Heidelberg Nobel Prize Winners

Total Page:16

File Type:pdf, Size:1020Kb

Heidelberg Nobel Prize Winners Heidelberg Nobel Prize Winners Christoph Mager bert Bunsen in Heidelberg and Hermann thesising fuel from carbon liquefi ed at ᕡ The Nobel Prize von Helmholtz in Berlin. After spend- high temperatures and pressures. After ing time in Breslau (Wrocław) and Kiel, studying under the Nobel Prize winners The Nobel Prize is the world’s most fa- he was appointed professor at the De- Walter Nernst and Fritz Haber, in the mous and most coveted award. Founded by the Swedish industrialist Alfred Nobel partment of Physics and Radiology in 1920s Bergius set up a carbon chemistry (1833-1895), since 1901 the prizes have Heidelberg, where he remained until his laboratory in the vicinity of BASF in been awarded in the fi ve categories che- retirement in 1931 ᕢ. From around Ludwigshafen. The award winning mistry, physiology or medicine, physics, li- 1908, with his “Deutsche Physik” he work of Carl Bosch was the implemen- terature, and peace. According to Nobel’s openly opposed modern theoretical tation of the high pressure synthesis of testament wishes, the prize is to be awar- work, such as that of Albert Einstein, ammonia, which is used as the basis of ded annually to the person “who, during which he condemned as “Jewish”. After fertiliser and explosives. After his doc- the preceding year, shall have conferred the greatest benefi t on mankind.“ In World War II, his involvement in Na- torate in 1899 he moved to BASF awarding the Nobel Prizes “no considera- tional Socialism was not punished on where he gradually withdrew from ac- tion whatever shall be given to the natio- the grounds of his age. tive scientifi c work and instead worked nality of the candidates“. In 1968, in me- In 1932 the nuclear physicist Walther in business and research organisation. mory of Alfred Nobel, the Swedish Natio- Bothe succeeded Lenard as director of In 1919 he became managing director nal Bank founded a further prize in the the Department of Physics in Heidel- of BASF and in 1937 he succeeded Max category economics, which was fi rst berg. For political reasons, in 1934 he Planck as president of the Kaiser Wil- awarded in 1969. Up until 2009, a total of 803 individuals and 23 institutions had had to leave the university, and was ap- helm Society. received Nobel Prizes for outstanding pointed director of the Kaiser Wilhelm Karl Ziegler also received his Nobel achievements. Institute for Medical Research (KWI) Prize in 1963 for research that could be in Heidelberg by Max Planck. The lat- applied to large scale industry. At the ter had been his doctoral advisor in universities in Marburg, Heidelberg discovery opened up new application Berlin, was president of the Kaiser Wil- (1926-1936) and Halle as well as the possibilities for plastics and marked the helm Society, and had won the Nobel KWI for Carbon Research in Mülheim, start of the plastic era. Harald zur Hausen at the awarding of the Prize himself in 1918. In 1946 Bothe he discovered various organometallic The Austrian Richard Kuhn did his Nobel Prize in Medicine 2008 was reinstated as a professor at Heidel- catalysts that could be used to help doctorate under Richard Willstätter berg University. In 1954 Bothe shared control carbon chain reactions. This (1872-1942), the 1915 Nobel Prize the Nobel Prize in Physics with Max Along with Berlin, Munich and Göt- Born for his work on cosmic radiation tingen, Heidelberg is one of the major and nuclear processes, which during Portraits of Heidelberg Nobel Prize winners places of work for German Nobel Prize World War II led him to work on the winners. Between 1901 and 2009 there German nuclear research programme. Nobel Prize in Physics were a total of ten Nobel Prize winners Hans Jensen studied and did his doc- working as professors at Heidelberg torate and post-doctoral degrees at the University. At the time of the award, university in his home town of Ham- seven professors were working in Hei- burg, before moving to Hanover (Han- delberg; two came to Heidelberg after nover). From 1949 to his retirement in the award, and one left Heidelberg be- 1969 he was professor of theoretical fore receiving the honour. Two further physics at Heidelberg University. He Nobel Prize winners, the industrialists was awarded the Nobel Prize in Physics Friedrich Bergius and Carl Bosch, were in 1963 together with Maria Goeppert- Philipp Lenard Walther Bothe Hans Jensen (1862 - 1947) (1891 - 1957) (1907 - 1973) living in Heidelberg when they were Mayer for the proposal of the nuclear awarded the Nobel Prize in Chemistry shell model of atoms. In the early 1950s Nobel Prize in Chemistry in 1931 and were associated with Hei- he was visiting professor at various elite delberg University for many years as universities in the USA known for their honorary doctor and honorary senator large number of Nobel Prize winners ᕡ. A further 15 Nobel Prize winners and nominees (ĪĪ article Horner). were as students or in their early aca- demic careers in Heidelberg ᕤ. Heidelberg Nobel Prize winners in Chemistry Heidelberg Nobel Prize winners in Friedrich Bergius and Carl Bosch were Physics jointly awarded the Nobel Prize in Carl Bosch Friedrich Bergius Richard Kuhn Karl Ziegler Georg Wittig Philipp Lenard (ĪĪ article Meusburger/ Chemistry in 1931 for the development (1874 - 1940) (1884 - 1949) (1900 - 1967) (1898 - 1973) (1897 - 1987) Probáld), born in Pozsony/Pressburg (at and industrial scale application of high Nobel Prize in Physiology or Medicine that time Hungary), received the Nobel pressure chemistry. Both prize winners Prize in 1905 for his work on radiation were businessmen who, in the light of physics. Lenard’s early academic career depleting resources, sought a means of was marked by frequent moves, deter- industrially mass producing raw materi- mined by academic tutors such as Ro- als. Friedrich Bergius succeeded in syn- Albrecht Kossel Otto Meyerhof Bert Sakmann Harald zur Hausen (1853 - 1927) (1884 - 1951) (* 1942 ) (* 1936 ) © Leibniz Institute for Regional Geography 2011 Editor: M. Schmiedel Design: M. Schmiedel 250 Wissenschaftsatlas of Heidelberg University ᕢ 251 Heidelberg Nobel Prize Winners winner in chemistry. After the found- medal and certifi cate in Stockholm un- ing of the KWI for Medical Research til 1949. After the awarding of the 1935 in 1930, Kuhn was appointed director Nobel Peace Prize to the prominent of the Chemistry Department of the pacifi st Carl von Ossietzky, the Nation- KWI and named honorary professor of al Socialist regime prohibited German Heidelberg University. Here he carried academics from accepting Nobel Prizes. out fundamental work on the organic As head of a special research section in chemistry of vitamins and the caroten- chemistry and chemical consultant in oid group of natural pigments for the Reich Research Council the out by the physician Otto Bickenbach “Revocation of Doctorates”). Heidel- which he was awarded the Nobel Prize staunch National Socialist Kuhn knew (phosgene research, ĪĪ article Eckart berg University made him honorary in 1938. He was not able to receive the about fatal human experiments carried “The Medical Faculty Under National full professor in 1949, shortly before Socialism”) in the Natzweiler concen- his death. tration camp, along with the experi- It was not until 1991 that a further No- ments into nutritional research done bel Prize for Medicine came to Heidel- on prisoners. berg. Bert Sakmann, director of the In- Georg Wittig received the Nobel Prize stitute for Cell Physiology at the Max in 1979 for research that he did as pro- Planck Institute (MPI) for Medical Re- fessor at Tübingen University and search and professor of medicine and which he further developed during his biology at Heidelberg University, along time as director of the Chemistry Insti- with his colleague Erwin Neher in Göt- tute in Heidelberg from 1956. With the tingen, was honoured for work on sig- help of the Wittig Reaction, named af- nals between cells. These discoveries ter him, it is possible to carry out tar- have important implications for the un- geted changes to organic molecules and derstanding of disease mechanisms and so to synthesise delicate natural sub- the development of new drugs. In his stances such as vitamin A. The indus- autobiography in the 1991 Nobel Prize trial applications of the reaction were yearbook, Sakmann emphasised the im- developed in close co-operation with portance of the Max Planck Society, BASF with Wittig as advisor. which provided him with excellent working conditions in its institutes in Heidelberg Nobel Prize winners in Munich, Göttingen, and Heidelberg. A Medicine post-doctoral stay at University College In 1910 the Nobel Prize in medicine London from 1970 to 1973 brought was awarded to Albrecht Kossel for his Sakmann into contact with biophysi- work on the nature of the cell and the cist Sir Bernard Katz, winner of the associated fundamental knowledge of Nobel Prize in 1970. the hereditary process. In Berlin and Harald zur Hausen won the Nobel Marburg at the end of the 19th century Prize in Medicine in 2008 for his dis- Kossel developed reliable methods of covery of the human papillomaviruses isolating, purifying, and analysing cell as a cause of cervical cancer. After aca- nuclei. From 1901 until his retirement demic stays in Düsseldorf, Philadelphia, in 1924 he was director of the Institute Würzburg, Erlangen, and Freiburg, zur of Physiology at Heidelberg University Hausen was chairman and scientifi c di- (ĪĪ article Schafmeier et al.). rector of the German Cancer Research The physiologist Otto Meyerhof’s Center (DKFZ) in Heidelberg from work is considered groundbreaking in 1983 to 2003. During this time, the in- biochemistry. After studying in stitution intensifi ed its contact with Freiburg, Strasbourg, Berlin, and Hei- Heidelberg University and expanded to delberg he did his doctorate in 1910 and become one of the world’s leading can- then became assistant under Ludolf cer research institutes.
Recommended publications
  • James Chadwick: Ahead of His Time
    July 15, 2020 James Chadwick: ahead of his time Gerhard Ecker University of Vienna, Faculty of Physics Boltzmanngasse 5, A-1090 Wien, Austria Abstract James Chadwick is known for his discovery of the neutron. Many of his earlier findings and ideas in the context of weak and strong nuclear forces are much less known. This biographical sketch attempts to highlight the achievements of a scientist who paved the way for contemporary subatomic physics. arXiv:2007.06926v1 [physics.hist-ph] 14 Jul 2020 1 Early years James Chadwick was born on Oct. 20, 1891 in Bollington, Cheshire in the northwest of England, as the eldest son of John Joseph Chadwick and his wife Anne Mary. His father was a cotton spinner while his mother worked as a domestic servant. In 1895 the parents left Bollington to seek a better life in Manchester. James was left behind in the care of his grandparents, a parallel with his famous predecessor Isaac Newton who also grew up with his grandmother. It might be an interesting topic for sociologists of science to find out whether there is a correlation between children educated by their grandmothers and future scientific geniuses. James attended Bollington Cross School. He was very attached to his grandmother, much less to his parents. Nevertheless, he joined his parents in Manchester around 1902 but found it difficult to adjust to the new environment. The family felt they could not afford to send James to Manchester Grammar School although he had been offered a scholarship. Instead, he attended the less prestigious Central Grammar School where the teaching was actually very good, as Chadwick later emphasised.
    [Show full text]
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • Curriculum Vitae Professor Dr. Martin Jansen
    Curriculum Vitae Professor Dr. Martin Jansen Name: Martin Jansen Born: 5 November 1944 Main areas of research: preparative solid-state chemistry, crystal chemistry, materials research, structure-property relationship of solids Since 1998, he has been a member of the scientific council of the Max Planck Society and a director at the Max Planck Institute for solid-state research in StuttgartHe has developed a concept for plan- ning solid state syntheses, combining computational and experimental tools, that is pointing the way to rational and efficient discovery of new materials. Academic and Professional Career since 1998 Director at the Max Planck Institute for Solid State Research, Stuttgart and Honorary Professor at the University of Stuttgart, Germany 1987 - 1998 Professor (C4) and Director of the Institute at the University of Bonn, Germany 1981 - 1987 Professor (C4), Chair B for Inorganic Chemistry of the University of Hannover, Germany 1978 Habilitation at the University of Gießen, Germany 1973 Promotion (Ph.D.) at the University of Gießen, Germany 1966 - 1970 Study of Chemistry at the University of Gießen, Germany Honours and Awarded Memberships (Selection) 2019 Otto-Hahn-Prize 2009 Centenary Prize, Royal Society of Chemistry, UK 2009 Georg Wittig - Victor Grignard Prize, Société Chimique de France 2008 Member of acatech (National Academy of Science and Engineering) Nationale Akademie der Wissenschaften Leopoldina www.leopoldina.org 1 2007 Karl Ziegler Award, Germany 2004 Honorary Doctorate of the Ludwig Maximilians-University of
    [Show full text]
  • Tomaso A. Poggio
    BK-SFN-NEUROSCIENCE-131211-09_Poggio.indd 362 16/04/14 5:25 PM Tomaso A. Poggio BORN: Genova, Italy September 11, 1947 EDUCATION: University of Genoa, PhD in Physics, Summa cum laude (1971) APPOINTMENTS: Wissenschaftlicher Assistant, Max Planck Institut für Biologische Kybernetik, Tubingen, Germany (1978) Associate Professor (with tenure), Department of Psychology and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (1981) Uncas and Helen Whitaker Chair, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology (1988) Eugene McDermott Professor, Department of Brain and Cognitive Sciences, Computer Science and Artificial Intelligence Laboratory and McGovern Institute for Brain Research, Massachusetts Institute of Technology (2002) HONORS AND AWARDS (SELECTED): Otto-Hahn-Medaille of the Max Planck Society (1979) Member, Neurosciences Research Program (1979) Columbus Prize of the Istituto Internazionale delle Comunicazioni Genoa, Italy (1982) Corporate Fellow, Thinking Machines Corporation (1984) Founding Fellow, American Association of Artificial Intelligence (1990) Fellow, American Academy of Arts and Sciences (1997) Foreign Member, Istituto Lombardo dell’Accademia di Scienze e Lettere (1998) Laurea Honoris Causa in Ingegneria Informatica, Bicentenario dell’Invezione della Pila, Pavia, Italia, March (2000) Gabor Award, International Neural Network Society (2003) Okawa Prize (2009) Fellow, American Association for the Advancement of Science (2009) Tomaso Poggio began his career in collaboration
    [Show full text]
  • Ian Rae: “Two Croatian Chemists Who Were Awarded the Nobel Prize in Chemistry”
    Croatian Studies Review 13 (2017) Ian Rae: “Two Croatian Chemists who were Awarded the Nobel Prize in Chemistry” Ian Rae School of Chemistry University of Melbourne [email protected] Abstract Two organic chemists of Croatian origin, Leopold Ružička and Vladimir Prelog, made significant contributions to natural product chemistry during the twentieth century. They received their university education and research training in Germany and Czechoslovakia, respectively. Both made their careers in Zürich, Switzerland, and both shared the Nobel Prize in Chemistry, in 1939 and 1975, respectively. In this article, I have set the details of their lives and achievements against the education and research climates in Europe and other regions, especially as they apply to the field of chemistry. Key words: Croatia, organic, chemistry, Nobel, Ružička, Prelog 31 Croatian Studies Review 13 (2017) Introduction1 In the twentieth century two organic chemists of Croatian origin were awarded the Nobel Prize in Chemistry. They were Lavoslav (Leopold) Ružička (1887-1976) and Vladimir Prelog (1906-1998), whose awards came in 1939 and 1975, respectively. Both were living and working in Switzerland at the time of the awards and it was in that country – specifically in the city of Zürich – that they performed the research that made them Nobel Laureates. To understand the careers of Ružička and Prelog, and of many other twentieth century organic chemists, we need to look back to the nineteenth century when German chemists were the leaders in this field of science. Two developments characterise this German hegemony: the introduction of the research degree of Doctor of Philosophy (PhD), and the close collaboration between organic chemists in industry and university.
    [Show full text]
  • The History of Biochemistry
    ISSN 2409-4943. Ukr. Biochem. J., 2019, Vol. 91, N 1 THES HHISI TORY OF BBIOCHEMISIOCHEMISTRY УДК 577.12 + 577.23 doi: https://doi.org/10.15407/ubj91.01.108 Внесок лауреатіВ нобеліВської премії В розВиток динамічної біохімії та біоенергетики. е. бухнер, а. коссель, р. Вільштеттер, о. мейєргоф, а. хілл, о. Варбург, а. сент-дьєрді В. М. ДанилоВа, Р. П. ВиногРаДоВа, С. В. КоМіСаРенКо і нститут біохімії ім. о. В. Палладіна НАН України, Київ; e-mail: [email protected] отримано: 29 листопада 2018; затверджено: 13 грудня 2018 Дякуючи геніальним відкриттям нобелівських лауреатів першої половини ХХ ст. – е. Бухнера, а. Косселя, Р. Вільштеттера, о. Мейєргофа, а. Хілла, о. Варбурга, а. Сент-Дьєрді, сьогодні ми маємо уявлення про механізм перетворення і окислення органічних речовин в живих організмах. В статті представлено аналіз творчої діяльності цих геніїв експерименту і людської думки, які через розшифрування основних шляхів перетворення вуглеводів і енергії в живих організмах заклали основи динамічної біохімії та біоенергетики (одного з розділів біохімічної науки). К л ю ч о в і с л о в а: е. Бухнер, а. Коссель, Р. Вільштеттер, о. Мейєргоф, а. Хілл, о. Варбург, а. Сент- Дьєрді, зимаза, ензими, динамічна біохімія, біоенергетика. априкінці XIX ст. дослідники вже що окислюються. Перетворення органічних зрозуміли, що між початковими і речовин у живих організмах відбувається без Н кінцевими продуктами перетворень підвищення температури і за фізіологічних складних органічних сполук мають утворю- умов завдяки участі в реакціях біологічних ватись проміжні компоненти. Так, протеїни, каталізаторів – ензимів. вуглеводи і жири не відразу утворюють дво- Але це не було відомо наприкінці ХІХ – на окис вуглецю і воду; в процесі їх перетворення початку ХХ ст.
    [Show full text]
  • Alkali Metals- Group 1 (IA)
    Alkali Metals- Group 1 (IA) The alkali metals make up Group 1 of the periodic table. This family consists of the elements lithium, sodium, potassium, rubidium, cesium, and francium (Li, Na, K, Rb, Cs, and Fr, respectively). Group one elements share common characteristics. They are all soft, silver metals. Due to their low ionization energy, these metals have low melting points and are highly reactive. The reactivity of this family increases as you move down the table. Alkali metals are noted for how vigorously they react with water. Due to this, they are often stored in mineral oil and are not found in their elemental forms in nature. These characteristics can be explained by examining the electronic structure of each element in this group. Alkali metals have one valence electron. They readily give up this electron to assume the noble gas configuration as a cation. This makes the elements in this group highly reactive. History Explore the discoverer's biography, including general facts about his life and anecdotes regarding how he made this particular discovery. Also see other significant scientific discoveries built largely on this concept and other real-world applications in history that may not still be relevant. Discoverer/Developer See each tab for individual information about the discoverer of each element. Lithium Lithium was discovered in 1817 by Johan August Arfwedson. Arfwedson was born in 1792 to a wealthy family in Sweden. At a young age he attended the University of Uppsala and earned degrees in law and mineralogy. His interest in minerals is what led to his discovery of lithium.
    [Show full text]
  • Socit Chimique De France 2014 Prize Winners
    Angewandte. Angewandte News Chemie Socit Chimique de France 2014 Prize Nazario Martn (Universidad Complutense de Winners Madrid) is the winner of the Prix franco-espagnol Awarded … Miguel Cataln–Paul Sabatier. Martn was featured The Socit Chimique de France has announced its here when he was awarded the 2012 EuCheMS 2014 prize winners. We congratulate all the awar- Lectureship.[4a] Martn is on the International dees and feature our authors and referees here. Advisory Boards of Chemistry—An Asian Journal, Max Malacria (Institut de Chimie des Substan- ChemPlusChem, and ChemSusChem. His report on ces Naturelles; ICSN) is the winner of the Prix modified single-wall nanotubes was recently fea- Joseph Achille Le Bel, which is awarded to tured on the cover of Chemistry—A European recognize internationally recognized research. Mal- Journal.[4b] acria studied at the Universit Aix-Marseille III, Michael Holzinger (Universit Joseph Four- where he completed his PhD under the supervision nier, Grenoble 1; UJF) is the winner of the Prix M. Malacria of Marcel Bertrand in 1974. From 1974–1981, he jeune chercheur from the Analytical Chemistry was matre-assistant with Jacques Gore at the Division. Holzinger carried out his PhD at the Universit Claude Bernard Lyon 1 (UCBL), and Friedrich-Alexander-Universitt Erlangen-Nrn- from 1981–1983, he carried out postdoctoral berg. After postdoctoral research at the Universit research with K. Peter C. Vollhardt at the Univer- Montpellier 2 (UM2) and the Max Planck Institute sity of California, Berkeley. He returned to the for Solid-State Research, and working at Robert UCBL as matre de conferences in 1983, and was Bosch, he joined Serge Cosniers group at the UJF made professor at the Universit Pierre et Marie as a CNRS charg de recherche.
    [Show full text]
  • Nobel Prizes
    W W de Herder Heroes in endocrinology: 1–11 3:R94 Review Nobel Prizes Open Access Heroes in endocrinology: Nobel Prizes Correspondence Wouter W de Herder should be addressed to W W de Herder Section of Endocrinology, Department of Internal Medicine, Erasmus MC, ’s Gravendijkwal 230, 3015 CE Rotterdam, Email The Netherlands [email protected] Abstract The Nobel Prize in Physiology or Medicine was first awarded in 1901. Since then, the Nobel Key Words Prizes in Physiology or Medicine, Chemistry and Physics have been awarded to at least 33 " diabetes distinguished researchers who were directly or indirectly involved in research into the field " pituitary of endocrinology. This paper reflects on the life histories, careers and achievements of 11 of " thyroid them: Frederick G Banting, Roger Guillemin, Philip S Hench, Bernardo A Houssay, Edward " adrenal C Kendall, E Theodor Kocher, John J R Macleod, Tadeus Reichstein, Andrew V Schally, Earl " neuroendocrinology W Sutherland, Jr and Rosalyn Yalow. All were eminent scientists, distinguished lecturers and winners of many prizes and awards. Endocrine Connections (2014) 3, R94–R104 Introduction Endocrine Connections Among all the prizes awarded for life achievements in In 1901, the first prize was awarded to the German medical research, the Nobel Prize in Physiology or physiologist Emil A von Behring (3, 4). This award heralded Medicine is considered the most prestigious. the first recognition of extraordinary advances in medicine The Swedish chemist and engineer, Alfred Bernhard that has become the legacy of Nobel’s prescient idea to Nobel (1833–1896), is well known as the inventor of recognise global excellence.
    [Show full text]
  • CARL BOSCH and HIS MUSEUM Fathi Habashi, Laval University
    Bull. Hist. Chem., VOLUME 35, Number 2 (2010) 111 CARL BOSCH AND HIS MUSEUM Fathi Habashi, Laval University Carl Bosch (1874-1940) (Fig. 1) was for the development of the catalysts. born in Cologne, studied metallurgy Further problems which had to be and mechanical engineering at the Tech- solved were the construction of safe nische Hochschule in Berlin (1894-96), high-pressurized reactors and a cheap then chemistry at Leipzig University, way of producing and cleaning the graduating in 1898. In 1899 he entered gases necessary for the synthesis of the employ of the Badische Anilin- und ammonia. Step by step Bosch went Sodafabrik in Ludwigshafen (Fig. 2) on to using increasingly larger manu- and participated in the development facturing units. In order to solve the of the then new industry of synthetic growing problems posed by materials indigo. and related safety problems, BASF set up the chemical industry’s first When in 1908 the Badische ac- Materials Testing Laboratory in 1912 quired the process of high-pressure to identify and control problems in synthesis of ammonia, which had been materials for instrumentation and developed by Fritz Haber (1868-1934) process engineering. at the Technische Hochschule in Karl- sruhe, Bosch was given the task of The plant in Oppau for the pro- developing this process on an industrial duction of ammonia and nitrogen Figure 1. Carl Bosch (1874-1940) scale. This involved the construction of fertilizers was opened in 1913. Bosch plant and apparatus which would stand up wanted fertilizers to be tested thorough- to working at high gas pressure and high-reaction tem- ly, so that customers were to be given proper instructions peratures.
    [Show full text]
  • Robert Wilhelm Bunsen Und Sein Heidelberger Laboratorium Heidelberg, 12
    Historische Stätten der Chemie Robert Wilhelm Bunsen und sein Heidelberger Laboratorium Heidelberg, 12. Oktober 2011 Gesellschaft Deutscher Chemiker 1 Mit dem Programm „Historische Stätten der Chemie“ würdigt Robert Wilhelm Bunsen – die Gesellschaft Deutscher Chemiker (GDCh) Leistungen von geschichtlichem Rang in der Chemie. Als Orte der Erinnerung eine biographische Skizze werden Wirkungsstätten beteiligter Wissenschaftlerinnen und Wissenschaftler in einem feierlichen Akt ausgezeichnet. Eine Broschüre bringt einer breiten Öffentlichkeit deren wissenschaft- Bunsen war einer der Wegbereiter der Physikalischen Chemie liches Werk näher und stellt die Tragweite ihrer Arbeiten im und ein bedeutender Vertreter der anorganisch-analytischen aktuellen Kontext dar. Ziel dieses Programms ist es, die Erinne- Richtung. Seine wissenschaftliche Bedeutung liegt in der Ent- rung an das kulturelle Erbe der Chemie wach zu halten und die wicklung und Perfektionierung von Methoden und Instrumen- Chemie mit ihren historischen Wurzeln stärker in das Blickfeld ten. Diese Arbeitsschwerpunkte hat Bunsen von Beginn seiner der Öffentlichkeit zu rücken. Karriere an verfolgt und systematisch ausgebaut. Am 12. Oktober 2011 gedenken die GDCh, die Deutsche 1811 als jüngster von vier Söhnen einer bürgerlichen protestan- Bunsen-Gesellschaft für Physikalische Chemie (DBG), die Che- tischen Familie in Göttingen geboren, begann Bunsen dort 1828 mische Gesellschaft zu Heidelberg (ChGzH) und die Ruprecht- das Studium der Naturwissenschaften. Seine wichtigsten Lehrer Karls-Universität
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]