Molecular Models for Shikimate Pathway Enzymes of Xylella Fastidiosa
BBRC Biochemical and Biophysical Research Communications 320 (2004) 979–991 www.elsevier.com/locate/ybbrc Molecular models for shikimate pathway enzymes of Xylella fastidiosa Helen Andrade Arcuri,a,1 Fernanda Canduri,a,d,1 Jose Henrique Pereira,a Nelson Jose Freitas da Silveira,a Joao~ Carlos Camera Jr.,a Jaim Simoes~ de Oliveira,b Luiz Augusto Basso,b Mario Sergio Palma,c,d Diogenes Santiago Santos,e,* and Walter Filgueira de Azevedo Jr.a,d,* a Department of Physics IBILCE/UNESP, S~ao Jose do Rio Preto, SP 15054-000, Brazil b Rede Brasileira de Pesquisas em Tuberculose, Department of Molecular Biology and Biotecnology, UFRGS, Porto Alegre, RS 91501-970, Brazil c Laboratory of Structural Biology and Zoochemistry, Department of Biology, Institute of Biosciences, UNESP, Rio Claro, SP 13506-900, Brazil d Center for Applied Toxicology, Institute Butantan, S~ao Paulo, SP 05503-900, Brazil e Center for Research and Development in Molecular, Structural and Functional Molecular Biology, PUCRS 90619-900, Porto Alegre, RS, Brazil Received 25 May 2004 Available online 25 June 2004 Abstract The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants.
[Show full text]