Intel I3 Processor

Total Page:16

File Type:pdf, Size:1020Kb

Intel I3 Processor Intel I3 Processor Arpit Section- E2E43, roll no.-A34, Reg. no.-11106840 School of Electronics and communication Lovely professional university, phagwara, Punjab Abstract-This term paper on Intel i3 processor is version of their processors are still considered the to define the role played by the Intel processor inin best. Some of the famous processor are from the the field of data manipulation and graphic display. latest group of the family ‗core‘. Intel core is the This term paper present report on the architecture processors i3 family which is famous for its latest of i3 processor made by Intel and improvement in revolutionary structure and integrated architecture it from predecessor. which also provide the advantage of the parallel computing. It‘s also wonderful in providing the 1-1- Introduction users with the excellent graphical user interfaces. Intel was founded in 1968 and its first product was Intel 3101 produced in 1969, Intel first product was world‘s‘s first solid state memory device with 16 x 4-bit SRAM. Intel 1103 came in 1970 was world first DRAM product with 1K-bit PMOS and it was used in HP 9800 series computers. By 1972, it became world bestselling memory chip, defeating Magnetic memory The Intel i3 processor with Intel HD Graphics offers an unparalleled computing Experience. This Intel MCS Family revolutionary new architecture allows for new MCS Family Intel CPU levels of intelligent performance and advanced media and graphics features — all while being MCS-4 4004 energy efficient. The processor include an MCS-40 4040 Integrated Memory Controller (IMC) making them monolithic processors. The IMC and the MCS-8 8008 multiple processor cores are connected by the new MCS-80 8080 Quick Path Interconnect (QPI). 22-History MCS-85 8085 Intel is the world‘s biggest company which is MCS-86 8086, 8088, 80186, 80188, famous for manufacturing the best processors ever 80286, 80386, 80486, created in processor history. Every time they have Pentiums introduced something interesting and new in their processors and devices. They introduced the series Intel 4004 produced in 1971 was world first of processors in 1940s and till now the advanced ―general purpose‖ micro-processor and its Lead ii designers were – – Ted Hoff, Federico Faggin, Stan implementation, lack of cache, bit-aligned Mazor, and Masatoshi Shim. Intel 4004 have variable length instructions. It Failed: ¼ Word width: 4-bit, 2300 transistors, Clock performance of 286 as of 1982. Then in 1980 Intel frequency: 108KHz/500/740.It have 46 8087 came into picture with First floating-point instructions, Registers: 16 x 4-bit, Stack: 12 x 4- coprocessor for 8086 lines, its Performance was: bit with Address space of 1Kb for program and +20% ~ 5x; it have Floating registers form 8-level 4Kb for data. In1972 came the Intel 8008 - world stack: st0~st7 work in two mode: 8-bit/16-bit first 8-bit microprocessor whose designers were – – follow IEEE 754 standard. Then follows: Intel Ted Hoff, Stan Mazor, Hal Feeney, and Federico 80287 – – 16-bit and Intel 80387, 80487 – – 32-bit. Faggin. Intel 8008 have word width: 8-bit, Clock Starting from Intel 80486DX, Pentium and later frequency: 800 KHz with 3500 transistors, 4848 model has on chip floating point unit and ―DX‖ instructions, Registers: 6 x 8-bit, Stack: 17 x 7-bit was used for on-chip FP capability. and Address space: 16KB. In 1974 came the Intel Intel introduced 80386 processor in 1985 it was 8080 whose Lead designers were – – Feder1ico Intel first X86 32-bit flat memory model with Faggin, Masatoshi Shima and Stan Mazor. "The 4GB space. 80386 instruction set, programming 8080 really created the microprocessor market‖. It model, and binary encodings were the common was used in MITS Altair 8800 in 1975 and termed denominator for all IA-32, i386, x86 series. It has asas ―Microcomputer‖. It have Word width: 8-bit Paging to support VM, hardware debugging, first with 4500 transistors, Clock frequency: 2M- use of pipeline it wasn‘t necessarily a big 3MHz and Address space: 64KB, Registers: 6 x 8- performance improvement over 80286,it contain bit, IO ports and Stack pointer. 275,000 transistors with clock frequency of Intel 16-bit Microprocessors came in 1978 when 12MHz initially, later 33MHz and 11.4MIPS. Intel launched Intel 8086, first x86 family Compaq: first PC using 80386, legitimize PC microprocessor with Source compatibility with ―clone‖ industry.. 80xx lines and its Followers were: 8088 (1979), In 1985 Intel produced i960. Intel 80960, Intel 80186 (1982). It have 16-bit: all registers, internal was first RISC (Reduced instruction set and external buses with 29,000 transistors, 5MHz computing) microprocessor it was the Best-selling of clock frequency, 20-bit address bus, 4MB embedded microcontroller at the time. It was address space and 16-bit register - segmentation intended to replace 80286/i386, and for UNIX programming. IBM PC in 1981 used 8088 systems, it used Berkeley RISC, flat memory processor. Then came the Intel 80286 in 1982 model, superscalar structure but Dropped after with 134,000 transistors with clock frequency of acquiring Strong ARM in late 90‘s when its 6M-8MHz and 1.5 MIPS it was used by IBM Price/performance/power remain no longer PC/AT in 1984 it was Designed for multi-tasking competitive and team went to design another i386 wwith MMU ―protection mode‖. Intel i432, Intel processor. first 32- bit microprocessor design it was ―intel Advanced Processor architecture‖. Started in 1975 Intel 80486 was another processor introduced by as the 8800, follow-on to the existing 8008 and Intel in 1989 with Improvements in Atomic instructions, On-die 8KB SRAM cache, tightly 8080 CPUs, intended purely 32-bit, to be Intel coupled pipelining: 1 IPC with clock frequency of backbone in the 1980s, to support Ada, LISP, 50MHz and 40MIPS on average and 50MIPS at advanced computations, the HW supports to all peak it has Integrated FPU (no longer need x87). the good terms with Object Oriented It was first chip which exceeds 1M transistors. programming and capability-based addressing, Now the competitor were more manufacturers, multi-tasking and IPC, Multiprocessing, Fault AMD Am5x86, Cyrix Cx5x86, and Motorola tolerance. But the Problems with it was two-chip 68040 in Macintosh Quadra. iiii In 1989 Intel presented new masterpiece Intel i860 rate, non-blocking, SMP advantage. Dies had to with entirely new RISC microprocessor, high- be bonded early, it had Low yield rate and high performance FP operations it have 32-bit ALU price it had36-bit address bus (PAE), low 16-bit core, and 64-bit FPU (adder, multiplier, GPU) performance but Performance was better than best along with Register sets: 32 x 32-bit integer, 16 x RISC with SPECint95. 64-bit FP. It GPU uses FP registers as 8 x 128-bit, Pentium II by Intel in 1997 had 7.5M transistors with iSIMD (Influenced MMX), 64/128-bit buses, and Slot replaced Socket with a daughterboard, fetch 2 x 32-bit instructions. It was dropped in solved the issues of off-package L2 cache in mid-90 because Compiler support was mission Pentium Pro with half CPU clock. It implemented impossible and Context switch took 62 - 2000 MMX, improved 16-bit performance. Celeron and cycles which was Unacceptable for GP CPU, it Xeon was launched in 1998, Celeron: no on-die was Incompatible with X86, Confusing the market L2-cache. And Pentium II Xeon: L2-cache, with Intel 486 CISC. It was being used in some 100MT/s, SMP. Intel launched Pentium III in parallel computers and graphic workstations. 1999 it introduced SSE for FP and vector processing it had on-die L2 cache with .18um Coppermine. Intel then Streaming SIMD Extensions in 1999 in which MMX uses FP registers for SIMD data, and has only integer Intel introduced Pentium in SIMD, SSE introduces separate XMM registers. 1993. Pentium means ―5‖, because court Intel Xscale came in light in 1997 when Intel disallowed number based trademark, later acquired Strong ARM from DEC, 1997 to replace Pentium was used in many Intel processors. P5 the RISC processors i860 and i960. It had Strong micro-architecture first used X86 superscalar ARM implemented ARMv4 ISA. It‘s Successor, micro-architecture with dual integer pipelines, Xscale implemented ARMv5 with Seven-stage separate D/I caches, 64-bit external data-bus and integer and an eight-stage memory super pipelined 60M-300MHz (at 75 MHz -126.5 MIPS) .It‘s microarchitecture, 32KB data cache and 32KB Competitors were X86: AMD K5/K6, Cyrix 6x86, instruction cache.• Xscale processor family had etc. from Pentium processor Intel started to use a Application Processors (with the prefix PXA), I/O cooler. Processors (with the prefix IOP), Network In 1996 Intel launched MMX which has SIMD Processors (with the prefix IXP), Control Plane instruction set, introduced with P5 it has ―Matrix Processors (with the prefix IXC).• Intel sold Math Extensions‖, mainly for graphics and 8 x 64- Xscale PXA business to Marvell in 2006. bit integer registers MM0 ~ MM7, alias of FPU Intel Itanium was in limelight in 2001 which was ST0 ~ ST7. Integer was not enough soon due to originated from HP, EPIC: explicitly parallel gfx cards. Intel introduced SSE in 1999 and instruction computing. All believed EPIC would started with Pentium-III it have new XMM supplant RISC and CISC. Compaq and SGI gave register set with 70 new instructions. It has "Intel up Alpha and MIPS, Microsoft and SUN etc. Wireless MMX Technology" and then Intel developed Operating system for it and in 1999, Pentium Pro in 1995, P6 (or i686) was completely Intel named it Itanium it had Speculation, new apart from Pentium (P5) it had no.
Recommended publications
  • Floating-Point Package for Intel 8008 and 8080 Microprocessors
    UCRL-51940 FLOATING-POINT PACKAGE FOR INTEL 8008 AND 8080 MICROPROCESSORS Michael D. Maples October 24, 1975 Prepared for U.S. Energy Research& Development Administration under contract No. W-7405-Eng-48 I_AV~=IENCE I_IVEFIMORE I.ABOFIATOFIY University ol Calilomia ~ Livermore ~ NOTICE .sponsored by tht: United $~ates G~ven~menl.Neilhe~ the United States nor the United ~tates I’:n,~rgy of their employees,IIOr lilly of their eorltl’ilctclrs~ warranty~ express t~r implied, or asstltlleS ~t]y legld liability or responsihilit y fnr the accuracy, apparatus, product or ])rc)eess disclosed, represents that its rise would IIt~l illl’r liege privlttely-owned rights." Printed in the United States of America Avai.] able from National Technical. information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22151 Price: Printed Copy $ *; Microfiche $2.25 NTIS ""Pages _Sellin_.g Price 1-50 $4.00 51-150 $5.45 151-325 $7.60 326-500 $10.60 501.-1000 $13.60 DISCI.AlMBR This documeut was prepared as an account of work sponsored by an agency of the United States Gnvernment.Neither the United States Governmentnor the University of California nor any of their employees,makes any warranty, express or implied, or assumesany legal liability or responsibility for the accuracy, complete.aess, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use wouldnot infrioge privately ownedrights. Refarenceherein to any specific commercialproduct, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,or favoring by the United States Govermnentor the University of California.
    [Show full text]
  • Intel® Xeon® Processor E3-1200 V2 Product Family and LGA 1155 Socket
    Intel® Xeon® Processor E3-1200 v2 Product Family and LGA 1155 Socket Thermal/Mechanical Specifications and Design Guidelines May 2012 Document Number: 324973-001 NFORMATIONLegal Lines and Disclaimers IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel may make changes to specifications and product descriptions at any time, without notice. This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this information. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® Xeon® processor E3-1200 v2 product family and Intel® C200 Series Chipset family may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.
    [Show full text]
  • Lecture Note 1
    EE586 VLSI Design Partha Pande School of EECS Washington State University [email protected] Lecture 1 (Introduction) Why is designing digital ICs different today than it was before? Will it change in future? The First Computer The Babbage Difference Engine (1832) 25,000 parts cost: £17,470 ENIAC - The first electronic computer (1946) The Transistor Revolution First transistor Bell Labs, 1948 The First Integrated Circuits Bipolar logic 1960’s ECL 3-input Gate Motorola 1966 Intel 4004 Micro-Processor 1971 1000 transistors 1 MHz operation Intel Pentium (IV) microprocessor Moore’s Law In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months. He made a prediction that semiconductor technology will double its effectiveness every 18 months Moore’s Law 16 15 14 13 12 11 10 9 8 7 6 OF THE NUMBER OF 2 5 4 LOG 3 2 1 COMPONENTS PER INTEGRATED FUNCTION 0 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 Electronics, April 19, 1965. Evolution in Complexity Transistor Counts 1 Billion K Transistors 1,000,000 100,000 Pentium® III 10,000 Pentium® II Pentium® Pro 1,000 Pentium® i486 100 i386 80286 10 8086 Source: Intel 1 1975 1980 1985 1990 1995 2000 2005 2010 Projected Courtesy, Intel Moore’s law in Microprocessors 1000 2X growth in 1.96 years! 100 10 P6 Pentium® proc 1 486 386 0.1 286 Transistors (MT) Transistors 8086 Transistors8085 on Lead Microprocessors double every 2 years 0.01 8080 8008 4004 0.001 1970 1980 1990 2000 2010 Year Courtesy, Intel Die Size Growth 100 P6
    [Show full text]
  • VOLUME V INFORMATIQUE NON AMERICAINE Première Partie Par L' Ingénieur Général De L'armement BOUCHER Henri TABLE
    VOLUME V INFORMATIQUE NON AMERICAINE Première partie par l' Ingénieur Général de l'Armement BOUCHER Henri TABLE DES MATIERES INFORMATIQUE NON AMERICAINE Première partie 731 Informatique européenne (statistiques, exemples) 122 700 Histoire de l'Informatique allemande 1 701 Petits constructeurs 5 702 Les facturières de Kienzle Data System 16 703 Les minis de gestion de Nixdorf 18 704 Siemens & Halske AG 23 705 Systèmes informatiques d'origine allemande 38 706 Histoire de l'informatique britannique 40 707 Industriels anglais de l'informatique 42 708 Travaux des Laboratoires d' Etat 60 709 Travaux universitaires 63 710 Les coeurs synthétisables d' ARM 68 711 Computer Technology 70 712 Elliott Brothers et Elliott Automation 71 713 Les machines d' English Electric Company 74 714 Les calculateurs de Ferranti 76 715 Les études de General Electric Company 83 716 La patiente construction de ICL 85 Catalogue informatique – Volume E - Ingénieur Général de l'Armement Henri Boucher Page : 1/333 717 La série 29 d' ICL 89 718 Autres produits d' ICL, et fin 94 719 Marconi Company 101 720 Plessey 103 721 Systèmes en Grande-Bretagne 105 722 Histoire de l'informatique australienne 107 723 Informatique en Autriche 109 724 Informatique belge 110 725 Informatique canadienne 111 726 Informatique chinoise 116 727 Informatique en Corée du Sud 118 728 Informatique à Cuba 119 729 Informatique danoise 119 730 Informatique espagnole 121 732 Informatique finlandaise 128 733 Histoire de l'informatique française 130 734 La période héroïque : la SEA 140 735 La Compagnie
    [Show full text]
  • Computer Organization and Architecture Designing for Performance Ninth Edition
    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America.
    [Show full text]
  • 1 Intel CEO Remarks Pat Gelsinger Q2'21 Earnings Webcast July 22
    Intel CEO Remarks Pat Gelsinger Q2’21 Earnings Webcast July 22, 2021 Good afternoon, everyone. Thanks for joining our second-quarter earnings call. It’s a thrilling time for both the semiconductor industry and for Intel. We're seeing unprecedented demand as the digitization of everything is accelerated by the superpowers of AI, pervasive connectivity, cloud-to-edge infrastructure and increasingly ubiquitous compute. Our depth and breadth of software, silicon and platforms, and packaging and process, combined with our at-scale manufacturing, uniquely positions Intel to capitalize on this vast growth opportunity. Our Q2 results, which exceeded our top and bottom line expectations, reflect the strength of the industry, the demand for our products, as well as the superb execution of our factory network. As I’ve said before, we are only in the early innings of what is likely to be a decade of sustained growth across the industry. Our momentum is building as once again we beat expectations and raise our full-year revenue and EPS guidance. Since laying out our IDM 2.0 strategy in March, we feel increasingly confident that we're moving the company forward toward our goal of delivering leadership products in every category in which we compete. While we have work to do, we are making strides to renew our execution machine: 7nm is progressing very well. We’ve launched new innovative products, established Intel Foundry Services, and made operational and organizational changes to lay the foundation needed to win in the next phase of our company’s great history. Here at Intel, we’re proud of our past, pragmatic about the work ahead, but, most importantly, confident in our future.
    [Show full text]
  • SIMD Extensions
    SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel.
    [Show full text]
  • Lecture 1: Course Introduction G Course Organization G Historical Overview G Computer Organization G Why the MC68000? G Why Assembly Language?
    Lecture 1: Course introduction g Course organization g Historical overview g Computer organization g Why the MC68000? g Why assembly language? Microprocessor-based System Design 1 Ricardo Gutierrez-Osuna Wright State University Course organization g Grading Instructor n Exams Ricardo Gutierrez-Osuna g 1 midterm and 1 final Office: 401 Russ n Homework Tel:775-5120 g 4 problem sets (not graded) [email protected] n Quizzes http://www.cs.wright.edu/~rgutier g Biweekly Office hours: TBA n Laboratories g 5 Labs Teaching Assistant g Grading scheme Mohammed Tabrez Office: 339 Russ [email protected] Weight (%) Office hours: TBA Quizes 20 Laboratory 40 Midterm 20 Final Exam 20 Microprocessor-based System Design 2 Ricardo Gutierrez-Osuna Wright State University Course outline g Module I: Programming (8 lectures) g MC68000 architecture (2) g Assembly language (5) n Instruction and addressing modes (2) n Program control (1) n Subroutines (2) g C language (1) g Module II: Peripherals (9) g Exception processing (1) g Devices (6) n PI/T timer (2) n PI/T parallel port (2) n DUART serial port (1) g Memory and I/O interface (1) g Address decoding (2) Microprocessor-based System Design 3 Ricardo Gutierrez-Osuna Wright State University Brief history of computers GENERATION FEATURES MILESTONES YEAR NOTES Asia Minor, Abacus 3000BC Only replaced by paper and pencil Mech., Blaise Pascal, Pascaline 1642 Decimal addition (8 decimal figs) Early machines Electro- Charles Babbage Differential Engine 1823 Steam powered (3000BC-1945) mech. Herman Hollerith,
    [Show full text]
  • The Birth, Evolution and Future of Microprocessor
    The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four.
    [Show full text]
  • Intel® Omni-Path Architecture (Intel® OPA) for Machine Learning
    Big Data ® The Intel Omni-Path Architecture (OPA) for Machine Learning Big Data Sponsored by Intel Srini Chari, Ph.D., MBA and M. R. Pamidi Ph.D. December 2017 mailto:[email protected] Executive Summary Machine Learning (ML), a major component of Artificial Intelligence (AI), is rapidly evolving and significantly improving growth, profits and operational efficiencies in virtually every industry. This is being driven – in large part – by continuing improvements in High Performance Computing (HPC) systems and related innovations in software and algorithms to harness these HPC systems. However, there are several barriers to implement Machine Learning (particularly Deep Learning – DL, a subset of ML) at scale: • It is hard for HPC systems to perform and scale to handle the massive growth of the volume, velocity and variety of data that must be processed. • Implementing DL requires deploying several technologies: applications, frameworks, libraries, development tools and reliable HPC processors, fabrics and storage. This is www.cabotpartners.com hard, laborious and very time-consuming. • Training followed by Inference are two separate ML steps. Training traditionally took days/weeks, whereas Inference was near real-time. Increasingly, to make more accurate inferences, faster re-Training on new data is required. So, Training must now be done in a few hours. This requires novel parallel computing methods and large-scale high- performance systems/fabrics. To help clients overcome these barriers and unleash AI/ML innovation, Intel provides a comprehensive ML solution stack with multiple technology options. Intel’s pioneering research in parallel ML algorithms and the Intel® Omni-Path Architecture (OPA) fabric minimize communications overhead and improve ML computational efficiency at scale.
    [Show full text]
  • Class-Action Lawsuit
    Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 1 of 279 Steve D. Larson, OSB No. 863540 Email: [email protected] Jennifer S. Wagner, OSB No. 024470 Email: [email protected] STOLL STOLL BERNE LOKTING & SHLACHTER P.C. 209 SW Oak Street, Suite 500 Portland, Oregon 97204 Telephone: (503) 227-1600 Attorneys for Plaintiffs [Additional Counsel Listed on Signature Page.] UNITED STATES DISTRICT COURT DISTRICT OF OREGON PORTLAND DIVISION BLUE PEAK HOSTING, LLC, PAMELA Case No. GREEN, TITI RICAFORT, MARGARITE SIMPSON, and MICHAEL NELSON, on behalf of CLASS ACTION ALLEGATION themselves and all others similarly situated, COMPLAINT Plaintiffs, DEMAND FOR JURY TRIAL v. INTEL CORPORATION, a Delaware corporation, Defendant. CLASS ACTION ALLEGATION COMPLAINT Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 2 of 279 Plaintiffs Blue Peak Hosting, LLC, Pamela Green, Titi Ricafort, Margarite Sampson, and Michael Nelson, individually and on behalf of the members of the Class defined below, allege the following against Defendant Intel Corporation (“Intel” or “the Company”), based upon personal knowledge with respect to themselves and on information and belief derived from, among other things, the investigation of counsel and review of public documents as to all other matters. INTRODUCTION 1. Despite Intel’s intentional concealment of specific design choices that it long knew rendered its central processing units (“CPUs” or “processors”) unsecure, it was only in January 2018 that it was first revealed to the public that Intel’s CPUs have significant security vulnerabilities that gave unauthorized program instructions access to protected data. 2. A CPU is the “brain” in every computer and mobile device and processes all of the essential applications, including the handling of confidential information such as passwords and encryption keys.
    [Show full text]
  • Intel Server Board SE7320EP2 and SE7525RP2
    Intel® Server Board SE7320EP2 and SE7525RP2 Tested Hardware and Operating System List Revision 1.0 June, 2005 Enterprise Platforms and Services Marketing Revision History IntelP®P Server Board SE7320EP2 and SE7525RP2 Revision History Revision Date Number Modifications June 2005 1.0 First Release ii Revision 1.0 IntelP®P Server Board SE7320EP2 and SE7525RP2 Disclaimers Disclaimers THE INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel retains the right to make changes to its test specifications at any time, without notice. The hardware vendor remains solely responsible for the design, sale and functionality of its product, including any liability arising from product infringement or product warranty. Copyright © Intel Corporation 2005. All rights reserved. Intel, the Intel logo, and EtherExpress are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
    [Show full text]