octogen (HMX - C4H8N808). RDX and/or PETN are usually used in plastic explosives. Examples include C-4, Detasheet, and Semtex).

327 CeKUfim 5

HMX (Octogen) is a very powerfull and costly military , which has been employed in solid-fuel rocket propellants and in military high performance warheads. Military explosives cur• rently used are mostly a combination of TNT, RDX, PETN, HMX, with a number of organic compounds (waxes (e.g. nitroparaffine - C10H8N2O4), plasticizers, stabliers, oil, etc.). Examples are (RDX, TNT), Composition C-4 (or PE-4) (RDX), Detasheet (PETN), Octol (HMX, TNT), Semtex-H (RDX, PETN), etc.

Nitroglycerin (NG - C3H5N3O9), Nitrocellulose (C6H702(ON02)3, C6H803(ON02)2, C6H904(ON02)) and Ammonium Nitrate (AN - H4N2O3) are used as a basis of other families of explosives: a) dynamites in the case of NG with nitroglycol (C4H8N2O2), powders of Al or Mg, with TNT and ammonal (TNT with Al-powder), wood flour, etc.; b) white(smokeless) gunpow- ders(guncotton-nitrocotton - collodion cotton, pyroxylinies (e.g. tetranitrate of pulp - colodion wool - Ci2Hj606(N03)4), cordites, ballistites with ammonium perclorate (NH4CIO4) as oxidizer. Dynamites are used typically as a high explosive for industrial applications and in solid rocket propellants. Note that pure AN does not contain carbon; it has been widely used to fabricate bombs, but it is also widely diffused as a fertiliser. Ethylene glycol dinitrate (EGDN - C2H4N2O6) is a trasparent, colourless liquid explosive, which has been used in mixtures with NG for low- temperature dynamites. Its use has greatly decreased due to the replacement of dynamites with ammonium nitrate-fuel oil (ANFO) and slurry explosives. Black powder is a low-order explosive consisting of potassium nitrate (KNO3) or sodium ni• trate (NaN03), charcoal, and sulphur (it does therefore probably not contain hydrogen). Materials that initiate explosions are hydrazine (N2H4), lead azide (PbN3), nitrogen trichlo• ride (NCI3), nitrogen triiodide (NJ3), fulminate of mercury (Hg(ONC)2). An analysis of mass narrow-beam X-ray attenuation coefficients for photons 0,05-0,5 MeV which were carried out on the basis of handbook [2] shows: 1. For 17 basic kinds explosives as well as for the second explosives (TNT, NG, Octogen, Hexogen, Picric acid, pyroxylines (1,2), Tetyl, PETN, nitronaphtalene, nitroglycol, EGDN, nitro- urle, nitrocellulose (1,2,3), AN), with the exception of HMT, and also for explosive-proof mela- mine (C3H6N6) and polyurethane (micromolecula - CHNO2) mass attenuation coefficients for photon with energies indicated above are coincidenced in fact with accuracy 1-3 %. The average values (through 19 kinds of substances) of these mass coefficients (u(cm7g) = £u,f- -n,, where n; - the weight part of element i in the chemical combination) are in this table (Group 1). The most divergences from average values are for AN and melamine (-4,8 % at 0,06 MeV and -6,5 % at 0,5 MeV accordingly). The more of hydrogen, the more value of u. In the table the group of materials used for production explosives or fire- and explosion- dangerous ones adjoins to group 1 with HMT. Then the substances used for production black powders, initiative explosives, dangerous and explosion-dangerous gases as well as some widely used organic compounds, for comparison, follow.

£y, MeV 0,05 0,06 0,08 0,1 0,15 0,2 0,3 0,4 0,5 Substance Group-1 0,204 0,187 0,170 0,157 0,139 0,125 0,109 0,098 0,089 HMT 0,203 0,197 0,176 0,164 0,139 0,133 0,116 0,104 0,101

Benzine(C6H$) 0,198 0,187 0,178 0,162 0,145 0,132 0,128 0,104 0,094 Peroxide(H202) 0,217 0,206 0,171 0,163 0,143 0,130 0,113 0,098 0,090

328 Texnuxa u Memodbi xdepHO-tpiaunecKoeo SKcnepuMeHma

Conclusion table

Alcogol(C2H60) 0,218 0,199 0,195 0,171 0,152 0,135 0,116 0,108 0,098

Alcogol(C2H40) 0,216 0,201 0,185 0,170 0,152 0,138 0,120 0,107 0,098

Eth. Glycol(C2H602) 0,213 0,197 0,181 0,167 0,148 0,134 0,116 0,104 0,095 Dieth.Glucol(C4H10O3) 0,211 0,196 0,181 0,166 0,148 0,131 0,117 0,104 0,096 Urle (CH4ON2) 0,207 0,189 0,175 0,162 0,144 0,131 0,114 0,085 0,076

Am.perchl.(NH4C104) 0,338 0,264 0,201 0,174 0,144 0,128 0,110 0,098 0,086 Sodium (Na) 0,275 0,224 0,179 0,158 0,134 0,120 0,103 0,092 0,084 Magnesium (Mg) 0,320 0,253 0,193 0.168 0,130 0,124 0,107 0,095 0,086 Aluminium (Al) 0,355 0,270 0,200 0,169 0,138 0,122 0,104 0,093 0,084 Potassium (K) 0,836 0,550 0,320 0,233 0,159 0,132 0,108 0,095 0,086

Carbon (C) 0,186 0,175 0,169 0,151 0,135 0,123 0,107 0,096 0,087 Sulphur (S) 0,562 0,393 0,254 0,199 0,150 0,130 0,109 0,097 0,088

Sod. Nitrate. (NaN03) 0,201 0,197 0,170 0,154 0,135 0,122 0,106 0,095 0,086 Potas. nitrate (KNO3) 0,444 0,327 0,226 0,185 0,145 0,117 0,108 0,095 0,087

Hydrazine (N2H2) 0,213 0,199 0,182 0,171 0,151 0,138 0,120 0,107 0,067

Lead azide(PbN3) 6,634 4,096 1,985 4,575 1,679 0,839 0,346 0,202 0,147 Nitrog. trichlor.(NCl3) 0,575 0,395 0,253 0,196 0,146 0,126 0,105 0,093 0,085 Nitrogen triiodite(NJ3) 11,77 7,890 3,372 1,882 0,687 0,363 0,174 0,122 0,097

Fulmmerc. (Hg(OC)2) 5,327 3,312 1,639 3,726 1,373 0,697 0,298 0,182 0,134 Hydrogen (H) 0,335 0,326 0,308 0,294 0,265 0,243 0,211 0,189 0,173 Oxygen (0) 0,210 0,189 0,167 0,155 0,136 0,123 0,107 0,096 0,087 Chlorine (CI) 0,625 0,426 0,265 0,202 0,148 0,126 0,105 0,093 0,084 Methane (CH4) 0,223 0,213 0,204 0,186 0,168 0,153 0,133 0,113 0,108

Nitrocarbin.(CH3N02) 0,210 0,191 0,173 0,161 0,142 0,129 0,112 0,100 0,090 Acetylene (C2H2) 0,198 0,187 0,180 0,177 0,143 0,134 0,117 0,103 0,093 Ammonia (NH3) 0,220 0,207 0,190 0,172 0,157 0,144 0,125 0,111 0,103

Water (H20) 0,224 0,204 0,183 0,171 0,151 0,137 0,119 0,106 0,097

Polyethylene (CH2) 0,207 0,197 0,180 0,171 0,153 0,140 0,121 0,102 0,099

Polystyrene (C8H8) 0,197 0,188 0,180 0,162 0,145 0,132 0,115 0,103 0,093

Pol.Methac.(C5H802) 0,205 0,195 0,179 0,163 0,146 0,127 0,115 0,103 0,094 Saccharose (C12H22O4) 0,208 0,189 0,180 0,165 0,144 0,131 0,114 0,102 0,093

Note that in the table the values of u,(cm /g) for lead azide 1,564 and 6,396 at Ey = 0,088 MeV (K-line) and for fulminate of mercury 1,458 and 5,725 at Ey = 0,083 MeV (K-line) are not indicated. 2. From this table you can see that mass attenuation coefficients for the basic (first) group of explosives are the least with the exception, of course, of helium, lithium, beryllium, boron, carbon and nitrogen. The results of analysis can be used for designing of X-ray customs techniques for finding out of explosive's presence in the luggage without recognizing of the type of the explosive's material (group 1). The method is like to so-called dual energy method [3] which is widely used through-

329 CetofuxS out the world in X-ray customs inspection systems for luggage control in airports is impossible to except from our consideration.

References 1. Grodzins L. Nuclear techniques for finding chemical explosives in airoport luggage. Nucl. Instr. and Meth. in Phys. Research, B56/57.1991. P. 829-833. 2. Storm E., Israel H. Photon Cross Section from 0.001 to 100 MeV for Elements 1 through 100. Los Alamos Scientific Laboratory. New Mexico. 1967. 3. Novikov V., Ogorodnikov S., Petrunin V. Dual energy method of material recognition in high energy introscopy systems. Bonpocw aTOMHoft HayKH H TexHHKH. 1999. Jfs 4. Cep.: .SflepHo- (bH3HiecKHe HccjieflOBaHH* (35). C.93-95.

330