Giulio Natta
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curriculum Vitae Professor Dr. Martin Jansen
Curriculum Vitae Professor Dr. Martin Jansen Name: Martin Jansen Born: 5 November 1944 Main areas of research: preparative solid-state chemistry, crystal chemistry, materials research, structure-property relationship of solids Since 1998, he has been a member of the scientific council of the Max Planck Society and a director at the Max Planck Institute for solid-state research in StuttgartHe has developed a concept for plan- ning solid state syntheses, combining computational and experimental tools, that is pointing the way to rational and efficient discovery of new materials. Academic and Professional Career since 1998 Director at the Max Planck Institute for Solid State Research, Stuttgart and Honorary Professor at the University of Stuttgart, Germany 1987 - 1998 Professor (C4) and Director of the Institute at the University of Bonn, Germany 1981 - 1987 Professor (C4), Chair B for Inorganic Chemistry of the University of Hannover, Germany 1978 Habilitation at the University of Gießen, Germany 1973 Promotion (Ph.D.) at the University of Gießen, Germany 1966 - 1970 Study of Chemistry at the University of Gießen, Germany Honours and Awarded Memberships (Selection) 2019 Otto-Hahn-Prize 2009 Centenary Prize, Royal Society of Chemistry, UK 2009 Georg Wittig - Victor Grignard Prize, Société Chimique de France 2008 Member of acatech (National Academy of Science and Engineering) Nationale Akademie der Wissenschaften Leopoldina www.leopoldina.org 1 2007 Karl Ziegler Award, Germany 2004 Honorary Doctorate of the Ludwig Maximilians-University of -
Determination of Aluminium As Oxide
DETERMINATION OF ALUMINIUM AS OXIDE By William Blum CONTENTS Page I. Introduction 515 II. General principles 516 III. Historical 516 IV. Precipitation of aluminium hydroxide. 518 1. Hydrogen electrode studies 518 (a) The method 518 (b) Apparatus and solutions employed 518 (c) Results of hydrogen electrode experiments 519 (d) Conclusions from hydrogen electrode experiments 520 2. Selection of an indicator for denning the conditions of precipita- '. tion . 522 3. Factors affecting the form of the precipitate 524 4. Precipitation in the presence of iron 525 V. Washing the precipitate . 525 VI. Separation from other elements 526 VII. Ignition and weighing of the precipitate 528 1. Hygroscopicity of aluminium oxide 529 2. Temperature and time of ignition 529 3. Effect of ammonium chloride upon the ignition 531 VIII. Procedure recommended 532 IX. Confirmatory experiments 532 X. Conclusions '534 I. INTRODUCTION Although a considerable number of precipitants have been pro- posed for the determination of aluminium, direct precipitation of aluminium hydroxide by means of ammonium hydroxide, fol- lowed by ignition to oxide, is most commonly used, especially if no separation from iron is desired, in which latter case special methods must be employed. While the general principles involved in this determination are extremely simple, it has long been recog- nized that certain precautions in the precipitation, washing, and ignition are necessary if accurate results are to be obtained. While, however, most of these details have been studied and dis- cussed by numerous authors, it is noteworthy that few publica- tions or textbooks have taken account of all the factors. In the 515 ; 516 Bulletin of the Bureau of Standards [Voi.i3 present paper it seems desirable, therefore, to assemble the various recommendations and to consider their basis and their accuracy. -
Molecular Geometry and Molecular Graphics: Natta's Polypropylene And
Molecular geometry and molecular graphics: Natta's polypropylene and beyond Guido Raos Dip. di Chimica, Materiali e Ing. Chimica \G. Natta", Politecnico di Milano Via L. Mancinelli 7, 20131 Milano, Italy [email protected] Abstract. In this introductory lecture I will try to summarize Natta's contribution to chemistry and materials science. The research by his group, which earned him the Noble prize in 1963, provided unprece- dented control over the synthesis of macromolecules with well-defined three-dimensional structures. I will emphasize how this structure is the key for the properties of these materials, or for that matter for any molec- ular object. More generally, I will put Natta's research in a historical context, by discussing the pervasive importance of molecular geometry in chemistry, from the 19th century up to the present day. Advances in molecular graphics, alongside those in experimental and computational methods, are allowing chemists, materials scientists and biologists to ap- preciate the structure and properties of ever more complex materials. Keywords: molecular geometry, stereochemistry, chirality, polymers, self-assembly, Giulio Natta To be presented at the 18th International Conference on Geometry and Graphics, Politecnico di Milano, August 2018: http://www.icgg2018.polimi.it/ 1 Introduction: the birth of stereochemistry Modern chemistry was born in the years spanning the transition from the 18th to the 19th century. Two key figures were Antoine Lavoisier (1943-1794), whose em- phasis on quantitative measurements helped to transform alchemy into a science on an equal footing with physics, and John Dalton (1766-1844), whose atomic theory provided a simple rationalization for the way chemical elements combine with each other to form compounds. -
Alcl3(G)=3Alcl(G) Reaction in the Subhalide Process of Aluminium (Study of Extractive Metallurgy of Aluminium (1))
Equilibrium of the 2Al(l)+AlCl3(g)=3AlCl(g) Reaction in the Subhalide Process of Aluminium (Study of Extractive Metallurgy of Aluminium (1)) By Takeaki Kikuchi*, Toshio Kurosawa* and Testuo Yagihashi* Equilibriumconstants of a fundamental reaction of the aluminium subhalide process, 2Al(l)+AlCl3(g)= 3AlCl(g), were determined by the flow method using argon carrier between 1000℃ and 1250℃. As a result of this experiment, equilibrium constants and standard free energy were obtained by the following equation: The heat of formation and entropy of AlCl(g) obtained from the experimental data and other thermodynamic values were -22,250cal/mot and 48.7cal/mol respectively. By the use of the equilibrium constants, the reaction ratio of aluminium trichloride was calculated at a reduced pressure and in argon carrier, respectively. (Receivedmarch 10, 1964) I. Introduction trichloride supplied to the reaction zone were applied Aluminium is produced by means of the fused salt previously. In this investigation, the latter method electrolysis using alumina obtained mainly from rela- was selected to obtain the equilibrium constants. tively higher grade bauxite. However, another 1. Experimental apparatus extraction method called the Gross or subhalide process has recently been investigated, and some technological The apparatus used in this experiment is shown by or industrialization reports have already been the schematic diagram in Fig. 1. The apparatus con- sists of an argon purifier, aluminium trichloride evapora- published. In this process, crude aluminium alloy is produced tor, reaction tube, and condensing tube of aluminium by reduction of alumina bearing ores with carbonaceous trichloride gas. Argon in a bomb was purified and reducing material such as coke or charcoal in the measured by passing through concentrated sulphuric acid, calcium chloride, soda lime, phosphorus pentoxide first step, and then aluminium trichloride gas is alld magnesium chip hea七ed at 400℃. -
AWARDS, HONORS, DISTINGUISHED LECTURESHIPS Prof. Dr. Dieter Seebach
AWARDS, HONORS, DISTINGUISHED LECTURESHIPS Prof. Dr. Dieter Seebach 1964 <> Wolf-Preis for the Ph.D. thesis, Universität Karlsruhe, Germany 1969 <> Dozentenpreis Fonds der Chemischen Industrie, Germany 1969/1970 – Visiting Professorship, University of Wisconsin, Madison, USA 1972 – "DuPont Travel Grantee", USA (lectures at 15 universities and companies) 1974 – Visiting Professorship, California Institute of Technology, Pasadena, USA 1977 – Visiting Professorship, Rand Afrikaans University, Johannesburg, South Africa – "Pacific Coast Lectureship“, USA/Canada (9 lectures at universities and companies along theUSA west coast) 1978 – Visiting Professorship, Polish Academy of Sciences (lectures in Warsaw and Lodz) 1980 – Visiting Professorship, Australian National University, Canberra, Australia – Visiting Professorship, Imperial College, London, U.K. 1981 – Visiting Professorship at the Weizmann Institute of Science, Rehovot, Israel –"Kolthoff Lectureship", University of Minnesota, Minneapolis, USA 1981 – „Carl Ziegler Visiting Professorship“, Max-Planck-Institut für Kohlenforschung, Mülheim a.d.Ruhr, Germany 1982 – "Vorhees Memorial Lectureship", University of Illinois, Urbana-Champaign, USA – "First Atlantic Coast Lectureship", (6 lectures at universities of the South-East of USA) – "Organic Syntheses Lectureship", Princeton University, Princeton, USA 1984 <> FRSC (Fellow of the Royal Society of Chemistry, U.K.) <> Elected member of the Deutsche Akademie der Naturforscher Leopoldina, D-Halle – "Greater Manchester Lectureship", University -
Barc Progress Report - 1996
IN9800956 n0 BARC PROGRESS REPORT - 1996 1997 ... x ** BARC/1997/P/003 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION < co BARC PROGRESS REPORT - 1996 BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 1997 BARC/1997/P/003 BIBLIOBRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as psr IS : 9400 - 19S0) 01 Security classification : Unclassified 02 Distribution : External 03 Report status : New 04 Series t BARC External 05 Report type : Progress Report 06 Report No. : BARC/1997/P/003 07 Part No. or Volume No. i 08 Contract No. i 10 Title and subtitle t BARC Progress Report - 1996 11 Collation i 37JTp. 13 Project No. s 20 Personal author (s) 21 Affiliation of author (s): 22 Corporate author(s> s Bhabha Atomic Research Centre, Mumbai-400 085 23 Originating unit : Library and Information Services Division, BARC, Mumbai 24 Sponsor(s) Name : Department of Atomic Energy Type t Government 30 Date of submission : October 1997 31 Publication/Issue data November 1997 contd...(lb) 40 Publisher/Distributor : Head, Library and Information Di vi sion, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution : Hard Copy 50 Language o-f text : English 51 Language o-f summary : English 52 No. of references J 53 Given data on : 60 Abstract : This report summarises the various activities and research and development programmes of the different Divisions of the Bhabha Atomic Research Centre, Mumbai. The list of publications and papers presented at various conferences, symposia, workshops etc and papers published in various journals by the staff members of the different Divisions arB also given. 70 Keywords/Descriptors : BARC; RESEARCH PROGRAMS; PROGRESS REPORT; ACCELERATORS; NUCLEAR FUELS; NUCLEAR PHYSICS; RADIOCHEMISTRY; COMPUTERS; BIOLOGY; MATERIALS; RADIATIONS; SAFETY; REACTOR PHYSICS; LASERS; NUCLEAR MEDICINE 71 INIS Subject Category : F6000 99 Supplementary elements : fcoo TROMIiAY. -
Philip D. Lane Ziegler-Natta Catalysis: the Nature of the Active Site Literature Seminar April 3, 1992 Karl Ziegler, While Study
47 Ziegler-Natta Catalysis: The Nature of the Active Site Philip D. Lane Literature Seminar April 3, 1992 Karl Ziegler, while studying ethylene insertion into aluminum-alkyl bonds, serendipi tously discovered the effect transition metals had on ethylene polymerization. He and Guilio Natta made significant contributions to the catalytic polymerization of olefins using a transition metal from groups 4-8 and an organometallic from groups 1, 2, or 13, the most famous com bination being TiC4 + Al(C2H5)3 for the polymerization of polyethylene. The Nobel Prize in Chemistry was awarded to them in 1963 for their contributions in this area [l,2]. The impor tance of this catalytic process can be seen by the amount of polyethylene produced in the U.S. In 1990, 8.3 billion lbs. of high-density polyethylene were produced [3]. The heterogeneous nature of Ziegler-Natta catalysts make them difficult to study [l,4,5]. Despite improved techniques for studying surfaces, information on an atomic level about the active sites remains elusive. For example, the surface reaction of [Zr(allyl)4] with SiQi leads to different surface species [5]. It is not clear which of the resulting surface species is responsible for the polymerization process. Various mechanisms [6,7] have been proposed for Ziegler-Natta catalysis, with the most widely accepted proposal from Cossee and Adman (Figure 1). The aluminum-alkyl is suggested to be responsible for alkylating the transition metal which is in an octahedral environment with one site vacant. Ethylene is thought to coordinate, followed by direct insertion into the metal-alkyl bond of the transition metal. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
The Design of Redox-Active, Olefin Polymerization Catalysts Using Late-Transition Metals
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2013 The Design of Redox-Active, Olefin Polymerization Catalysts Using Late-Transition Metals Zachary Reynolds Sprigler [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Sprigler, Zachary Reynolds, "The Design of Redox-Active, Olefin Polymerization Catalysts Using Late- Transition Metals. " Master's Thesis, University of Tennessee, 2013. https://trace.tennessee.edu/utk_gradthes/2458 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Zachary Reynolds Sprigler entitled "The Design of Redox-Active, Olefin Polymerization Catalysts Using Late-Transition Metals." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Chemistry. Brian K. Long, Major Professor We have read this thesis and recommend its acceptance: Jimmy Mays, David Jenkens Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) The Design of Redox-Active, Olefin Polymerization Catalysts Using Late-Transition Metals A Thesis Presented for the Masters of Science Degree The University of Tennessee, Knoxville Zachary Reynolds Sprigler August 2013 Copyright © 2013 by Zachary R. -
{Download PDF}
NO! PDF, EPUB, EBOOK Marta Altes | 32 pages | 15 May 2012 | Child's Play International Ltd | 9781846434174 | English | Swindon, United Kingdom trình giả lập trên PC và Mac miễn phí – Tải NoxPlayer Don't have an account? Sign up here. Already have an account? Log in here. By creating an account, you agree to the Privacy Policy and the Terms and Policies , and to receive email from Rotten Tomatoes and Fandango. Please enter your email address and we will email you a new password. We want to hear what you have to say but need to verify your account. Just leave us a message here and we will work on getting you verified. No uses its history-driven storyline to offer a bit of smart, darkly funny perspective on modern democracy and human nature. Rate this movie. Oof, that was Rotten. Meh, it passed the time. So Fresh: Absolute Must See! You're almost there! Just confirm how you got your ticket. Cinemark Coming Soon. Regal Coming Soon. By opting to have your ticket verified for this movie, you are allowing us to check the email address associated with your Rotten Tomatoes account against an email address associated with a Fandango ticket purchase for the same movie. Geoffrey Macnab. Gripping and suspenseful even though the ending is already known. Rene Rodriguez. The best movie ever made about Chilean plebiscites, No thoroughly deserves its Oscar nomination for Best Foreign Film. Anthony Lane. Soren Andersen. Calvin Wilson. A cunning and richly enjoyable combination of high-stakes drama and media satire from Chilean director Pablo Larrain. -
Karl Ziegler
K ARL Z I E G L E R Consequences and development of an invention* Nobel Lecture, December 12, 1963 The awarding of the Nobel Prize for Chemistry for the year 1963 is related to the precipitous expansion of macromolecular chemistry and its industrial ap- plications, which began precisely ten years ago at my Max-Planck-Institute for Coal Research, in Mülheim/Ruhr. The suddenness with which this began, and the rapidity with which it was propagated are comparable to an explosion. The energy carriers in this case were the ingenuity, activity, creative imagina- tion and bold concepts of the many unnamed chemists, designers and entre- preneurs in the world who have fashioned great industries from our humble beginnings. If today I stand with my colleague Natta, who has been particularly effective in promoting this explosive wave, in the limelight of distinction, and do wish to manifest, with this address, my appreciation for the honor bestowed upon me, I must begin by thanking these many anonymous persons. They, too, deserve this distinction. The extent of this "explosion" may be illustrated by two charts 1, in which the location of newly-established plants is indicated. The places marked by black circles refer to the production of high molecular weight materials, the crosses to new production facilities which, though concerned with low mo- lecular weight materials, nevertheless also have some connection with the ad- dress I am delivering today (Figs. 1 and 2). The new development had its inception near the end of 1953, when I, to- gether with Holzkamp, Breil and Martina, observed-during only a few days of an almost dramatic course of events-that ethylene gas will polymerize very rapidly with certain catalysts that are extremely easy to prepare, at 100, 20 and 5 atmospheres and, finally, even at normal pressure, to a high molecular weight plastic. -
Karl Ziegler Mülheim an Der Ruhr, 8
Historische Stätten der Chemie Karl Ziegler Mülheim an der Ruhr, 8. Mai 2008 Karl Ziegler, Bronzebüste, gestaltet 1964 von Professor Herbert Kaiser-Wilhelm-/Max-Planck-Institut für Kohlenforschung, Mülheim Kühn, Mülheim an der Ruhr (Foto T. Hobirk 2008; Standort Max- an der Ruhr. Oben: Altbau von 1914 am Kaiser-Wilhelm-Platz. Unten: Plancn k-Institut für Kohlenforschung, Mülheim an der Ruhr). Laborhochhaus von 1967 an der Ecke Lembkestraße/Margaretenplatz (Fotos G. Fink, M. W. Haenel, um 1988). Gesellschaft Deutscher Chemiker 1 137051_GDCh_Broschuere_Historische_StaettenK2.indd 1 02.09.2009 16:13:26 Uhr Mit dem Programm „Historische Stätten der Chemie“ würdigt die Gesellschaft Deutscher Chemiker (GDCh) Leistungen von geschichtlichem Rang in der Chemie. Zu den Zielen des Programms gehört, die Erinnerung an das kulturelle Erbe der Chemie wach zu halten und diese Wis- senschaft sowie ihre historischen Wurzeln stärker in das Blickfeld der Öffentlichkeit zu rücken. So werden die Wirkungsstätten von Wissenschaftlerinnen oder Wissen- schaftlern als Orte der Erinnerung in einem feierlichen Akt ausgezeichnet. Außerdem wird eine Broschüre er- stellt, die das wissenschaftliche Werk der Laureaten einer breiten Öffentlichkeit näherbringt und die Tragweite ihrer Arbeiten im aktuellen Kontext beschreibt. Am 8. Mai 2008 gedachten die GDCh und das Max- Planck-Institut für Kohlenforschung in Mülheim an der Ruhr des Wirkens von KARL ZIEGLER, der mit seinen bahnbrechenden Arbeiten auf dem Gebiet der organischen Chemie zu den Begründern der metallorganischen