United States Patent (19) 11) 4,131,743 Yoshida Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11) 4,131,743 Yoshida Et Al United States Patent (19) 11) 4,131,743 Yoshida et al. 45 Dec. 26, 1978 (54) PROCESS FOR PREPARING 3,959,352 5/1976 Onoda .............................. 260/497. A UNSATURATED DESTERS Primary Examiner-James O. Thomas, Jr. 75 Inventors: Yoshinori Yoshida, Yokohama; Assistant Examiner-Michael Shippen Tutomu Kobayashi, Ibaraki; Attorney, Agent, or Firm-Stevens, Davis, Miller & Hironobu Shinohara, Yokohama; Mosher Izumi Hanari, Tokyo, all of Japan 57 ABSTRACT 73) Assignee: Japan Synthetic Rubber Co., Ltd., Unsaturated diesters are produced by a process which Tokyo, Japan comprises reacting, in a flowing gaseous phase, a gase 21 Appl. No.: 702,935 ous mixture comprising a conjugated diene, a carbox ylic acid and molecular oxygen in the presence of (A) a 22 Filed: Jul. 6, 1976 catalyst comprising palladium, vanadium, antimony and (30) Foreign Application Priority Data at least one alkali metal carboxylate, or in the presence of (B) a catalyst comprising palladium, vandium, anti Jul. 17, 1975 (JP) Japan. 50/86657 mony, at least one alkali metal carboxylate and at least Dec. 11, 1975 JP Japan ................................ 50/146902 one alkali metal halide. The catalyst (A) maintains a 51 int. Cl’.............................................. CO7C 67/05 high activity and a high selectivity for a long time. The 52 U.S.C. ........................................ 560/244; 560/1; catalyst (B), in which further the alkali metal halide is 560/112; 252/472 added, shows a higher activity and a higher selectivity 58 Field of Search ................... 260/497 A; 560/244, for a longer time. And its activity and selectivity are 560/1, 112 stable and durable at high temperatures such as 160 - 200 C. Furthermore, the addition of the alkali metal (56) References Cited halide suppresses combustion reaction of dienes such as U.S. PATENT DOCUMENTS butadiene remarkably. Additionally, the catalysts (A) 3,622,620 11/1971 Horiie.............................. 260/497 A and (B), especially (B) can be easily reactivated when 3,637,819, 1/1972 Sennewald ...................... 260/497 A they lose activity. 3,872,163 3/1975 Shimiza ........................... 260/497 A 3,922,300 11/1975 Onoda .............................. 260/497 A 25 Claims, No Drawings 4,131,743 1. 2 Furthermore, the addition of the alkali metal halide PROCESS FOR PRE-PARNG UNSATURATED suppresses combustion reaction of dienes such as butadi DESTERS ene remarkably and also prevents by-production of monobutadienylacetate especially when lowering O2/- This invention relates to a process for preparing or diene ratio in a feed gaseous mixture. producing unsaturated diesters from a conjugated di The compounds, alkali metal carboxylates and alkali ene, a carboxylic acid and molecular oxygen. metal halides, respectively act as activity-promoting And more particularly, it relates to a process for components. producing unsaturated diesters which comprises react The inventors of this invention found also that a cata ing, in a flowing gaseous phase, a gaseous mixture com 10 lyst which has been used and lost its activity can be prising a conjugated diene, a carboxylic acid and molec reactivated by means of a method which comprises ular oxygen in the presence of (A) a catalyst comprising washing out the alkali metal carboxylate and alkali palladium, vanadium, antimony and at least one alkali metal halide when it is used, which acted as activity metal carboxylate, or in the presence of (B) a catalyst promoting component(s), with a liquid comprising comprising palladium, vanadium, antimony, at least one 15 alkali metal carboxylate and at least one alkali metal water and/or alcohol, thereafter sintering at 150-500 halide. C. with a gas containing oxygen and then reducing at Heretofore, there have been proposed various pro 100-500 C. with a reducing gas, and finally readding cesses for preparing esters from olefins or dienes by the said activity-promoting component(s). The result reacting with carboxylic acids and oxygen in the pres ing reactivated catalyst shows surprisingly the same ence of a catalyst comprising palladium as the main high activity, the same high selectivity and the same component. good stability and durability as the original catalyst. For instance, various processes for preparing butene Furthermore, we found an alternative method for diol diesters from butadiene in the presence of a catalyst reactivating a catalyst which comprises treating the comprising palladium have been researched and dis 25 catalyst which has been used and whose activity has closed in many literature. been lowered in our above mentioned processes for However, the catalysts in the conventional processes producing unsaturated diesters with a gas containing are not always satisfactory in respects of the activity, steam at 100-600 C. selectivity, stability and durability. According to said method, when the catalyst is It has been proposed that unsaturated glycol diesters 30 treated in a stage of still retaining more than 50% of the are prepared by reacting, in a gaseous phase, a conju original activity, the treated catalyst recovers the same gated diene, a carboxylic acid and molecular oxygen in activity as the original catalyst. the presence of a catalyst comprising palladium, anti Conjugated dienes represented by the following for mony and at least one alkali metal carboxylate (e.g. mula may be used in this invention, Japanese Patent Application KOKAI No. 4416/1973). 35 In the aforementioned process, however, the cata R1 Rs N / lysts have various disadvantages in respects of activity, CCaCeC selectivity, stability and durability. / N As for a catalyst comprising the three components of R2 R3 R4 R6 palladium, vanadium and an alkali metal carboxylate, it 40 has been noted that the catalyst shows extremely low Wherein R1-R6 individually are hydrogen or hydrocar activity, and therefore it is practically impossible to bon groups, preferably alkyl groups. The number of employ the catalyst in a process for producing the prod carbon atoms of hydrocarbon groups is not limited, but ucts of this invention. preferably 1 to 6. An object of this invention is to provide a commer 45 The above conjugated dienes include butadiene, iso cially useful process for producing an unsaturated dies prene, 2,3-dimethylbutadiene, piperylene and the like. ter, especially an unsaturated glycol diester in which Cyclic conjugated dienes such as cyclopentadiene, acyl-oxy groups have been added to the both side ends alkyl-cyclopentadiene, cyclohexadiene and the like also of the conjugated diene compound. may be used in this invention. Other objects and advantages of this invention will be 50 apparent from the following descriptions. Among such conjugated dienes, butadiene and iso We made research on processes for producing unsat prene are especially preferable. urated diesters by reacting a conjugated diene, a car It is not necessary for said conjugated dienes to be boxylic acid and molecular oxygen in a flowing gaseous pure and they may include other hydrocarbons in a phase, and we found that a catalyst comprising palla 55 ratio not affecting the reaction. dium, vanadium, antimony and at least one alkali metal Carboxylic acids which may be used in this invention carboxylate maintains a high activity and a high selec include aliphatic, alicyclic and aromatic carboxylic tivity for a long time. acids. For commercial application, lower aliphatic car The catalyst comprising the four components, that is, boxylic acids such as acetic acid, propionic acid, butyric palladium, vanadium, antimony and at least one alkali acid and the like are preferable. metal carboxylate, eliminates the above mentioned dis Oxygen acting as an oxidizing agent is not required to advantages of the conventional processes. be pure. It may be diluted by at least one inert gas such Further, we found that a catalyst, in which at least as nitrogen, carbon dioxide and the like. Air is the most one alkali metal halide is added further in addition to the convenient oxygen source, since it is available any above mentioned four components, shows remarkably a 65 where, and not expensive. higher activity and a higher selectivity for a longer When acetic acid and butadiene are employed as the time. Its high activity and high selectivity are stable and starting materials, the main reaction proceeds as foll durable at high temperatures such as 160-200 C. lows: 4,131,743 3 4. Ratio of antimony/vanadium is not limited but is preferably in the range of from 0.1 to 10 in terms of | | | || H. H. H. H. gram atoms. =c-c- + 2CH3COOH + o->H--C=C--h Alkali metal carboxylates include lithium-, sodium-, H. H. potassium-, rubidium-, or caesium-carboxylate and the like. =o =o Alkali metal carboxylates can be fixed on the carrier CH CH in the ratio of 0.01-40 m mol per 1 g of carrier. Butadiene Acetic Acid 1,4-Diacetoxybutene-2 Alkali metal halides include fluorides, chlorides, bro O mides and iodides of lithium, sodium, potassium, rubid According to this invention, 1,4-diacetoxybutene-2 is ium and caesium such as lithium fluoride, sodium fluo produced with a high selectivity, and only a small ratio ride, potassium fluoride, rubidium fluoride, caesium of 3,4-diacetoxybutene-1 and monoacetoxy-1,3-butadi fluoride, lithium chloride, sodium chloride, potassium ene are produced as by-products, chloride, rubidium chloride, caesium chloride, lithium Preparing procedures for our catalysts can be carried 15 bromide, sodium bromide, potassium bromide, rubid out by the conventional methods. For example, the ium bromide, caesium bromide, lithium iodide, sodium metal compounds of the catalyst are dissolved in a sol iodide, potassium iodide, rubidium iodide and caesium vent. Into the resulting solution, a carrier is dipped. iodide. Thereafter the said components are fixed on the carrier Among these alkali metal halides, alkali metal chlo by distilling off the solvent and reduced by hydrogen or rides, especially caesium chloride, are preferable. an organic reducing agent in a gaseous phase or by the Alkali metal halides can be fixed on the carrier in the conventional reducing agents such as hydrazine, form ratio of 0.01-40 mmol per 1 g of carrier.
Recommended publications
  • Safety Data Sheet 1
    Safety Data Sheet 1. Waters Corporation EU: Waters Chromatography Europe B.V. FOR CHEMICAL EMERGENCY 34 Maple Street Mon Plaisir 12, Postbus 215 24 Hours per Day, 7 Days per Week Milford, MA 01757 U.S.A. 4870 AE Etten-Leur N B, The Netherlands Call CHEMTREC 1-800-424-9300 Tel: +1 508 478-2000 Tel: +31 76 508 1800 Outside USA & Canada (collect calls accepted) FAX: +1 508 872-1990 Waters Technologies Ireland Ltd +1 703-741-5970 www.waters.com Drinagh, Wexford, Ireland MSDS email inquiries: Tel: +353 53 91 60400 [email protected] 1. IDENTIFICATION Product: MassPREP™ Calibration Mix - DIOS Low Mass, PN 186002820 MSDS #: 715001038 Product Use: For laboratory use only. Date: Rev B, December 1, 2014 2. HAZARDS IDENTIFICATION: The calibration kit mixtures are not classified as hazardous per GHS and OSHA. Not dangerous according to the criteria set by the European Union (EU); not listed in Table 3.1 Annex VI of regulation 1272/2008/EU, as amended. The mixtures are not hazardous in the form in which they are placed on the market and under the normal and recommended conditions of storage and use. The small quantities supplied in our products are unlikely to cause severe or immediate health effects. However idodide compounds can be irritating to eyes and skin. Use only as directed and in accordance with safe laboratory practices. 3. COMPOSITION/INFORMATION ON INGREDIENTS: EXPOSURE LIMITS CAS EC % by OSHA ACGIH EU CHEMICAL INGREDIENT NAME NUMBER NUMBER Weight IOELV Polyethylene Glycol (PEG) 25322-68-3 203-989-9 100 NA NE NA Sodium Iodide 7681-82-5 231-679-3 99.9 NA 0.01 ppm NA (iodides) Cesium Iodide 7789-17-5 232-145-2 99.9 NA 0.01 ppm NA (iodides) Rubidium Iodide 7790-29-6 232-198-1 99.9 NA 0.01 ppm NA (iodides) Notes: Kit contains dried calibration mixtures: Polyethylene Glycol in a range of molecular weights (MW 200, 600, 1000); 50 ug of Sodium Iodide; 50 ug Rubidium Iodide; and 12.5 ug Cesium Iodide.
    [Show full text]
  • Crystallization and Preliminary X-Ray Analysis of Ocr, the Product of Gene 0.3 of Bacteriophage T7
    Edinburgh Research Explorer Crystallization and preliminary X-ray analysis of ocr, the product of gene 0.3 of bacteriophage T7 Citation for published version: Sturrock, SS, Dryden, DTF, Atanasiu, C, Dornan, J, Bruce, S, Cronshaw, A, Taylor, P & Walkinshaw, MD 2001, 'Crystallization and preliminary X-ray analysis of ocr, the product of gene 0.3 of bacteriophage T7', Acta Crystallographica Section D: Biological Crystallography, vol. 57, no. Part 11, pp. 1652-1654. https://doi.org/10.1107/S0907444901011623 Digital Object Identifier (DOI): 10.1107/S0907444901011623 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Acta Crystallographica Section D: Biological Crystallography Publisher Rights Statement: RoMEO green General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 crystallization papers Acta Crystallographica Section D Crystallization and preliminary X-ray analysis of Biological Crystallography ocr, the product of gene 0.3 of bacteriophage T7 ISSN 0907-4449 Shane S. Sturrock,a David T. F.
    [Show full text]
  • Halide Metathesis in Overdrive: Mechanochemical Synthesis of a Heterometallic Group 1 Allyl Complex
    Halide metathesis in overdrive: mechanochemical synthesis of a heterometallic group 1 allyl complex Ross F. Koby1, Nicholas R. Rightmire1, Nathan D. Schley1, Timothy P. Hanusa*1 and William W. Brennessel2 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2019, 15, 1856–1863. 1Department of Chemistry, Vanderbilt University, PO Box 1822, doi:10.3762/bjoc.15.181 Nashville, TN 37235, USA and 2X-ray Crystallographic Facility, B51 Hutchison Hall, Department of Chemistry, University of Rochester, Received: 01 March 2019 Rochester, NY 14627, USA Accepted: 18 July 2019 Published: 02 August 2019 Email: Timothy P. Hanusa* - [email protected] This article is part of the thematic issue "Mechanochemistry II". * Corresponding author Guest Editor: J. G. Hernández Keywords: © 2019 Koby et al.; licensee Beilstein-Institut. caesium; entropy; intermolecular forces; mechanochemistry; License and terms: see end of document. metathesis; potassium Abstract As a synthesis technique, halide metathesis (n RM + M'Xn → RnM' + n MX) normally relies for its effectiveness on the favorable formation of a metal halide byproduct (MX), often aided by solubility equilibria in solution. Owing to the lack of significant thermodynamic driving forces, intra-alkali metal exchange is one of the most challenging metathetical exchanges to attempt, espe- cially when conducted without solvent. Nevertheless, grinding together the bulky potassium allyl [KA']∞ (A' = [1,3- – (SiMe3)2C3H3] ) and CsI produces the heterometallic complex [CsKA'2]∞ in low yield, which was crystallographically character- ized as a coordination polymer that displays site disorder of the K+ and Cs+ ions. The entropic benefits of mixed Cs/K metal … … centers, but more importantly, the generation of multiple intermolecular K CH3 and Cs CH3 interactions in [CsKA'2]∞, enable an otherwise unfavorable halide metathesis to proceed with mechanochemical assistance.
    [Show full text]
  • The Structure and Stability of Simple Tri-Iodides
    THE STRUCTURE AND STABILITY OF SIMPLE TRI -IODIDES by ANTHONY JOHN THOMPSON FINNEY B.Sc.(Hons.) submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy UNIVERSITY OF TASMANIA HOBART OCTOBER, 1973 . r " • f (i) Frontispiece (reproduced as Plate 6 - 1, Chapter 1) - two views of a large single crystal of KI 3 .H20. The dimensions of this specimen were approximately 3.0 cm x 1.5 cm x 0.5 cm. • - - . ;or • - This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by another person, except where reference is made in the text of this thesis. Anthony John Finney Contents page Abstract (iv) Acknowledgements (vii) Chapter 1 - The Structure and Stability of Simple 1 Tri-iodides Chapter 2 - The Theoretical Basis of X-Ray Structural 32 Analysis Chapter 3 - The Crystallographic Program Suite 50 Chapter 4 - The Refinement of the Structure of NH I 94 4 3 Chapter 5 - The Solution of the Structure of RbI 115 3 Chapter 6 - The Solution of the Structure of KI 3 .1120 135 Chapter 7 Discussion of the Inter-relation of 201 Structure and Stability Bibliography 255 Appendix A - Programming Details 267 Appendix B - Density Determinations 286 Appendix C - Derivation of the Unit Cell Constants of 292 KI .H 0 3 2 Appendix D - I -3 force constant Calculation 299 Appendix E - Publications 311 ( iv) THE STRUCTURE AND STABILITY OF SIMPLE TRI-IODIDES Abstract In this work the simple tri-iodides are regarded as being those in which the crystal lattice contains only cations, tri-iodide anions and possibly solvate molecules.
    [Show full text]
  • Periodic Trends and the S-Block Elements”, Chapter 21 from the Book Principles of General Chemistry (Index.Html) (V
    This is “Periodic Trends and the s-Block Elements”, chapter 21 from the book Principles of General Chemistry (index.html) (v. 1.0M). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/ 3.0/) license. See the license for more details, but that basically means you can share this book as long as you credit the author (but see below), don't make money from it, and do make it available to everyone else under the same terms. This content was accessible as of December 29, 2012, and it was downloaded then by Andy Schmitz (http://lardbucket.org) in an effort to preserve the availability of this book. Normally, the author and publisher would be credited here. However, the publisher has asked for the customary Creative Commons attribution to the original publisher, authors, title, and book URI to be removed. Additionally, per the publisher's request, their name has been removed in some passages. More information is available on this project's attribution page (http://2012books.lardbucket.org/attribution.html?utm_source=header). For more information on the source of this book, or why it is available for free, please see the project's home page (http://2012books.lardbucket.org/). You can browse or download additional books there. i Chapter 21 Periodic Trends and the s-Block Elements In previous chapters, we used the principles of chemical bonding, thermodynamics, and kinetics to provide a conceptual framework for understanding the chemistry of the elements. Beginning in Chapter 21 "Periodic Trends and the ", we use the periodic table to guide our discussion of the properties and reactions of the elements and the synthesis and uses of some of their commercially important compounds.
    [Show full text]
  • Single Crystal X-Ray Structure Analyses of Thallides: Halide Incorporation and Mixed Alkali Sites in A8tl11x (A = K, Rb, Cs; X = Cl, Br) †
    Proceedings Single Crystal X-ray Structure Analyses of Thallides: Halide Incorporation and Mixed Alkali Sites in A8Tl11X (A = K, Rb, Cs; X = Cl, Br) † Stefanie Gärtner 1,2,* and Susanne Tiefenthaler1 1 Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany; [email protected] 2 Central Analytics (X-Ray Dept.), University of Regensburg, 93040 Regensburg, Germany * Correspondence: [email protected]; Tel.: +49-941-943-4446 † Presented at the 1st International Electronic Conference on Crystals, 21–31 May 2018. Available online: https://sciforum.net/conference/IECC_2018. Published: 21 May 2018 Abstract: A8Tl11 (A = alkali metal) compounds have been known since the investigations of Corbett et al. in 1995 and still are matter of current discussions as the compound includes one extra electron referred to the charge of the Tl117− cluster. Attempts to substitute the charge by incorporation of a halide atom succeeded for the lightest homologue of the group, Cs8Ga11Cl, and powder diffraction experiments for the heavier homologues also suggested the formation of analogous compounds. However, X-ray single crystal studies on A8Tl11X to prove this substitution and to provide a deeper insight into the influence on the thallide substructure have not yet been performed, probably due to severe absorption combined with air and moisture sensitivity for this class of compounds. In our contribution we present single crystal X-ray analyses of the new compounds Cs8Tl11Cl0.8, Cs8Tl11Br0.9 and Cs5Rb3Tl11Cl0.5. It is shown that a (partial) incorporation of halide can also be indirectly determined by examination of the Tl-Tl distances for low resolved data sets, e.g., for Cs5.7K2.3Tl11Cl?.
    [Show full text]
  • Substituted Polythiophenes from Highly Reactive Zinc Reagents
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications -- Chemistry Department Published Research - Department of Chemistry 1998 SUBSTITUTED POLYTHIOPHENES FROM HIGHLY REACTIVE ZINC REAGENTS Reuben D. Rieke Follow this and additional works at: https://digitalcommons.unl.edu/chemfacpub Part of the Analytical Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons, and the Other Chemistry Commons This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications -- Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. USO05756653A United States Patent 19 11 Patent Number: 5,756,653 Rieke 45 Date of Patent: May 26, 1998 54 SUBSTITUTED POLYTHIOPHENES FROM J.K. Gawronski, Tetrahedron Letters, 25, 2605 (1984). HGHLY REACTWE ZNC REAGENTS J. Grondin et al., J. Organomet. Chem, 362. 237 (1989). J.J. Habeeb et al., J. Organomet. Chem, 185, 117 (1980). 75) Inventor: Reuben D. Rieke, Lincoln, Nebr. B.H. Han et al., J. Org. Chem, 47, 5030 (1982). B.H. Han et al., J. of the Korean Chemical Society, 29,557 73) Assignee: Board of Regents of the University of (1985). Nebraska, Lincoln, Nebr. S.M. Hannicket al., J. Org. Chem, 48, 3833 (1983). S. W. Hansen et al., J. Fluorine Chem., 35, 415 (1987). 21 Appl. No.: 432,995 P.L. Heinze et al., J. Fluorine Chem., 31. 115 (1986). M. Isobe et al., Chem. Lett, 679 (1977). 22 Filed: May 2, 1995 R.A. Kjonaas et al., J. Org. Chem, 51,3993 (1986).
    [Show full text]
  • ESR of Alkali Metal Dinitrobenzene Salts in Dimethoxyetbane DME*
    400 LETTERS TO THE EDITOR J. CHEM. PHYS., VOL. 46, 1967 atoms give 38, of which six must be used for the to 0.18 G at -50°C. The potassium splitting decreases halogens leaving 32 for the metallic cluster. from 0.21 to 0.13 G, and the cesium splitting from 2.46 From the agreement between theory and observa­ to 2.04 G, over this temperature range. We have ob­ tion the conclusion is drawn that "electron in a box" served a similar temperature dependence for the alkali theory can be useful in understanding metal atom metal salts of o-dinitrobenzene and nitrobenzene. In clusters, its simplicity being particularly attractive. addition, for each alkali metal, the metal hyperfine splitting is of the same magnitude in the salts of '" This research was supported by the Chemical Directorate of the U.S. Air Force Office of Scientific Research, Grant No. m-dinitrobenzene, o-dinitrobenzene, and nitrobenzene. AF-AFOSR-245-65. On cooling the Cs salt, the hyperfine lines broaden, 1 F. A. Cotton and T. E. Haas, Inorg. Chern. 3,10 (1964). and at - 60°C a small nitrogen splitting of about 0.25 G 2 R. V. Lindsey, Jr., G. W. Parshall, and U. G. Stolberg, Inorg. Chern. 5, 109 (1966). can be resolved. The other nitrogen splitting is now 8.9 G, and even though two inequivalent nitrogens are observed at -60°C, we still observe an equivalent pair ESR of Alkali Metal Dinitrobenzene Salts of protons. in Dimethoxyetbane DME* Cation motion from one nitro group to the other, or cation motion which rotates the nitro groups in and Cm-YUAN LING AND JULIEN GENDELL out of the molecular plane, could account for these Department of Chemistry, University of Michigan facts.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Structural Evaluation and Solution Integrity of Alkali Metal Salt Complexes of the Manganese 12-Metallacrown-4 (12-MC-4) Structural Type
    6184 Inorg. Chem. 1996, 35, 6184-6193 Structural Evaluation and Solution Integrity of Alkali Metal Salt Complexes of the Manganese 12-Metallacrown-4 (12-MC-4) Structural Type Brian R. Gibney,† Hsin Wang, Jeff W. Kampf, and Vincent L. Pecoraro* Willard H. Dow Laboratories, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 ReceiVed April 4, 1996X The preparation of a variety of salt complexes of [12-MCMn(III)N(shi)-4] (1) provides the structural basis for the first quantitative investigation of the cation and anion selectivity of metallacrowns. The preparation, X-ray crystal - - structures, and solution integrities of crystalline salts (LiCl2)[12-MCMn(III)N(shi)-4] ([(LiCl2)‚1] ), (Li(trifluoro- + + acetate))[12-MCMn(III)N(shi)-4] ([(LiTFA)‚1]), (Li)[12-MCMn(III)N(shi)-4] ([(Li)‚1] ), (NaBr)2[12-MCMn(III)N(shi)-4] ([(NaBr)2‚1]), and (KBr)2[12-MCMn(III)N(shi)-4] ([(KBr)2‚1]) of the metallacrown [12-MCMn(III)N(shi)-4] (1) are described. Each salt complex of the metallacrown forms from a generic one-step, high-yield synthesis giving 1:1 metal:metallacrown adducts with lithium and 2:1 metal:metallacrown complexes with sodium and potassium ions. On the basis of synthetic preference, the trend for the cation affinity is Li+ > Na+ > K+ and that for anion - - - - - affinity is Cl > Br > TFA > F I3 . The 12-metallacrown-4 structural parameters compare favorably with those of 12-crown-4, an organic crown≈ ether, as well as with those of the topologically similar alkali metal complexes of porphyrin and phthalocyanine dianions, solidifying the structural analogy between metallacrowns and crown ethers.
    [Show full text]
  • Structural Chemistry of Halide Including Thallides A8tl11x1− N
    crystals Article Structural Chemistry of Halide including Thallides A8Tl11X1−n (A = K, Rb, Cs; X = Cl, Br; n = 0.1–0.9) Stefanie Gärtner 1,2,* ID , Susanne Tiefenthaler 1, Nikolaus Korber 1 ID , Sabine Stempfhuber 2 and Birgit Hischa 2 1 Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany; [email protected] (S.T.); [email protected] (N.K.) 2 Central Analytics, X-ray Crystallography Dept., University of Regensburg, 93040 Regensburg, Germany; [email protected] (S.S.); [email protected] (B.H.) * Correspondence: [email protected]; Tel.: +49-941-943-4446 Received: 23 July 2018; Accepted: 7 August 2018; Published: 10 August 2018 Abstract: A8Tl11 (A = alkali metal) compounds have been known since the investigations of Corbett et al. in 1995 and are still a matter of current discussions as the compound includes one extra 7− electron referred to the charge of the Tl11 cluster. Attempts to substitute this additional electron by incorporation of a halide atom succeeded in the preparation of single crystals for the lightest triel homologue of the group, Cs8Ga11Cl, and powder diffraction experiments for the heavier homologues also suggested the formation of analogous compounds. However, X-Ray single crystal studies on A8Tl11X to prove this substitution and to provide a deeper insight into the influence on the thallide substructure have not yet been performed, probably due to severe absorption combined with air and moisture sensitivity for this class of compounds. Here, we present single crystal X-Ray structure analyses of the new compounds Cs8Tl11Cl0.8, Cs8Tl11Br0.9, Cs5Rb3Tl11Cl0.5, Cs5.7K2.3Tl11Cl0.6 and K4Rb4Tl11Cl0.1.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,730,210 B2 Thompson Et Al
    USOO673021 OB2 (12) United States Patent (10) Patent No.: US 6,730,210 B2 Thompson et al. (45) Date of Patent: May 4, 2004 (54) LOW TEMPERATURE ALKALI METAL GB 3.71946 5/1932 ELECTROLYSIS GB 732906 6/1955 JP 5104.0041 B 4/1976 (75) Inventors: Jeffery S. Thompson, Wilmington, DE E. : A sE. (US); Howard M. Blank, Wilmington, JP 57OO7438 A 1/1982 DE (US); Walter John Simmons, JP 04.0881.88 A 3/1993 Martinsburg, WV (US); Oswald Robert Bergmann, Wilmington, DE (US) OTHER PUBLICATIONS Sodium. Its Manufacture. Properties and Uses, bv. Marshall (73)73) ASSignee : CompE. I. du Any Pont ". d Nine, y,d Sittig, Americans Chemical, PropSociety Monograph ,Series, Dy Rein s s hold Publishing Corp., New York (1956) (Book, not sub (*) Notice: Subject to any disclaimer, the term of this mitted). No month avail. patent is extended or adjusted under 35 Electrochemical Engineering, by C.L. Mantell, U.S.C. 154(b) by 138 days. McGraw-Hill Book Co., Inc., New York, Toronto, London (1960) (Book, not submitted). No month avail. Plating and Stripping of Sodium from a Room Temperature (21) Appl. No.: 10/046,485 1,2-Dimethyl-3-propylimidazolium Chloride Melt, J. Elec (22) Filed: Jan. 14, 2002 trochem. Soc. vol. 143, No. 7, pp. 2262-2266, Jul. 1996. O O Room-temperature Ionic liquids. Solvents for Synthesis and (65) Prior Publication Data catalysis, Thomas Welton, Chemical Reviews, 99, US 2002/0088719 A1 Jul. 11, 2002 2071-2083 (1999). No month avail. Room Temperature Inorganic “Quasi-Molten Salts' as Related U.S.
    [Show full text]