United States Patent (19) (11 Patent Number: 4,971,908 Kishore Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) (11 Patent Number: 4,971,908 Kishore Et Al United States Patent (19) (11 Patent Number: 4,971,908 Kishore et al. 45 Date of Patent: Nov. 20, 1990 54 GLYPHOSATE-TOLERANT 56 References Cited 5-ENOLPYRUVYL-3-PHOSPHOSHKMATE U.S. PATENT DOCUMENTS SYNTHASE 4,769,061 9/1988 Comai ..................................... 71/86 (75. Inventors: Ganesh M. Kishore, Chesterfield; Primary Examiner-Robin Teskin Dilip M. Shah, Creve Coeur, both of Assistant Examiner-S. L. Nolan Mo. Attorney, Agent, or Firm-Dennis R. Hoerner, Jr.; 73 Assignee: Monsanto Company, St. Louis, Mo. Howard C. Stanley; Thomas P. McBride (21) Appl. No.: 179,245 57 ABSTRACT Glyphosate-tolerant 5-enolpyruvyl-3-phosphosikimate 22 Filed: Apr. 22, 1988 (EPSP) synthases, DNA encoding glyhphosate-tolerant EPSP synthases, plant genes encoding the glyphosate Related U.S. Application Data tolerant enzymes, plant transformation vectors contain ing the genes, transformed plant cells and differentiated 63 Continuation-in-part of Ser. No. 54,337, May 26, 1987, transformed plants containing the plant genes are dis abandoned. closed. The glyphosate-tolerant EPSP synthases are 51) Int. Cl. ....................... C12N 15/00; C12N 9/10; prepared by substituting an alanine residue for a glycine CO7H 21/04 residue in a conserved sequence found between posi 52 U.S. C. .............................. 435/172.1; 435/172.3; tions 80 and 120 in the mature wild-type EPSP syn 435/193; 536/27; 935/14 thase. 58) Field of Search............... 435/172.3, 193; 935/14, 935/67, 64 15 Claims, 14 Drawing Sheets U.S. Patent Nov. 20, 1990 Sheet 3 of 14 4,971,908 1. 50 Yeast . .TVYPFK DIPADQQKVV IPPGSKSSN RALITAATGE GQCKIKNLLH Aspergillus . PS. IEVHP GVAHSSNVIC APPGSKSISN RALVLAALGS GCRKNIH Petunia KPS. ...EV, QPIKEISGTV KLPGSKSSN RILLIAALSE GTTVVDNS Tomato KPH. EV, XPIKDISGTV KLPGSKSLSN RILLIAALSE GRTVVDNLLS Arabidopsis KAS. EV, QPIREISGLI KPGSKSLSN RILLIAALSE GTTVVDNLLN Glycine mac KPSTSPEV, EPIKDFSGTI TPGSKSISN RILLIAALSE GTTVVDNLLY Maize . AGAEEIV. QPIKEISGTV KLPGSKSLSN RILLIAALSE GTTVVDNLLN E. coli MES... LTL QPIARVDGTI NLPGSKWSN RAILLAAIAH GKTVLNLLD Salmonella MES... .I.T. QPIARVDGAI NLPGSKSVSN RAILLIAAT.AC GKTALTNLLD Consensus an a we w am no me a m rw me am a munit an rve a PGSK--SN R-L-LAAT-- G- - - - - NLL 51. 100 Yeast SDDTKHMLTA WHEL. KG ATISWEDNGE TVVVEGHGGS TLSACADPLY Aspergillus SDDTEVMLNA IERT.G. A ATFSWEEEGE VVVNGKGG. NLQASSSPLY Petunia SDDIHYMLGA KLGLHVEE DSANQRAVVE GCGGFPVG KESKEEIQLF Tomato SDDIHYMGA KIGHVED DNENQRAIVE GCGGQFPVG. KKSEEEIQLF Arabidopsis SDDINYMDA LKRLGLNVET DSENNRAVWE GCGGIFPAS IDSKSDIELY Glycine max SEDIHYMGA RLGRVED DKTTKQAIVE GCGGLFP.S KESKDENLF Maize SEDVHYMGA RTGSVEA DKAAKRAVVV GCGGKFPW. EDAKEEVQLF E. coli SDDVRHMNA LTALGVSYL SADRTRCEII. GNGG. P LHAEGALELF Salmonella SODVRHMNA SAGINY SADRTRCDIT LRAPGAELF Corisensus SDD- - -M-A - - - - - - - - - - - - - - - - - - - -n - - - - - - - - - - - - - - - - - T 1.01 150 Yeast GNAGTASRF LSAAVNS TSSQKYIVLT APLVDSLRAN Aspergillus GNAGASRF ITVATLANS STVDSSVLT GDLVDALTAN Petunia LGNAGAMRP ILAAVVAGG . NSRYVD SDLVDGLKOL Tomato LGNAGTAMRP AAVVAGG . HSRYVD GDLVDGLKQL Arabidopsis LGNAGTAMRP LTAAVTAAGG . NARYVD GDLVVGLKQL Glycine max IGNAGAMRP LTAAVVAAGG . NASYVD GDIVAGLKQL. Maize GNAGAMRP TAAVTAAGG . NATYVD GDLVVGLKQL E. coli GNAGAMRP LAAA. LCLG S. N. DVL GHLVDALRLG Salmonella GNAGAMRP IAA. ALC LGON.E.IVLT GEPAMLERP GHLVDSLROG Gonsensus LGNAGA-R- - - - - - - - - - as a was emo is aV G- - -M--RPI 151 200 Yeast GTKEYNNE GSLPIKVYTD SVEKGGRIE AATVSSQYVS SIMCAPYAE Aspergillus WILPLNSKGR ASLPLKIAAS GGFAGGNINL AAKVSSQRVS SLIMCAPYAK Petunia GAEVDCFLGT KCPPVRIVSK GGLPGGKVKT, SGSISSQYLT ALLMAAPI.A. Tomato GAEVDCSGT NCPPVRIVSK GGLPGGKWKL SGSISSQYLT ALLMAAPLA. Arabidopsis GADVECTGT NCPPVRVNAN GGLPGGKVKL SGSISSQYLT ALTMSAPL.A. Glycine max GADVDCFG NCPPVRVNGK GGPGGKVK. SGSVSSQYLT ALLMAAPI.A. Maize GADVDCFG DCPPVRVNGI GGPGGKVK, SGSISSQYLS ALLMAAPLA. E. coli GAKITYLEQE NYPPLR. LQ GGETGGNVIDV DGSVSSQFLT ALTMAPLAP Salmonelia GANIDYLEQE NYPPLR. R. GGETGGDTV DGSVSSQFTT A.MTAPI.A. Consensus . P- - - - - - ----GG---- - - --SSQ- - - --LM-AP-A- 2011 250 Yeast EPVTALVGG KPISKLYWOM TKMMEKFG NVETSTTEPY TYYIPKGHYI Aspergillus EPVTLRVLGG KPISQPYIDM TAMMRSFG DVQKSTTEEH TYHIPQGRYV Petunia LGOVEEID KLISVPYVEM TLK LMERFGI SVEHSSSWOR FFVRGGQKYK Tomato LGOVEIEID KLISVPYVEM TLKMERFGV 'VEHSSGWDR FLVKGGQKYK Arabidopsis LGOVEIEIVD KISVPYVEM TLK LMERFGW SVEHSDSWDR FFVKGGQKYK Glycine max LGOVEEIVD KISVPYVEM TKLMERFGW SVEHSGNWDR FLVHGGOKYK Maize LGOVEIEID KSPYVEM TLRMERFGV KAEHSDSWDR FYIKGGOKYK E. coli E. DTVIRIKG DLVSKPYIDI TLNLMKTFGV EIE.NQHYQQ FVVKGGQSYQ Salmonella PKDTIIRVKG ELVSKPYD TNLMKTFG. VEIANHHYQQ FVVKGGQQYH Consensus - - -S--Y--- ---M.--FG tims a w - - as a - Y. FIGURE 2(a) U.S. Patent Nov. 20, 1990 Sheet 4 of 14 4,971,908 251 3OO Yeast NPSEYVIESD ASSAYPLAF AMMTGVTV PNIGFESLQG DARFARDVLK Aspergillus NPAEYVIESD ASCAYPAV AAVTGTTCTV PNIGSASLOG DARFAVEVLR Petunia SPGKAFVEGD ASSASYFLAG AAVTGGTITV EGCGTNSLQG DVKFA.EVLE Totato SPGKAVEGD ASSASYFLAG AAVTGGTVTV EGCGTSSLQG DVKFA.EVLE Arabidopsis SPGNAYVEGD ASSACYFLAG AATGETVTV EGCGTTSLQG DVKFA.EVLE Brassica SPGNAFVEGD ASSASYLAG AATGGITV NGCGTSSLQG DVKFA.EVLE Maize SPKNAYVEGD ASSAYFLAG AAITGGTVTV EGCGTTSLQG DVKFA.EVLE E. coli SPGTYLVEGD ASSASYFAA AAIKGGTVKV TGIGRNSMOG DIRFA. DVLE Salmonella SPGRYLVEGD ASSASYFAA GAIKGGTVKV TGIGRKSMQG DIRFA. DVLE Consensus -P- - - - -E-D AS-A-Y-A- -A--G---V ---G--S-QG D--FA--VL 30 350 Yeast PMGCKITOTA TSTTVSGPPV GTKPKHVD MEPMTDAFLT ACVVAASHD Aspergillus PMGCTVEQTE TSTTWTGPSD GIL.RASKR GYGTNDRCVP RCFRTGSHRP Petunia KMGAEWTWTE NSWTVKGPPR SSSGR. KHLR ADVNMNKMP DVAMAVVA Tomato KMGAEWTWE NSWVKGPPR NSSG. MKHLR AIDVNMNKMP OWAMAVVA Arabidopsis KMGCKVSWTE NSWTVTGPPR DAFG. MRHR AIDVNMNKMP DVAMAVVA Brassica KMGAKVWSE NSWTVSGPPR DFSGR. KVR GIDVNMNKMP OVAMTAVVA Maize MMGAKVWE TSVTVTGPPR SHFGR. KHK AIDVNMNKMP DVAMAVVA DAAMTIATAA E. coli KMGATICW. a us 0 s 4 GDOY ISCR. GEN AIDMDMNHP DAAMTLATA Salmonella MGATITW. e o O GDDF IACTR. GELH AIDMDMNHIP Consensus -MG- - - - - - - - - - - - - G- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 35 400 Yeast SDPNSANTTT IEGIANQRVK ECNRIAMA ELAKFGVKTT ELPDGIQVHG Aspergillus MEKSQTTPPV SSGIANQRVK ECNRIKAMKD ELAKFGVICR EHDDG. Petunia YADGP IRDVASWRVK ETERMIAICT ERKGAVE EGPD. Totato IFADGPT. IRDVASWRVK ETERMAICT ERKLGAVV EGSD. Arabidopsis FADGPT. IRDVASWRVK ETERMAIC ERKLGAVE EGSD. Brassica ANGP. IRDVASWRVK ETERMIAICT ERKLGATVE EGPD. Maize IFADGP. ROWASWRVK ETERMVART ETKLGASVE EGPD. E. coli LFAKGT. LRNIYNWRVK EDRAMA ERKVGAEVE EGHD. Salmonella FAKG. LRNIYNWRVK EDREAMAT ERKVGAEVE EGHD . w Consensus am as a ma up RVK. E--R--A- - - E.-K-G- - - - E--D- - - - - - 401 450 Yeast NSIKDKVP SDSSGPWGVC TYDDHRVAMS FSILLAGMVNS QNERDEVANP Aspergillus LEIDGIDRS NLRQPVGGVP CYDDHRWAFS FSVL. SLVTPQP Petunia YCIITPPEK. N. VDID TYDOHRMAMA FS. AACADVP Tomato YCIITPPEKL, N. VTEID TYDDHRMAMA FS. LAACADVP Arabidopsis YCVITPPKK. VKAEID YDDHRMAMA FS. LAACADVP Brassica YCVITPPEK, N. .WAD TYDDHRMAMA FS. LAACGDVP Maize YCIITPPEKL N. .WAD TYODHRMAMA FS. LAACAEVP E. coli YIRITPPEKE, N. FAEIA TYNDHRMAMC FS. VALSDP Salmonella YIRTPPAKL, . OHADIG TYNDHRMAMC FS. VASDTP Consensus - - - - - - - - - - - - - - - - - - -Y-OHR-A- S- - - - - - - - a m i u or a a P 451. 478 Yeast WRIERHCTG KTWPGWWOV, HSELGA. Aspergillus IILEKECVG KWPGWWDT, RQLFKV. Petunia WTINDPGCTR KTFPNYFDVI, QQYSKI. Tomato VTIKNPGCTR KTFPDYFEVI, QKYSKH . Arabidopsis ITINDSGCTR KTFPDYFQVL ERITKH. Brassica WTIKDP. CTR KTFPDYFEVI, ERKH . Maize VIRDPGCTR KTFPDYFDVI STEVKN . E. coli WTLDPKCTA KTFPDYFEQL. ARISOAA* Salmonella WTILDPKCTA KTFPDYFEQI. ARMSPA Consensus ------C-- K-P----, FIGURE 2(b) U.S. Patent Nov. 20, 1990 Sheet 5 of 14 4,971,908 SYNTHETIC MULTI-LINKER U.S. Patent Nov. 20, 1990 Sheet 6 of 14 4,971,908 CaMV 35S PROMOTER Filed EcoRI 1. o 60 GAATTAATTCCCGATCCTATCTGTCACTTCACAAAAGGACAGTAGAAAAGGAAGGTGGC O A 120 ACTACAAATGCCATCATTGCGATAAAGGAAAGGCTATCGTTCAAGATGCCTCTGCCGACA o 18O GTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAA o O 240 CCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCAC TATA O . s 3OO AATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGA 5' mRNA d 332 GGACACGCTGAAATCACCAGTCTCTCTCTACA SYNTHETIC MULTI-LINKER BglII ClaI SmaI KpnI Sall. EcoRI AGATCTATCGATTCCCGGGTACCTCGAGAATTCCC NOS 3. 368 e 420 GATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGG O - a 48O TCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACAT 3' End mRNA O 54 O GTAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACAT s O e 600 TTAATACGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGT HindIII TCATCTATGTTACTAGATCggggatcc.gtcgacctgcagocaagctt641 648 FIGURE 4 U.S. Patent Nov. 20, 1990 Sheet 7 of 14 4,971,908 ECOR SYNTHETIC MULTI-LINKER RIGHT BORDER FIGURE 5 U.S. Patent Nov. 20, 1990 Sheet 8 of 14 4,971,908 SYNTHETIC MULTI-LINKER RIGHT BORDER FIGURE 6 U.S. Patent Nov. 20, 1990 Sheet 11 of 14 4971,908 Pst Xma ECORV -des BglII NOS/NPTII/ SmaI NOS SpcR 35S RB T-DNA RIGHT BORDER AAC(3)-IV pMON825 NOS NOS ECORI PSt. RB RK2 Bg|II Klenow Filled ECORI ECORI KenOW Pst multilinker filled pMON 841 HindIII PSt. (35s/AAC3-IV/NOS ECORI ECORI BamHI PSt Xmni changed N Noss to HindIII by NOS 3' Ampf ECO RV dileti mutagenesis /AmpR AAC(3)-IV pMON843 99 VSO-pMON844 pMON849 AAC-3-IV by site directed mutagenesis ECORV BamHI Xmn ECORI KlenOW filled Sindi y StuI (35S/AAC3-IV/NOS) HindIII ECORI HindIII (35S/AAC3-IV/NOS) pMON505 ECORI RK2 Ori HindIII EcoRI pMON845 NOS 3' OS RK2 Ori 7 SSN SpcR 35S HindII pMON851 NOS BCI RK2 Ori FIGURE 9 RB YaNN U.S. Patent Nov. 20, 1990 Sheet 12 of 14 4,971,908 ECOR NOS/NPTII/I N BOII LH A.SpcR s'35Y-9Y Aval 'Spc NOS 3 pMON120 NOS plMON530 BamHI NOri
Recommended publications
  • Observation and a Numerical Study of Gravity Waves During Tropical Cyclone Ivan (2008)
    Open Access Atmos. Chem. Phys., 14, 641–658, 2014 Atmospheric www.atmos-chem-phys.net/14/641/2014/ doi:10.5194/acp-14-641-2014 Chemistry © Author(s) 2014. CC Attribution 3.0 License. and Physics Observation and a numerical study of gravity waves during tropical cyclone Ivan (2008) F. Chane Ming1, C. Ibrahim1, C. Barthe1, S. Jolivet2, P. Keckhut3, Y.-A. Liou4, and Y. Kuleshov5,6 1Université de la Réunion, Laboratoire de l’Atmosphère et des Cyclones, UMR8105, CNRS-Météo France-Université, La Réunion, France 2Singapore Delft Water Alliance, National University of Singapore, Singapore, Singapore 3Laboratoire Atmosphères, Milieux, Observations Spatiales, UMR8190, Institut Pierre-Simon Laplace, Université Versailles-Saint Quentin, Guyancourt, France 4Center for Space and Remote Sensing Research, National Central University, Chung-Li 3200, Taiwan 5National Climate Centre, Bureau of Meteorology, Melbourne, Australia 6School of Mathematical and Geospatial Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia Correspondence to: F. Chane Ming ([email protected]) Received: 3 December 2012 – Published in Atmos. Chem. Phys. Discuss.: 24 April 2013 Revised: 21 November 2013 – Accepted: 2 December 2013 – Published: 22 January 2014 Abstract. Gravity waves (GWs) with horizontal wavelengths ber 1 vortex Rossby wave is suggested as a source of domi- of 32–2000 km are investigated during tropical cyclone (TC) nant inertia GW with horizontal wavelengths of 400–800 km, Ivan (2008) in the southwest Indian Ocean in the upper tropo- while shorter scale modes (100–200 km) located at northeast sphere (UT) and the lower stratosphere (LS) using observa- and southeast of the TC could be attributed to strong local- tional data sets, radiosonde and GPS radio occultation data, ized convection in spiral bands resulting from wave number 2 ECMWF analyses and simulations of the French numerical vortex Rossby waves.
    [Show full text]
  • Character Set Migration Best Practices For
    Character Set Migration Best Practices $Q2UDFOH:KLWH3DSHU October 2002 Server Globalization Technology Oracle Corporation Introduction - Database Character Set Migration Migrating from one database character set to another requires proper strategy and tools. This paper outlines the best practices for database character set migration that has been utilized on behalf of hundreds of customers successfully. Following these methods will help determine what strategies are best suited for your environment and will help minimize risk and downtime. This paper also highlights migration to Unicode. Many customers today are finding Unicode to be essential to supporting their global businesses. Oracle provides consulting services for very large or complex environments to help minimize the downtime while maximizing the safe migration of business critical data. Why migrate? Database character set migration often occurs from a requirement to support new languages. As companies internationalize their operations and expand services to customers all around the world, they find the need to support data storage of more World languages than are available within their existing database character set. Historically, many legacy systems required support for only one or possibly a few languages; therefore, the original character set chosen had a limited repertoire of characters that could be supported. For example, in America a 7-bit character set called ASCII is satisfactory for supporting English data exclusively. While in Europe a variety of 8 bit European character sets can support specific subsets of European languages together with English. In Asia, multi byte character sets that could support a given Asian language and English were chosen. These were reasonable choices that fulfilled the initial requirements and provided the best combination of economy and performance.
    [Show full text]
  • Rockbox User Manual
    The Rockbox Manual for Sansa Fuze+ rockbox.org October 1, 2013 2 Rockbox http://www.rockbox.org/ Open Source Jukebox Firmware Rockbox and this manual is the collaborative effort of the Rockbox team and its contributors. See the appendix for a complete list of contributors. c 2003-2013 The Rockbox Team and its contributors, c 2004 Christi Alice Scarborough, c 2003 José Maria Garcia-Valdecasas Bernal & Peter Schlenker. Version unknown-131001. Built using pdfLATEX. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sec- tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”. The Rockbox manual (version unknown-131001) Sansa Fuze+ Contents 3 Contents 1. Introduction 11 1.1. Welcome..................................... 11 1.2. Getting more help............................... 11 1.3. Naming conventions and marks........................ 12 2. Installation 13 2.1. Before Starting................................. 13 2.2. Installing Rockbox............................... 13 2.2.1. Automated Installation........................ 14 2.2.2. Manual Installation.......................... 15 2.2.3. Bootloader installation from Windows................ 16 2.2.4. Bootloader installation from Mac OS X and Linux......... 17 2.2.5. Finishing the install.......................... 17 2.2.6. Enabling Speech Support (optional)................. 17 2.3. Running Rockbox................................ 18 2.4. Updating Rockbox............................... 18 2.5. Uninstalling Rockbox............................. 18 2.5.1. Automatic Uninstallation....................... 18 2.5.2. Manual Uninstallation......................... 18 2.6. Troubleshooting................................. 18 3. Quick Start 20 3.1.
    [Show full text]
  • Database Globalization Support Guide
    Oracle® Database Database Globalization Support Guide 19c E96349-05 May 2021 Oracle Database Database Globalization Support Guide, 19c E96349-05 Copyright © 2007, 2021, Oracle and/or its affiliates. Primary Author: Rajesh Bhatiya Contributors: Dan Chiba, Winson Chu, Claire Ho, Gary Hua, Simon Law, Geoff Lee, Peter Linsley, Qianrong Ma, Keni Matsuda, Meghna Mehta, Valarie Moore, Cathy Shea, Shige Takeda, Linus Tanaka, Makoto Tozawa, Barry Trute, Ying Wu, Peter Wallack, Chao Wang, Huaqing Wang, Sergiusz Wolicki, Simon Wong, Michael Yau, Jianping Yang, Qin Yu, Tim Yu, Weiran Zhang, Yan Zhu This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S.
    [Show full text]
  • NASA Contractor Report 178099
    NASA-CR- 178099 19880014547 NASA Contractor Report 178099 MANUAL FOR OBSCURATION CODE WITH SPACE STATION APPLICATIONS , -.1. --- MOT TO BC TAKEN FHOM MIS noon R. J. Marhefka and L. Takacs UNGLEY RESEARCH CENTER THE OHIO STATE UNIVERSITY LIBRARY, NASA l-!A?.!PTOtj, VIRGINIA ElectroScience Laboratory Col urnbus, Ohio Grant NSG- 1498 May 1986 information to other Foreign reley&&ay be made only with prior izwap- gppropriate export licenses. This legend sh I any reproduction of this information in whole% Date for general release 31 9 1988 National Aeronautics and Space Administration Langley Research Center Hampton,Virginia 23665 Contents I Ueer'e Manual 1 Introduction 1 2 Method 4 3 Principle of Operation 13 3.1 Overview . 13 3.2 Modeling the Structures. 14 3.3 Running the Code . 14 3.4 Non-Interactive Commands . 15 3.5 Interactive Commands . 18 3.6 Keypad Use . 19 4 Non-Interactive Commands 22 4.1 Command CC: Cone Frustum Geometry . 24 4.2 Command CG: Cylinder Geometry . 27 4.3 Command CM: and CE: Comments. 30 4.4 Command EN: End Program . 30 4.5 Command GP: Ground Plane . 31 4.6 Command NC: Next Set of Cylinders . 32 4.7 Command NG: No Ground Plane . 32 4.8 Command NP: Next Set of Plates . 32 4.9 Command NS: Next Set of Sources . 32 4.10 Command NX: Next Problem . 32 , 4.11 Command PG: Plate Geometry . 33 4.12 Command RT: Rotate-Ranslate Geometry . 36 4.13 Command SG: Source Geometry . .. 38 4.14 Command UF: Scale Factor . 42 4.15 Command UN: Units of Geometry .
    [Show full text]
  • Molecular Models for Shikimate Pathway Enzymes of Xylella Fastidiosa
    BBRC Biochemical and Biophysical Research Communications 320 (2004) 979–991 www.elsevier.com/locate/ybbrc Molecular models for shikimate pathway enzymes of Xylella fastidiosa Helen Andrade Arcuri,a,1 Fernanda Canduri,a,d,1 Jose Henrique Pereira,a Nelson Jose Freitas da Silveira,a Joao~ Carlos Camera Jr.,a Jaim Simoes~ de Oliveira,b Luiz Augusto Basso,b Mario Sergio Palma,c,d Diogenes Santiago Santos,e,* and Walter Filgueira de Azevedo Jr.a,d,* a Department of Physics IBILCE/UNESP, S~ao Jose do Rio Preto, SP 15054-000, Brazil b Rede Brasileira de Pesquisas em Tuberculose, Department of Molecular Biology and Biotecnology, UFRGS, Porto Alegre, RS 91501-970, Brazil c Laboratory of Structural Biology and Zoochemistry, Department of Biology, Institute of Biosciences, UNESP, Rio Claro, SP 13506-900, Brazil d Center for Applied Toxicology, Institute Butantan, S~ao Paulo, SP 05503-900, Brazil e Center for Research and Development in Molecular, Structural and Functional Molecular Biology, PUCRS 90619-900, Porto Alegre, RS, Brazil Received 25 May 2004 Available online 25 June 2004 Abstract The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants.
    [Show full text]
  • Lllllllllllllllllillllllllllllllilllllllllillllillllllllllll
    lllllllllllllllllIllllllllllllllIlllllllllIllllIllllllllllllllllllIllllllll U USOO53 10667A Umted States Patent [19] [11] Patent Number: 5,310,667 Eichholtz et a1. [45] Date of Patent: May 10, 1994 [54] GLYPHOSATE-TOLERANT 5-ENOLPYRUVYL-3-PHOSPHOSHIKIMATE OTHER PUBLICATIONS SYNTHASES Botterman et a1. (Aug. 1988) Trends in Genetics 4:219-222. [75] Inventors: David A_ Eichholtz, St Louis; Dassarma et al. (1986) Science 232:1242-1244. Charles S_ Gasser; Ganesh M_ Oxtoby et al. (1989) Euphytiza 40:173-180. Kishore, both of Chesterfield, an of Sezel, Enzyme Kineties, Behavior and Analysis of Rapid Mo_ Equilibrium and Steady State Enzyme System, John Wiley and Sons, New York, 1975, p. 15. [73] Assignee: Monsanto Company, St. Louis, Mo. Primary Examiner—Che S. Chereskiin Attorney, Agent, or Firm-Dennis R. Hoemer, Jr.; [21] Appl. No.: 380,963 RiChard H- Shear [57] ABSTRACT [22] Filed: Jul- 17’ 1989 Glyphosate-tolerant 5-enolpyruvy1-3-phosphoshikimate (EPSP) synthases, DNA encoding glyphosate-tolerant [51] Int. Cl.5 .................... .. C12N 15/01; C12N 15/29; EPSP synthases, plant genes encoding the glyphosate C12N 15/32 tolerant enzymes, plant transformation vectors contain [52] US. Cl. .............................. .. 435/ 172.3; 435/691; ing the genes, transformed plant cells and differentiated 800/205; 935/30; 935/35; 935/64; 536/236; transformed plants containing the plant genes are dis 536/23.7 closed. The glyphosate-tolerant EPSP synthases are [58] Field of Search ................... .. 435/68, 172.3, 69.1; prepared by substituting an alanine residue for a glycine 935/30, 35, 64, 67; 71/86, 113, 121; 530/370, residue in a ?rst conserved sequence found between 350; 800/205; 536/236, 23.7 positions 80 and 120, and either an aspartic acid residue ‘ or asparagine residue for a glycine residue in a second [56] References Cited conserved sequence found between positions 120 and 160 in the mature wild type EPSP synthase.
    [Show full text]
  • Supporting Information High-Throughput Virtual Screening
    Supporting Information High-Throughput Virtual Screening of Proteins using GRID Molecular Interaction Fields Simone Sciabola, Robert V. Stanton, James E. Mills, Maria M. Flocco, Massimo Baroni, Gabriele Cruciani, Francesca Perruccio and Jonathan S. Mason Contents Table S1 S2-S21 Figure S1 S22 * To whom correspondence should be addressed: Simone Sciabola, Pfizer Research Technology Center, Cambridge, 02139 MA, USA Phone: +1-617-551-3327; Fax: +1-617-551-3117; E-mail: [email protected] S1 Table S1. Description of the 990 proteins used as decoy for the Protein Virtual Screening analysis. PDB ID Protein family Molecule Res. (Å) 1n24 ISOMERASE (+)-BORNYL DIPHOSPHATE SYNTHASE 2.3 1g4h HYDROLASE 1,3,4,6-TETRACHLORO-1,4-CYCLOHEXADIENE HYDROLASE 1.8 1cel HYDROLASE(O-GLYCOSYL) 1,4-BETA-D-GLUCAN CELLOBIOHYDROLASE I 1.8 1vyf TRANSPORT PROTEIN 14 KDA FATTY ACID BINDING PROTEIN 1.85 1o9f PROTEIN-BINDING 14-3-3-LIKE PROTEIN C 2.7 1t1s OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.4 1t1r OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.3 1q0q OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 1.9 1jcy LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.9 1fww LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.85 1uk7 HYDROLASE 2-HYDROXY-6-OXO-7-METHYLOCTA-2,4-DIENOATE 1.7 1v11 OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.95 1x7w OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.73 1d0l TRANSFERASE 35KD SOLUBLE LYTIC TRANSGLYCOSYLASE 1.97 2bt4 LYASE 3-DEHYDROQUINATE DEHYDRATASE
    [Show full text]
  • Architecture Génétique Des Caractères Cibles Pour La Culture Du Peuplier En Taillis À Courte Rotation Redouane El Malki
    Architecture génétique des caractères cibles pour la culture du peuplier en taillis à courte rotation Redouane El Malki To cite this version: Redouane El Malki. Architecture génétique des caractères cibles pour la culture du peuplier en taillis à courte rotation. Sciences agricoles. Université d’Orléans, 2013. Français. NNT : 2013ORLE2005. tel-00859626 HAL Id: tel-00859626 https://tel.archives-ouvertes.fr/tel-00859626 Submitted on 9 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DORLÉANS ÉCOLE DOCTORALE SANTE, SCIENCES BIOLOGIQUES ET CHIMIE DU VIVANT Unité de recherche Amélioration Génétique et Physiologie Forestières THÈSE présentée par : Redouane EL MALKI Soutenue le : 21 janvier 2013 pour obtenir le grade de : Docteur de luniversité dOrléans Discipline/ Spécialité : Biologie Architecture génétique des caractères cibles pour la culture du peuplier en taillis à courte rotation THÈSE dirigée par : Catherine BASTIEN Directrice de Recherche, INRA dOrléans RAPPORTEURS : Yves BARRIERE Directeur de Recherche, INRA de Lusignan Daniel
    [Show full text]
  • Translocation of the Precursor of 5-Enolpyruvylshikimate-3
    Proc. Nati. Acad. Sci. USA Vol. 83, pp. 6873-6877, September 1986 Cell Biology Translocation of the precursor of 5-enolpyruvylshikimate-3- phosphate synthase into chloroplasts of higher plants in vitro (shikimate pathway/transit peptide/glyphosate) GUY DELLA-CIOPPA*, S. CHRISTOPHER BAUER, BARBARA K. KLEIN, DILIP M. SHAH, ROBERT T. FRALEY, AND GANESH M. KISHORE Monsanto Company, Plant Molecular Biology Group, Division of Biological Sciences, 700 Chesterfield Village Parkway, St. Louis, MO 63198 Communicated by Esmond E. Snell, June 16, 1986 ABSTRACT 5-enolPyruvylshikimate-3-phosphate syn- transferase; EC 2.5.1.19) catalyzes the transfer of the thase (EPSP synthase; 3-phosphoshikimate 1-carboxyvinyl- carboxyvinyl moiety of phosphoenolpyruvate (P-ePrv) to transferase; EC 2.5.1.19) is a chloroplast-localized enzyme of shikimate-3-phosphate yielding EPSP and inorganic phos- the shikimate pathway in plants. This enzyme is the target for phate. EPSP synthase is an intermediate in the shikimate the nonselective herbicide glyphosate (N-phosphonomethyl- pathway that gives rise to the aromatic amino acids L- glycine). We have previously isolated a full-length cDNA clone phenylalanine, L-tyrosine, and L-tryptophan (8). In addition ofEPSP synthase from Petunia hybrida. DNA sequence analysis to the biosynthesis of these amino acids, the shikimate suggested that the enzyme is synthesized as a cytosolic precur- pathway is utilized for the production of p-amino- and sor (pre-EPSP synthase) with an amino-terminal transit, pep- p-hydroxybenzoic acids, and a variety of other natural plant tide. Based on the known amino terminus of the mature products (8). The biosynthesis of aromatic amino acids has enzyme, and the 5' open reading frame ofthe cDNA, the transit been shown to occur in isolated chloroplasts in vitro (9), and peptide of pre-EPSP synthase would be maximally 12 amino shikimate-pathway enzymes (including EPSP synthase) have acids long.
    [Show full text]
  • 8.2 Shikimic Acid Pathway
    CHAPTER 8 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORAromatic SALE OR DISTRIBUTION and NOT FOR SALE OR DISTRIBUTION Phenolic Compounds © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER OUTLINE Overview Synthesis and Properties of Polyketides 8.1 8.5 Synthesis of Chalcones © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 8.2 Shikimic Acid Pathway Synthesis of Flavanones and Derivatives NOT FOR SALE ORPhenylalanine DISTRIBUTION and Tyrosine Synthesis NOT FOR SALESynthesis OR DISTRIBUTION and Properties of Flavones Tryptophan Synthesis Synthesis and Properties of Anthocyanidins Synthesis and Properties of Isofl avonoids Phenylpropanoid Pathway 8.3 Examples of Other Plant Polyketide Synthases Synthesis of Trans-Cinnamic Acid Synthesis and Activity of Coumarins Lignin Synthesis Polymerization© Jonesof Monolignols & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC Genetic EngineeringNOT FOR of Lignin SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Natural Products Derived from the 8.4 Phenylpropanoid Pathway Natural Products from Monolignols © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 119 © Jones & Bartlett Learning, LLC.
    [Show full text]
  • Degradation of the Herbicide Glyphosate by Members of the Family Rhizobiaceae C.-M
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 1991, p. 1799-1804 Vol. 57, No. 6 0099-2240/91/061799-06$02.00/0 Copyright (C 1991, American Society for Microbiology Degradation of the Herbicide Glyphosate by Members of the Family Rhizobiaceae C.-M. LIU,* P. A. McLEAN, C. C. SOOKDEO, AND F. C. CANNONt BioTechnica International, Inc., 85 Bolton Street, Cambridge, Massachusetts 02140 Received 9 January 1991/Accepted 11 April 1991 Several strains of the family Rhizobiaceae were tested for their ability to degrade the phosphonate herbicide glyphosate (isopropylamine salt of N-phosphonomethylglycine). AR organisms tested (seven Rhizobium meliloti strains, Rhizobium leguminosarum, Rhizobium galega, Rhizobium trifolii, Agrobacterium rhizogenes, and Agrobacterium tumefaciens) were able to grow on glyphosate as the sole source of phosphorus in the presence of the aromatic amino acids, although growth on glyphosate was not as fast as on Pi. These results suggest that glyphosate degradation ability is widespread in the family Rhizobiaceae. Uptake and metabolism of glyphosate were studied by using R. meliloti 1021. Sarcosine was found to be the immediate breakdown product, indicating that the initial cleavage of glyphosate was at the C-P bond. Therefore, glyphosate breakdown in R. meliloti 1021 is achieved by a C-P lyase activity. Glyphosate (isopropylamine salt of N-phosphonomethyl- tained from Research Organics, Cleveland, Ohio. Agarose glycine) is the active ingredient in Roundup, a broad-spec- was obtained from International Biotechnology Inc., New trum postemergence herbicide sold worldwide for use in a Haven, Conn. large number of agricultural crops and industrial sites. It is a Culture of bacteria. Inocula of all rhizobia except Rhizo- potent inhibitor of the enzyme 3-enol-pyruvylshikimate-5- bium leguminosarum (strain 300) and ANU843 were grown phosphate synthase (EPSP synthase, EC 2.5.1.19), which is in LB (1% Bacto tryptone, 0.5% Bacto yeast extract, 0.5% involved in the biosynthesis of the aromatic amino acids NaCl) at 28 to 32°C for 18 to 30 h.
    [Show full text]