Biological Activity, Hepatotoxicity, and Structure-Activity Relationship Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski Et Al
USOO9421 180B2 (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski et al. (45) Date of Patent: Aug. 23, 2016 (54) ANTIOXIDANT COMPOSITIONS FOR 6,203,817 B1 3/2001 Cormier et al. .............. 424/464 TREATMENT OF INFLAMMATION OR 6,323,232 B1 1 1/2001 Keet al. ............ ... 514,408 6,521,668 B2 2/2003 Anderson et al. ..... 514f679 OXIDATIVE DAMAGE 6,572,882 B1 6/2003 Vercauteren et al. ........ 424/451 6,805,873 B2 10/2004 Gaudout et al. ....... ... 424/401 (71) Applicant: Perio Sciences, LLC, Dallas, TX (US) 7,041,322 B2 5/2006 Gaudout et al. .............. 424/765 7,179,841 B2 2/2007 Zielinski et al. .. ... 514,474 (72) Inventors: Jan Zielinski, Vista, CA (US); Thomas 2003/0069302 A1 4/2003 Zielinski ........ ... 514,452 Russell Moon, Dallas, TX (US); 2004/0037860 A1 2/2004 Maillon ...... ... 424/401 Edward P. Allen, Dallas, TX (US) 2004/0091589 A1 5, 2004 Roy et al. ... 426,265 s s 2004/0224004 A1 1 1/2004 Zielinski ..... ... 424/442 2005/0032882 A1 2/2005 Chen ............................. 514,456 (73) Assignee: Perio Sciences, LLC, Dallas, TX (US) 2005, 0137205 A1 6, 2005 Van Breen ..... 514,252.12 2005. O154054 A1 7/2005 Zielinski et al. ............. 514,474 (*) Notice: Subject to any disclaimer, the term of this 2005/0271692 Al 12/2005 Gervasio-Nugent patent is extended or adjusted under 35 et al. ............................. 424/401 2006/0173065 A1 8/2006 BeZwada ...................... 514,419 U.S.C. 154(b) by 19 days. 2006/O193790 A1 8/2006 Doyle et al. -
Herbal Insomnia Medications That Target Gabaergic Systems: a Review of the Psychopharmacological Evidence
Send Orders for Reprints to [email protected] Current Neuropharmacology, 2014, 12, 000-000 1 Herbal Insomnia Medications that Target GABAergic Systems: A Review of the Psychopharmacological Evidence Yuan Shia, Jing-Wen Donga, Jiang-He Zhaob, Li-Na Tanga and Jian-Jun Zhanga,* aState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; bDepartment of Pharmacology, School of Marine, Shandong University, Weihai, P.R. China Abstract: Insomnia is a common sleep disorder which is prevalent in women and the elderly. Current insomnia drugs mainly target the -aminobutyric acid (GABA) receptor, melatonin receptor, histamine receptor, orexin, and serotonin receptor. GABAA receptor modulators are ordinarily used to manage insomnia, but they are known to affect sleep maintenance, including residual effects, tolerance, and dependence. In an effort to discover new drugs that relieve insomnia symptoms while avoiding side effects, numerous studies focusing on the neurotransmitter GABA and herbal medicines have been conducted. Traditional herbal medicines, such as Piper methysticum and the seed of Zizyphus jujuba Mill var. spinosa, have been widely reported to improve sleep and other mental disorders. These herbal medicines have been applied for many years in folk medicine, and extracts of these medicines have been used to study their pharmacological actions and mechanisms. Although effective and relatively safe, natural plant products have some side effects, such as hepatotoxicity and skin reactions effects of Piper methysticum. In addition, there are insufficient evidences to certify the safety of most traditional herbal medicine. In this review, we provide an overview of the current state of knowledge regarding a variety of natural plant products that are commonly used to treat insomnia to facilitate future studies. -
NIH Public Access Author Manuscript Pharmacol Ther
NIH Public Access Author Manuscript Pharmacol Ther. Author manuscript; available in PMC 2010 August 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Pharmacol Ther. 2009 August ; 123(2): 239±254. doi:10.1016/j.pharmthera.2009.04.002. Ethnobotany as a Pharmacological Research Tool and Recent Developments in CNS-active Natural Products from Ethnobotanical Sources Will C. McClatcheya,*, Gail B. Mahadyb, Bradley C. Bennettc, Laura Shielsa, and Valentina Savod a Department of Botany, University of Hawaìi at Manoa, Honolulu, HI 96822, U.S.A b Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL 60612, U.S.A c Department of Biological Sciences, Florida International University, Miami, FL 33199, U.S.A d Dipartimento di Biologia dì Roma Trè, Viale Marconi, 446, 00146, Rome, Italy Abstract The science of ethnobotany is reviewed in light of its multidisciplinary contributions to natural product research for the development of pharmaceuticals and pharmacological tools. Some of the issues reviewed involve ethical and cultural perspectives of healthcare and medicinal plants. While these are not usually part of the discussion of pharmacology, cultural concerns potentially provide both challenges and insight for field and laboratory researchers. Plant evolutionary issues are also considered as they relate to development of plant chemistry and accessing this through ethnobotanical methods. The discussion includes presentation of a range of CNS-active medicinal plants that have been recently examined in the field, laboratory and/or clinic. Each of these plants is used to illustrate one or more aspects about the valuable roles of ethnobotany in pharmacological research. -
Plant-Based Medicines for Anxiety Disorders, Part 2: a Review of Clinical Studies with Supporting Preclinical Evidence
CNS Drugs 2013; 24 (5) Review Article Running Header: Plant-Based Anxiolytic Psychopharmacology Plant-Based Medicines for Anxiety Disorders, Part 2: A Review of Clinical Studies with Supporting Preclinical Evidence Jerome Sarris,1,2 Erica McIntyre3 and David A. Camfield2 1 Department of Psychiatry, Faculty of Medicine, University of Melbourne, Richmond, VIC, Australia 2 The Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia 3 School of Psychology, Charles Sturt University, Wagga Wagga, NSW, Australia Correspondence: Jerome Sarris, Department of Psychiatry and The Melbourne Clinic, University of Melbourne, 2 Salisbury Street, Richmond, VIC 3121, Australia. Email: [email protected], Acknowledgements Dr Jerome Sarris is funded by an Australian National Health & Medical Research Council fellowship (NHMRC funding ID 628875), in a strategic partnership with The University of Melbourne, The Centre for Human Psychopharmacology at the Swinburne University of Technology. Jerome Sarris, Erica McIntyre and David A. Camfield have no conflicts of interest that are directly relevant to the content of this article. 1 Abstract Research in the area of herbal psychopharmacology has revealed a variety of promising medicines that may provide benefit in the treatment of general anxiety and specific anxiety disorders. However, a comprehensive review of plant-based anxiolytics has been absent to date. Thus, our aim was to provide a comprehensive narrative review of plant-based medicines that have clinical and/or preclinical evidence of anxiolytic activity. We present the article in two parts. In part one, we reviewed herbal medicines for which only preclinical investigations for anxiolytic activity have been performed. In this current article (part two), we review herbal medicines for which there have been both preclinical and clinical investigations for anxiolytic activity. -
Phytochem Referenzsubstanzen
High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.286. ABIETIC ACID Sylvic acid [514-10-3] 302.46 C20H30O2 01.030. L-ABRINE N-a-Methyl-L-tryptophan [526-31-8] 218.26 C12H14N2O2 Merck Index 11,5 01.031. (+)-ABSCISIC ACID [21293-29-8] 264.33 C15H20O4 Merck Index 11,6 01.032. (+/-)-ABSCISIC ACID ABA; Dormin [14375-45-2] 264.33 C15H20O4 Merck Index 11,6 01.002. ABSINTHIN Absinthiin, Absynthin [1362-42-1] 496,64 C30H40O6 Merck Index 12,8 01.033. ACACETIN 5,7-Dihydroxy-4'-methoxyflavone; Linarigenin [480-44-4] 284.28 C16H12O5 Merck Index 11,9 01.287. ACACETIN Apigenin-4´methylester [480-44-4] 284.28 C16H12O5 01.034. ACACETIN-7-NEOHESPERIDOSIDE Fortunellin [20633-93-6] 610.60 C28H32O14 01.035. ACACETIN-7-RUTINOSIDE Linarin [480-36-4] 592.57 C28H32O14 Merck Index 11,5376 01.036. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- a-D-Glucosamine pentaacetate 389.37 C16H23NO10 ACETYL-a-D-GLUCOPYRANOSE 01.037. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- b-D-Glucosamine pentaacetate [7772-79-4] 389.37 C16H23NO10 ACETYL-b-D-GLUCOPYRANOSE> 01.038. 2-ACETAMIDO-2-DEOXY-3,4,6-TRI-O-ACETYL- Acetochloro-a-D-glucosamine [3068-34-6] 365.77 C14H20ClNO8 a-D-GLUCOPYRANOSYLCHLORIDE - 1 - High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.039. -
Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves. -
Influência De Chalconas Análogas, Xantonas E Monossacarídeos Na Glicemia Em Modelo Experimental Animal
ELGA HELOISA ALBERTON INFLUÊNCIA DE CHALCONAS ANÁLOGAS, XANTONAS E MONOSSACARÍDEOS NA GLICEMIA EM MODELO EXPERIMENTAL ANIMAL FLORIANÓPOLIS 2007 Elga Heloisa Alberton INFLUÊNCIA DE CHALCONAS ANÁLOGAS, XANTONAS E MONOSSACARÍDEOS NA GLICEMIA EM MODELO EXPERIMENTAL ANIMAL Dissertação apresentada ao curso de Pós-graduação em Farmácia da Universidade Federal de Santa Catarina, como requisito parcial para o título de Mestre em Farmácia. Área de concentração: Análises Clínicas . Orientadora: Profa. Dra. Fátima Regina Mena Barreto Silva Florianópolis 2007 ALBERTON, Elga Heloisa Influência de chalconas análogas, xantonas e monossacarídeos na glicemia em modelo experimental animal/Elga Heloisa Alberton. Flrianópolis, 2006. //p. Dissertação (Mestrado) – Universidade Federal de Santa Catarina. Programa de pós Graduação em Farmácia 1. Diabetes. 2. Ácido glicônico. 3. Ácido tatárico. 4. Polygala paniculata. 5. Polygala cyparissias. 6. Xantonas. 7. Chalconas. “INFLUÊNCIA DE CHALCONAS ANÁLOGAS, XANTONAS E MONOSSACARÍDEOS NA GLICEMIA EM MODELO EXPERIMENTAL ANIMAL” POR ELGA HELOISA ALBERTON Dissertação julgada e aprovada em sua forma final pelo Orientador e membros da Banca Examinadora, composta pelos Professores Doutores: Banca Examinadora: ____________________________________ Adair Roberto Soares dos Santos (UFSC) ____________________________________ Danilo Wilhelm Filho (UFSC) ____________________________________ Maria Rosa Chitolina Schetinger (UFSM-RS) Florianópolis, 12 de fevereiro de 2007. Dedico este trabalho aos meus pais, Hercílio C. Alberton e Alba R. Lopes Minatto, pela oportunidade recebida e, que por vezes tão longe fisicamente, estiveram sempre, através de seu carinho e apoio, presentes em todos os momentos da minha vida. AGRADECIMETOS A DEUS por me conceder a oportunidade de realizar mais um sonho. Agradecimento especial à minha orientadora Profa. Dra. Fátima Regina Mena Barreto Silva, pela confiança em mim depositada. -
Piper Methysticum)
Journal of Student Research (2015) Volume 4, Issue 2: pp. 69-72 Research Article A Closer Look at the Risks vs. Benefits of Kava (Piper methysticum) Anan A. Husseina If you took a trip to Fiji, the locals would probably welcome you with a drink of Kava. For centuries, the indigenous people of the South Pacific Islands have used the roots of a plant known as Kava. Beyond the use of Kava as a psychoactive substance, it has been incorporated as a cultural drink that is used in many ceremonies. In the late 1990’s Kava use spread quickly in Western countries including Europe, North America, and Australia. It was used as a treatment for anxiety. But just as quickly as it spread, the enthusiasm for it faded, because it was banned or restricted in many Western countries following reports of liver toxicity. In the United States, the Food and Drug Administration’s (FDA) concern for safety prompted a request for more research on the substance. The issues of safety and efficacy remain more specifically whether the benefits of using Kava outweigh the risks. History Kava is a beverage made from the roots of the plant included alcohol, cocaine, tobacco, and heroin. The findings Piper methysticum, and has been used historically in the suggest that kava may reduce the craving associated with the South Pacific Islands as a ceremonial drink. Kava was aforementioned substances, which may make kava a great introduced in Europe around the 1700s by Captain James future candidate to help with addiction. 13 Cook and has since spread widely to Australia, Europe, and Although the mechanism of action is not clear, it is the United States. -
From Alpinia Zerumbet: Its Isolation, Synthesis, and Characterization
Molecules 2015, 20, 16306-16319; doi:10.3390/molecules200916306 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Dihydro-5,6-dehydrokavain (DDK) from Alpinia zerumbet: Its Isolation, Synthesis, and Characterization Tran Dang Xuan 1 and Rolf Teschke 2,* 1 Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan; E-Mail: [email protected] 2 Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty of the Goethe University, Frankfurt/Main, 63450 Hanau, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-6181-218-59; Fax: +49-6181-296-4211. Academic Editor: Derek J. McPhee Received: 9 June 2015 / Accepted: 20 August 2015 / Published: 9 September 2015 Abstract: Dihydro-5,6-dehydrokavain (DDK) is the major and most promising component of the tropical plant Alpinia zerumbet (shell ginger), a species of the ginger family Zingiberaceae. Alpinia zerumbet is known for its human use as a traditional herbal medicine, food, and dietary supplement. With its α-lactone ring, DDK belongs to the large chemical group of kavalactones, which are also found in kava (Piper methysticum), another herbal medicine; DDK is characterized by a double-bond linkage at positions 5,6 and the absence of a double-bond linkage at positions 7,8. This dissociates DDK from other kavalactones with their linkages at positions 7,8 and 5,6 that are both either completely saturated or unsaturated, or may have an unsaturated bond at the position 7,8 as well as a saturated bond at the position 5,6. -
The Biosynthetic Origin of Psychoactive Kavalactones in Kava
bioRxiv preprint doi: https://doi.org/10.1101/294439; this version posted April 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The biosynthetic origin of psychoactive kavalactones in kava 1 1 1,2 1,2 Tomáš Pluskal , Michael P. Torrens-Spence , Timothy R. Fallon , Andrea De Abreu , 1,2 1,2, Cindy H. Shi , and Jing-Ke Weng * 1 Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142 USA. 2 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA. *Corresponding author. Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/294439; this version posted April 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract For millennia, humans have used plants for medicinal purposes. However, our limited understanding of plant biochemistry hinders the translation of such ancient wisdom into modern 1 pharmaceuticals . Kava (Piper methysticum) is a medicinal plant native to the Polynesian islands with anxiolytic and analgesic properties supported by over 3,000 years of traditional use as well 2–5 as numerous recent clinical trials . The main psychoactive principles of kava, kavalactones, are a unique class of polyketide natural products known to interact with central nervous system through mechanisms distinct from those of the prescription psychiatric drugs benzodiazepines 6,7 and opioids . Here we report de novo elucidation of the biosynthetic pathway of kavalactones, consisting of seven specialized metabolic enzymes. -
Lavender Display Until May 1, 2007
Japanese Herbs for Liver Health • Green Tea Health Benefits • Kudzu Reduces Alcohol Consumption The Journal of the American Botanical Council Number 73 | USA $6.95 | CAN $7.95 Medicinal Herb Conservation Herbs for Liver Disease Versatile Lavender Display until May 1, 2007 www.herbalgram.org www.herbalgram.org 2007 HerbalGram 73 | 1 2 | HerbalGram 73 2007 www.herbalgram.org Herb Profile Lavender Lavandula angustifolia Mill. (Syn: L. officinalis Chaix., L. spica L., L. vera DC.) INTRODUCTION Family: Lamiaceae (Labiatae) avender is an aromatic subshrub native to lavender oil is massaged into the temples, it can help relieve many forms of headache. It can also relieve the low mountains (1,970-3,940 feet) of many causes of muscular pain. In aromatherapy, Lthe Mediterranean basin. It is cultivated in lavender is used for many varied skin conditions, France, Albania, Bulgaria, Hungary, Italy, Spain, including insect bites, burns, inflammation, and for the nations of the former Yugoslavia (Montene- healing small cuts.9,10 gro, Serbia, etc.), China, Russia, Moldova, Argen- Fresh lavender flowers are added to jams, ice cream, tina, the Netherlands, the United Kingdom, the vinegar, and herbal teas.11 The aromatic oil possesses United States, and Australia.1,2,3,4 It should not a soothing fragrance used to scent many cosmetics, be confused with the hybrid lavandin (Lavandula x shampoos, and industrial products. Lavender oil is intermedia Emeric ex Loisel), which is more widely used as a flavor component in food products, includ- cultivated and far -
Herbal Insomnia Medications That Target Gabaergic Systems: a Review of the Psychopharmacological Evidence
Send Orders for Reprints to [email protected] Current Neuropharmacology, 2014, 12, 289-302 289 Herbal Insomnia Medications that Target GABAergic Systems: A Review of the Psychopharmacological Evidence Yuan Shia, Jing-Wen Donga, Jiang-He Zhaob, Li-Na Tanga and Jian-Jun Zhanga,* aState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China; bDepartment of Pharmacology, School of Marine, Shandong University, Weihai, P.R. China Abstract: Insomnia is a common sleep disorder which is prevalent in women and the elderly. Current insomnia drugs mainly target the γ-aminobutyric acid (GABA) receptor, melatonin receptor, histamine receptor, orexin, and serotonin receptor. GABAA receptor modulators are ordinarily used to manage insomnia, but they are known to affect sleep maintenance, including residual effects, tolerance, and dependence. In an effort to discover new drugs that relieve insomnia symptoms while avoiding side effects, numerous studies focusing on the neurotransmitter GABA and herbal medicines have been conducted. Traditional herbal medicines, such as Piper methysticum and the seed of Zizyphus jujuba Mill var. spinosa, have been widely reported to improve sleep and other mental disorders. These herbal medicines have been applied for many years in folk medicine, and extracts of these medicines have been used to study their pharmacological actions and mechanisms. Although effective and relatively safe, natural plant products have some side effects, such as hepatotoxicity and skin reactions effects of Piper methysticum. In addition, there are insufficient evidences to certify the safety of most traditional herbal medicine.