US5359094.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

US5359094.Pdf |||||||||||||I|| US005359094A United States Patent 19 11 Patent Number: 5,359,094 Teles et al. 45) Date of Patent: Oct. 25, 1994 (54) PREPARATION OF GLYCERYL 3,379,693 4/1968 Hostettler et al. .................. 549/229 CARBONATE 4,231,937 1/1980 Kao et al. ............ ... 549/229 4,314,945 2/1982 McMullen et al. ... 549/229 75 Inventors: Joaquim H. Teles, Ludwigshafen; 4,344,881 8/1982 Strege et al. ..... ... 549/229 Norbert Rieber, Mannheim; 4,483,994 11/1984 Jacobson ...... ... 549/229 Wolfgang Harder, Weinheim, all of 4,658,041 4/1987 Renga .......... ... 549/229 Fed. Rep. of Germany 4,835,289 5/1989 Brindapke ... ... 549/229 73) Assignee: BASF Aktiengesellschaft, 5,091,543 2/1992 Grey .................... ... 549/229 Ludwigshafen, Fed. Rep. of 5, 18,818, 6/1992 Delledonine et al. ............... 549/229 Germany FOREIGN PATENT DOCUMENTS (21) Appl. No.: 99,142 2222488 11/1972 Fed. Rep. of Germany. 2265228 12/1976 Fed. Rep. of Germany . 22 Filed: Jul. 29, 1993 1382313 1/1975 United Kingdom . 30 Foreign Application Priority Data Primary Examiner-Cecilia Tsang Aug. 5, 1992 (DE Fed. Rep. of Germany ....... 4225870 Attorney, Agent, or Firm-Keil & Weinkauf 51 Int. Cl. ............................................ CO7D 317/36 (57) ABSTRACT 52 U.S. C. .................................... 549/228; 549/229; 549/230 A process for the preparation of glyceryl carbonate by 58) Field of Search ........................ 549/228, 229, 230 causing glycerol to react with carbon monoxide and oxygen in the presence of a Group Ib, Group IIb, or (56) References Cited Group VIIIb catalyst as per the Periodic Table attem U.S. PATENT DOCUMENTS peratures ranging from 0 to 180° C. 2,856,413 10/1958 Malkemas et al. .................. 549/228 3,153,051 10/1964 Kormendy et al. ................. 549/229 4 Claims, No Drawings 5,359,094 1. 2 dium, palladium, osmium, iridium and/or platinum and PREPARATION OF GLYCERYL CARBONATE preferably salts of the elements copper, silver, mercury, iron, cobalt and/or nickel and more preferably salts of The present invention relates to a process for the the elements copper and/or mercury. preparation of glyceryl carbonate by the reaction of Suitable salts are sulfates, chlorides, bromides and glycerol with carbon monoxide and oxygen in the pres trifluoroacetates and preferably chlorides, bromides ence of Group Ib, Group IIb, and Group VIIIb cata and trifluoroacetates. Suitable copper catalysts for use lysts as per the Periodic Table and the conversion in the process of the invention are generally simple thereof to glycidol at elevated temperatures over alkali copper salts such as copper halides, copper(I) sulfate, metal salts and/or alkaline earth metal salts. O copper (alkoxy)halides and copper(I) trifluoroacetate DE-A 2,222,488 and DE-A 2,265,228 describe pro and preferably copper(I) halides such as copper(I) chlo cesses for the preparation of ethylene carbonates from ride and copper(I) bromide and copper(I) sulfate and glycols using CO/O2 in the presence of Group Ib, copper(I) trifluoroacetate. Group IIb, and Group VIIIb catalysts. Suitable inert solvents are tertiary amines such as U.S. Pat. No. 2,856,413 describes the dissociation of 15 C3-C20tertiary amines, e.g., trimethylamine, pyridine, glyceryl carbonate to produce glycidol over phos quinoline, Cl-, 3-, and y-picolines and preferably pyri phates, pyrophosphates, chlorides, bromides, acetates, dine and y-picoline, nitriles such as acetonitrile, propio bicarbonates, and carbonates of alkali metals and alka nitrile and benzonitrile, nitro compounds such as nitro line earth metals. benzene and preferably benzonitrile or esters such as It is thus an object of the present invention to provide 20 C2-C20alkyl carboxylates, e.g., methyl acetate, ethyl a process which makes it possible to prepare glyceryl acetate, ethyl benzoate and preferably ethyl benzoate carbonate starting from glycerol and to find means for and lactones such as butyrolactone, ureas such as tetra the conversion thereof to glycidol. methyl urea and carbonates such as propylene carbon Accordingly, we have found a novel and improved ate. process for the preparation of glyceryl carbonate, 25 The conversion of the glyceryl carbonate to glycidol wherein glycerol is caused to react with carbon monox can be carried out at temperatures ranging from 100 to ide and oxygen in the presence of a Group Ib, IIb, or 300 C. and preferably from 125 to 275 C. and more VIIIb catalyst as per the Periodic Table attemperatures preferably from 210 to 250° C. and pressures of from ranging from 0 to 150° C. and the conversion thereof to 0.001 to 5 bar and preferably from 0.005 to 2 bar and glycidol by reaction at temperatures ranging from 80' 30 more preferably from 0.01 to 1 bar over alkali metal to 300 C. and pressures of from 0.001 to 5 bar over salts and/or alkaline earth metal salts, for example, in alkali metal salts and/or alkaline earth metal salts. distillation apparatus. The process of the invention may be carried out as Suitable salts of alkali metals and alkaline earth metals follows: are halides such as fluorides, chlorides, bromides, and The reaction can be started by feeding a gaseous 35 iodides, phosphates, monohydrogenphosphates, dihy mixture of carbon monoxide and oxygen into the reac drogen phosphates, pyrophosphates, sulfates, borates, tion mixture. The composition of the gas mixture can be acetates, carbonates and bicarbonates and preferably varied as desired within wide limits. Air can be used fluorides, iodides, and sulfates and more preferably instead of oxygen if desired, for example, or the gas fluorides, sulfates and borates. Specific examples mixture can be diluted, if desired, with an inert gas such thereof are: as nitrogen, argon or carbon dioxide. Generally speak lithium fluoride, sodium fluoride, potassium fluoride, ing, a CO:O2 molar ratio of from 100:1 to 0.5:1 and rubidium fluoride, cesium fluoride, beryllium fluo preferably from 50:1 to 1:1 and more preferably from ride, magnesium fluoride, calcium fluoride, stron 20:1 to 1.5:1 is used. tium fluoride, barium fluoride, lithium chloride, The reaction gases carbon monoxide and oxygen are 45 sodium chloride, potassium chloride, rubidium introduced into the liquid present in the reactor. To chloride, cesium chloride, beryllium chloride, mag ensure better intermixing and dispersion of the reaction nesium chloride, calcium chloride, strontium chlo gases in the reactor, it is preferred to use additional ride, barium chloride, lithium bromide, sodium mechanical stirring means. Suitable types of reactor are bromide, potassium bromide, rubidium bromide, stirred boilers or stirred autoclaves or bubble reactors 50 cesium bromide, beryllium bromide, magnesium which are advantageously capable of being heated and bromide, calcium bromide, strontium bromide, which may also be equipped with stirring means, if barium bromide, lithium iodide, sodium iodide, desired. potassium iodide, rubidium iodide, cesium iodide, The reaction can be advantageously carried out beryllium iodide, magnesium iodide, calcium io under elevated pressure, generally under a pressure of 55 dide, strontium iodide, barium iodide, lithium sul from 1 to 100 bar and preferably from 2 to 10 bar and fate, sodium sulfate, potassium sulfate, rubidium more preferably from 2.5 to 5 bar, optionally in the sulfate, cesium sulfate, beryllium sulfate, magne presence of an inert solvent. The reaction temperature sium sulfate, calcium sulfate, strontium sulfate, generally ranges from 0 to 180° C. and preferably from barium sulfate, lithium borate, sodium borate, po 80' to 150° C. and more preferably from 100 to 140° C. 60 tassium borate, rubidium borate, cesium borate, The reaction may be carried out continuously or beryllium borate, magnesium borate, calcium bo batchwise. In the preferred continuous mode of opera rate, strontium borate, barium borate, lithium ace tion, the reaction gases are usually used in excess and tate, sodium acetate, potassium acetate, rubidium the unconverted gas is circulated. acetate, cesium acetate, berylium acetate, magne Suitable catalysts are those containing elements in 65 sium acetate, calcium acetate, strontium acetate, Groups Ib, IIb, and VIIIb in the Periodic Table such as barium acetate, lithium carbonate, sodium carbon salts of the elements copper, silver, gold, zinc, cad ate, potassium carbonate, rubidium carbonate, ce mium, mercury, iron, cobalt, nickel, ruthenium, rho sium carbonate, beryllium carbonate, magnesium 5,359,094 3 4. carbonate, calcium carbonate, strontium carbonate, rupted and the effluent subjected to GC analysis. The barium carbonate, lithium phosphate, sodium phos conversion was 96%, and glyceryl carbonate was the phate, potassium phosphate, rubidium phosphate, only detectable product. Comparable results would be cesium phosphate, beryllium phosphate, magnesium possible using butyrolactone, tetramethyl urea, N,N- phosphate, calcium phosphate, strontium phos dimethylimidazol-2-one, or propylene carbonate as sol phate, and barium phosphate and preferably lith vent. ium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, cesium fluoride, beryllium fluo EXAMPLE 3 ride, magnesium fluoride, calcium fluoride, stron Preparation of Glycidol tium fluoride, barium fluoride, lithium iodide, so 10 dium iodide, potassium iodide, rubidium iodide, 15g of glyceryl carbonate and 1.5g of catalyst were cesium iodide, berylium iodide, magnesium iodide, placed in a small-size distillation unit and evacuated to calcium iodide, strontium iodide, barium
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • The Heat of Combustion of Beryllium in Fluorine*
    JOURNAL OF RESEARCH of the National Bureau of Standards -A. Physics and Chemistry Vol. 73A, No.3, May- June 1969 The Heat of Combustion of Beryllium in Fluorine* K. L. Churney and G. T. Armstrong Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234 (February 11, 1969) An expe rimental dete rmination of the e ne rgies of combustion in Auorine of polyte traAuoroethylene film and Q.o wder and of mixtures of beryllium with polytetraAuoroethyle ne gi ves for reacti on ( 1)f).H ~.or= - 1022.22 kJ 111 0 1- 1 (- 244.32 kcal mol - I) wit h a n ove ra ll precision of 0.96 kJ 111 0 1- 1 (0. 23 kcal 111 0 1- 1 ) at the 95 pe rce nt confid ence limit s. The tota l un cert a int y is estimated not to exceed ±3.2 kJ mol- I (±0.8 kcal mol - I). The measureme nts on polytetraflu oroeth yle ne giv e for reaction (2a) and reacti on (2 b) f).H ~. o c =- 10 369. 7 and - 10392.4 Jg- I, respective ly. Overall precisions e xpressed at the 95 pe rcent confide nce Ijmits are 3.3 and 6.0 Jg- I, respective ly. Be(c)+ F,(g) = BeF2(a morphous) (1) C,F.(polym e r powd er) + 2F2(g) = 2CF.(g) (2a) C2F.(polyme r film ) + 2F2 (g) = 2CF.(g) (2b) Be2C and Be metal were observed in a small carbonaceous residue from the co mbustion of the beryll iul11 -polytetraAuoroethylene mixtures.
    [Show full text]
  • Reducing Mg Anode Overpotential Via Ion Conductive Surface Layer Formation by Iodine Additive
    COMMUNICATION Electrolytes www.advenergymat.de Reducing Mg Anode Overpotential via Ion Conductive Surface Layer Formation by Iodine Additive Xiaogang Li, Tao Gao, Fudong Han, Zhaohui Ma, Xiulin Fan, Singyuk Hou, Nico Eidson, Weishan Li,* and Chunsheng Wang* Another challenge is the development Electrolytes that are able to reversibly deposit/strip Mg are crucial for of electrolytes that can effectively utilize rechargeable Mg batteries. The most studied complex electrolytes based an Mg metal anode. Extensive effort has on Lewis acid-base chemistry are expensive, difficult to be synthesized, and been put in to develop electrolytes capable of reversibly depositing/stripping Mg. show limited anodic stability. Conventional electrolytes using simple salts Most work has focused on complex elec- such as Mg(TFSI)2 can be readily synthesized, but Mg deposition/stripping in trolytes that allow fast and reversible Mg these simple salt electrolytes is accompanied by a large overpotential due to deposition/stripping. Such electrolytes the formation of a surface layer on the Mg metal with a low Mg ion conduc- were first proposed by Aurbach’s group [8] tivity. Here the overpotential for Mg deposition/stripping in a simple salt, in 2000, and subsequently they devel- oped the all phenyl complex showing high Mg(TFSI) -1,2-dimethoxyethane (DME), electrolyte is significantly reduced by 2 anodic stability.[9] Later, a non-nucleophilic −3 adding a small concentration of iodine (≤50 × 10 M) as an additive. Mecha- electrolyte, Mg-HMDS, was developed by nism studies demonstrate that an Mg ion conductive solid MgI2 layer is Muldoon and co-workers, and Fichtner formed on the surface of the Mg metal and acts as a solid electrolyte inter- and co-workers for Mg/S batteries.[10,11] To eliminate the organic Grignard species in face.
    [Show full text]
  • Safety Data Sheet 1
    Safety Data Sheet 1. Waters Corporation EU: Waters Chromatography Europe B.V. FOR CHEMICAL EMERGENCY 34 Maple Street Mon Plaisir 12, Postbus 215 24 Hours per Day, 7 Days per Week Milford, MA 01757 U.S.A. 4870 AE Etten-Leur N B, The Netherlands Call CHEMTREC 1-800-424-9300 Tel: +1 508 478-2000 Tel: +31 76 508 1800 Outside USA & Canada (collect calls accepted) FAX: +1 508 872-1990 Waters Technologies Ireland Ltd +1 703-741-5970 www.waters.com Drinagh, Wexford, Ireland MSDS email inquiries: Tel: +353 53 91 60400 [email protected] 1. IDENTIFICATION Product: MassPREP™ Calibration Mix - DIOS Low Mass, PN 186002820 MSDS #: 715001038 Product Use: For laboratory use only. Date: Rev B, December 1, 2014 2. HAZARDS IDENTIFICATION: The calibration kit mixtures are not classified as hazardous per GHS and OSHA. Not dangerous according to the criteria set by the European Union (EU); not listed in Table 3.1 Annex VI of regulation 1272/2008/EU, as amended. The mixtures are not hazardous in the form in which they are placed on the market and under the normal and recommended conditions of storage and use. The small quantities supplied in our products are unlikely to cause severe or immediate health effects. However idodide compounds can be irritating to eyes and skin. Use only as directed and in accordance with safe laboratory practices. 3. COMPOSITION/INFORMATION ON INGREDIENTS: EXPOSURE LIMITS CAS EC % by OSHA ACGIH EU CHEMICAL INGREDIENT NAME NUMBER NUMBER Weight IOELV Polyethylene Glycol (PEG) 25322-68-3 203-989-9 100 NA NE NA Sodium Iodide 7681-82-5 231-679-3 99.9 NA 0.01 ppm NA (iodides) Cesium Iodide 7789-17-5 232-145-2 99.9 NA 0.01 ppm NA (iodides) Rubidium Iodide 7790-29-6 232-198-1 99.9 NA 0.01 ppm NA (iodides) Notes: Kit contains dried calibration mixtures: Polyethylene Glycol in a range of molecular weights (MW 200, 600, 1000); 50 ug of Sodium Iodide; 50 ug Rubidium Iodide; and 12.5 ug Cesium Iodide.
    [Show full text]
  • WO 2015/084416 Al 11 June 2015 (11.06.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/084416 Al 11 June 2015 (11.06.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C09K 8/05 (2006.01) C07C 51/42 (2006.01) kind of national protection available): AE, AG, AL, AM, COW 17/00 (2006.01) E21B 21/06 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 13/076445 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 19 December 2013 (19. 12.2013) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/910,976 3 December 2013 (03. 12.2013) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: CABOT CORPORATION [US/US]; Two GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, Seaport Lane, Suite 1300, Boston, MA 01220 (US).
    [Show full text]
  • WO 2015/025175 Al 26 February 2015 (26.02.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/025175 Al 26 February 2015 (26.02.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C09K 5/06 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/GB2014/052580 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 22 August 2014 (22.08.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13 15098.2 23 August 2013 (23.08.2013) GB (84) Designated States (unless otherwise indicated, for every (71) Applicant: SUNAMP LIMITED [GB/GB]; Unit 1, Satel kind of regional protection available): ARIPO (BW, GH, lite Place, Macmerry, Edinburgh EH33 1RY (GB). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (72) Inventors: BISSELL, Andrew John; C/o SunAmp, Unit TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 1, Satellite Place, Macmerry, Edinburgh EH33 1RY (GB).
    [Show full text]
  • Barium Trifluoromethanesulfonate
    CXBA083 - BARIUM TRIFLUOROMETHANESULFONATE BARIUM TRIFLUOROMETHANESULFONATE Safety Data Sheet CXBA083 Date of issue: 07/28/2017 Version: 1.0 SECTION 1: Identification 1.1. Product identifier Product name : BARIUM TRIFLUOROMETHANESULFONATE Product code : CXBA083 Product form : Substance Physical state : Solid Formula : C2BaF6O6S2 Synonyms : BARIUM TRIFLATE METHANESULFONIC ACID, 1,1,1-TRIFLUORO-, BARIUM SALT Chemical family : METAL COMPOUND 1.2. Recommended use of the chemical and restrictions on use Recommended use : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Skin corrosion/irritation Category 2 H315 Serious eye damage/eye irritation Category 2 H319 Full text of H statements : see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS07 Signal word (GHS-US) : Warning Hazard statements (GHS-US) : H315 - Causes skin irritation H319 - Causes serious eye irritation Precautionary statements (GHS-US) : P280 - Wear protective gloves/protective clothing/eye protection/face protection P264 - Wash hands thoroughly after handling P302+P352 - If on skin: Wash with plenty of soap and water P332+P313 - If skin irritation occurs: Get medical advice/attention P305+P351+P338 - IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • A New Gamma Camera for Positron Emission Tomography
    INIS-mf—11552 A new gamma camera for Positron Emission Tomography NL89C0813 P. SCHOTANUS A new gamma camera for Positron Emission Tomography A new gamma camera for Positron Emission Tomography PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE TECHNISCHE UNIVERSITEIT DELFT, OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF.DRS. P.A. SCHENCK, IN HET OPENBAAR TE VERDEDIGEN TEN OVERSTAAN VAN EEN COMMISSIE, AANGEWEZEN DOOR HET COLLEGE VAN DECANEN, OP DINSDAG 20 SEPTEMBER 1988TE 16.00 UUR. DOOR PAUL SCHOTANUS '$ DOCTORANDUS IN DE NATUURKUNDE GEBOREN TE EINDHOVEN Dit proefschrift is goedgekeurd door de promotor Prof.dr. A.H. Wapstra s ••I Sommige boeken schijnen geschreven te zijn.niet opdat men er iets uit zou leren, maar opdat men weten zal, dat de schrijver iets geweten heeft. Goethe Contents page 1 Introduction 1 2 Nuclear diagnostics as a tool in medical science; principles and applications 2.1 The position of nuclear diagnostics in medical science 2 2.2 The detection of radiation in nuclear diagnostics: 5 standard techniques 2.3 Positron emission tomography 7 2.4 Positron emitting isotopes 9 2.5 Examples of radiodiagnostic studies with PET 11 2.6 Comparison of PET with other diagnostic techniques 12 3 Detectors for positron emission tomography 3.1 The absorption d 5H keV annihilation radiation in solids 15 3.2 Scintillators for the detection of annihilation radiation 21 3.3 The detection of scintillation light 23 3.4 Alternative ways to detect annihilation radiation 28 3-5 Determination of the point of annihilation: detector geometry,
    [Show full text]
  • Net Ionic Equation Worksheet Answers
    Honors Chemistry Name__________________________________ Period_____ Net Ionic Equation Worksheet READ THIS: When two solutions of ionic compounds are mixed, a solid may form. This type of reaction is called a precipitation reaction, and the solid produced in the reaction is known as the precipitate. You can predict whether a precipitate will form using a list of solubility rules such as those found in the table below. When a combination of ions is described as insoluble, a precipitate forms. There are three types of equations that are commonly written to describe a precipitation reaction. The molecular equation shows each of the substances in the reaction as compounds with physical states written next to the chemical formulas. The complete ionic equation shows each of the aqueous compounds as separate ions. Insoluble substances are not separated and these have the symbol (s) written next to them. Water is also not separated and it has a (l) written next to it. Notice that there are ions that are present on both sides of the reaction arrow –> that is, they do not react. These ions are known as spectator ions and they are eliminated from complete ionic equation by crossing them out. The remaining equation is known as the net ionic equation. For example: The reaction of potassium chloride and lead II nitrate Molecular Equation: 2KCl (aq) + Pb(NO3)2 (aq) -> 2KNO3 (aq) + PbCl2 (s) + - 2+ 3– + – Complete Ionic Equation: 2K (aq) + 2Cl (aq) + Pb (aq) + 2NO (aq) -> 2K (aq) + 2NO3 (aq) + PbCl2 (s) - 2+ Net Ionic Equation: 2Cl (aq) + Pb (aq) -> PbCl2 (s) Directions: Write balanced molecular, ionic, and net ionic equations for each of the following reactions.
    [Show full text]
  • Introduetion
    THE CONCENTFL4TION OF RADIUM AND MESO- THORIUM BY FRACTIONAL CRYSTALLIZATION* BY JOHN I,. NIERMAN Introduetion MarkwaldlO and Soddyl' have shown independently that mesothorium is absolutely identical in chemical nature with radium and cannot be separated therefrom.** In consequence all radium separated from uranium minerals containing thorium, contains also the mesothorium in the mineral, and all preparations of mesothorium contain the radium that is present in the mineral from which the thorium is derived. In the extraction and recovery of the minute quantities of mesothorium and radium present in radioactive minerals, these elements become associated with barium and follow the barium throughout the process. The refining of mesothorium and radium then consists in separating these elements from barium, the method generally followed being fractional crystallization of the barium solution, first as chloride, and later as bromide. The mesothorium and radium continue to be enriched in the crystal fractions, and reduced in the succes- sive mother liquors. t In practice, l2 a fair concentration of acid is maintained throughout the chloride and bromide systems, for the reason ' that the factor of enrichment of mesothorium radium chloride from barium chloride and also of mesothorium radium bromide from barium bromide is regarded as more favorable in acid than in neutral solutions. While it has been shown3 that the crystallization factor is higher for bromides than for chlorides, the effect of the acidity of the solutions on the progress of * Abstract of a thesis submitted in partial fulfilment of the requirements for the degree of Master of Arts in the Graduate, School of the University of Missouri, August, 1919.
    [Show full text]
  • Effects of Intravenous Injections of Radium Bromide. by R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central EFFECTS OF INTRAVENOUS INJECTIONS OF RADIUM BROMIDE. BY R. BURTON-OPITZ AND GUSTAVE M. MEYER. (From the Laboratories of Physiology and Physiological Chemistry of Colum- bia University, at the College of Physicians and Surgeons, New York.) PLATE XVI. The present study was undertaken with a view of determining in a general way the effects of intravenous administration of ra- dium upon the circulation and respiration. The problem was sug- gested to us by Dr. William J. Gies, under whose guidance a number of researches, dealing with the more extensive question of the action of radium upon animal and vegetable cells, have re- cently been carried on in the laboratories of Columbia University.1 For the radium used in these experiments we are greatly in- debted to Mr. Hugo Lieber. It was supplied to us in the form of the bromide, in preparations of 240 , iooo, and io,ooo activities. The strength of the solution used was the same in all cases. It contained 45 rag. of the dry substance in 25 c. c. of the solvent; each cubic centimeter of the solution, therefore, contained 1.8 rag. of the radium preparation. The amount of the radium present varies directly with the ra- dio-activity. Preparations of ~,5oo,ooo activity are said to repre- sent pure radium bromide3 Taking this figure as the standard of purity, ~ .8 rag. of the radium preparation of io,ooo activity contained approximately only o.o~ 26 mg., the same quantity of the preparation of ~ooo activity contained o.ooi26 rag.
    [Show full text]
  • Abstract Spectroscopic Characterization of Fluorite
    ABSTRACT SPECTROSCOPIC CHARACTERIZATION OF FLUORITE: RELATIONSHIPS BETWEEN TRACE ELEMENT ZONING, DEFECTS AND COLOR By Carrie Wright This thesis consists of two separate papers on color in fluorite. In the first paper, synthetic fluorites doped with various REEs (10-300 ppm) were analyzed using direct current plasma spectrometry, optical absorption spectroscopy, fluorescence spectrophotometry, and electron paramagnetic resonance spectroscopy before and after receiving 10-25 Mrad of 60Co gamma irradiation. The combined results of these techniques indicate that the irradiation-induced color of the Y-, Gd-, La- and Ce-doped samples are the result of a REE-associated fluorine vacancy that traps two electrons. Divalent samarium may be the cause of the irradiation-induced green color of the Sm- doped sample. In the second paper, fluorite crystals from Bingham, NM, Long Lake, NY, and Westmoreland, NH were similarly investigated to determine the relationship between sectorally zoned trace elements, defects, and color. The results indicate causes of color similar to those in the synthetic samples with the addition of simple F-centers. SPECTROSCOPIC CHARACTERIZATION OF FLUORITE: RELATIONSHIPS BETWEEN TRACE ELEMENT ZONING, DEFECTS AND COLOR A Thesis Submitted to the Faculty of Miami University In partial fulfillment of The requirements for the degree of Master of Science Department of Geology By Carrie Wright Miami University Oxford, OH 2002 Advisor_____________________ Dr. John Rakovan Reader______________________ Dr. Hailiang Dong TABLE OF CONTENTS Chapter 1: Introduction to the cause of color in fluorite 1 Manuscript 1-Chapter 2 29 “Spectroscopic investigation of lanthanide doped CaF2 crystals: implications for the cause of color” Manuscript 2-Chapter 3 95 “Spectroscopic characterization of fluorite from Bingham, NM, Long Lake, NY and Westmoreland, NH: relationships between trace element zoning, defects and color ii TABLE OF FIGURES Chapter 1 Figures 21 Figure 1a.
    [Show full text]