Honors General Chemistry II/Chemistry 122H

Total Page:16

File Type:pdf, Size:1020Kb

Honors General Chemistry II/Chemistry 122H Spring 2009 Honors General Chemistry II/Chemistry 122H Course Description and Objectives This course covers the second half of general chemistry, which includes thermochemistry, kinetics, equilibria, acid-base chemistry, and electrochemistry. In this honors course you will be expected to develop more in-depth knowledge of the covered topics then you would in a regular section of general chemistry. Your performance in the course will be judged by the quizzes, exams and class participation. In addition to the topics covered in the textbook, you will apply your literacy skills to a literature-based research project. Instructor Tomislav Pintauer, Ph.D. [email protected] 412-396-1626 347 Mellon Hall Office Hours: 1-2 pm on Mondays and Wednesdays, and by appointment. Lab Coordinator Patricia Bordell, Ph.D. [email protected], [email protected] 724-331-9474 308 Mellon Hall Textbook and Resources “General Chemistry” and “Selected Solutions Manual” by Petrucci, Herring, Harwood and Madura, Prentice-Hall, 9th edition. On line: http://cwx.prenhall.com/petrucci/ A Personal Response System keypad is required for this class. Lecture Monday, Wednesday and Friday 10:00-10:50 Fisher Hall 325 Wednesday 3:05-4:55 Bayer 101 Wednesday Recitations will be primarily used for quizzes, examinations, and problem solving. Class Web Site http://www.blackboard.duq.edu Honors General Chemistry II/ Chemistry 122H will have a website on blackboard this semester. You are encouraged to check the website regularly because important announcements and materials will be posted. Blackboard will also serve as a gradebook where you can look up your grades throughout the semester. Be sure to check the gradebook regularly to make sure grades were inputted correctly. Honors General Chemistry II Chemistry 122H Spring 2009 Syllabus Dr. Tomislav Pintauer 1 Spring 2009 Honors General Chemistry II/Chemistry 122H How to Login: Username: your Duquesne username Password (initial): first letter of your last name, followed by SSN. Your password should be changed after the first login. To change your password first login to blackboard and then go to blackboard tools/personal settings/ change password. Examination For the Spring 2009 semester, three lecture examinations will be given, plus a final examination. Each examination is comprehensive and the final exam is cumulative (covering all material from Chemistry 122H). To obtain a passing grade in this course, you must pass both the lecture and laboratory portions of the course. Exam 1 15% 3:05-4:55 pm, Wednesday, February 4, 2009, Wolf Lecture Hall Exam 2 15% 3:05-4:55 pm, Wednesday, March 18, 2009, Wolf Lecture Hall Exam 3 15% 3:05-4:55 pm, Wednesday, April 15, 2009, Wolf Lecture Hall Final Exam 20% 8:45-10:45 am, Thursday, April 30, 2009, Fisher Hall 609 Quizzes There will be 8 quizzes given during recitation. The material from the quizzes will be drawn from lecture and your homework assignments. Therefore, it is to your advantage to attend class and do your homework assignments. Your lowest quiz grade will be replaced by your participation grade. If you miss a quiz, that quiz will be dropped. Make-up Policy If you miss a regularly scheduled exam due to a recognized reason by the university, 15% will be added to the final exam (i.e. your final exam will carry a maximum of 35%). There is no make up for the final exam. Please mark your calendar and make your travel plans accordingly. There are also no quiz make-ups. The lowest quiz grade will be dropped (see quiz section above). Any remaining missing quizzes will result in a score of zero. In the event of illness and extraordinary circumstances you must have a doctors note and notify your advisor and myself of the situation within one week of the missed quiz and/or exam. Homework You are expected to read the appropriate section of the text before coming to class. Problems will be assigned for homework for each chapter. Completing the homework assignment is crucial in obtaining a solid grasp of the material and you are strongly encouraged to make it a high priority. Homework problems will not be collected or graded. It is your responsibility to ensure that you understand the material tested in the homework problems. You are encouraged to attend my office hours. Students are also strongly encouraged to study in groups. Homework problems, reading assignments, and lecture material will be the subject to the quizzes and exams. Project As a part of your assignment for Honors General Chemistry II (Chemistry 122H) you will have to write a short paper (approximately 5 pages, double spaced, including all figures, schemes and references). This year’s topic will include Nobel Prize Winners in Chemistry. Details of the project are provided at the end of syllabus. Your project will count as 5% of your final grade. Calculators NO programmable or graphing calculators are allowed in the class. You will need a scientific calculator. Honors General Chemistry II Chemistry 122H Spring 2009 Syllabus Dr. Tomislav Pintauer 2 Spring 2009 Honors General Chemistry II/Chemistry 122H Lab Laboratory course (CHEM 122H-L) will count towards 15% for your final grade. However, it is not possible to pass the class without passing the laboratory portion because it is an integral part of the learning experience. If you fail the lab you will receive a grade of “F” for the entire class. Your instructor will be Dr. Bordell. She will establish the policies for the laboratory portion of this course. Re-grading Policy Re-grades will be accepted within two days of the exam being returned. If you turn in an exam or quiz for a re-grade, the entire assignment will be re-graded. This may result in either the loss or gain of points. Grading Grade Distribution Exam 1 15% 93-100 A Exam 2 15% 90-92 A- Exam 2 15% 87-89 B+ Quizzes 15% 83-86 B Lab 15% 80-82 B- Project 5% 77-79 C+ Final 20% 70-77 C 100% 60-69 D <60 F Grade Assignments will be made using the +/- scale. This means it is possible to earn grades of A, A-, B+, B, B-, C+, C, D and F. Grades will be assigned using the above grading scale as a minimum guideline. Academic Integrity Cheating will not be tolerated in lecture or lab. If you are caught cheating, you will receive a grade of “F” in the course or lab. Please read Articles V and VI of the Duquesne University Code of Student Rights, Responsibilities, and Conduct for procedures in this regard. For detailed information on Bayer School Academic Integrity policy please visit http://www.science.duq.edu/academicintegrity.htm. Notes If you require special arrangements, for either learning or physical disabilities, please contact me immediately so that we can work out the necessary accommodations. My office door is generally open, feel free to stop by for help. Getting help early in the semester can be a key to understanding the material. Honors General Chemistry II Chemistry 122H Spring 2009 Syllabus Dr. Tomislav Pintauer 3 Spring 2009 Honors General Chemistry II/Chemistry 122H Chapter Topics Chapter 7: Thermochemistry Chapter 14: Chemical Kinetics Chapter 15: Principles of Chemical Equilibrium Chapter 16: Acids and Bases Chapter 17: Additional Aspects of Acid-Base Equilibria Chapter 18: Solubility and Complex-Ion Equilibria Chapter 19: Spontaneous Change: Entropy and Free Energy Chapter 20: Electrochemistry Chapter 24: Complex Ions and Coordination Compounds Chapter 25: Nuclear Chemistry Honors General Chemistry II Chemistry 122H Spring 2009 Syllabus Dr. Tomislav Pintauer 4 Spring 2009 Honors General Chemistry II/Chemistry 122H Tentative Spring 2009 Schedule Honors General Chemistry II Chemistry 122H Spring 2009 Syllabus Dr. Tomislav Pintauer 5 Spring 2009 Honors General Chemistry II/Chemistry 122H Honors General Chemistry II Chemistry 122H Spring 2009 Syllabus Dr. Tomislav Pintauer 6 Chemistry 122H PROJECT Spring 2008, Duquesne University, Dr. Tomislav Pintauer Chemistry Nobel Prize Winners 1901-2007 “In 1901 the very first Nobel Prize in Chemistry was awarded to Jacobus H. van 't Hoff (pictured below) for his work on rates of reaction, chemical equilibrium, and osmotic pressure. In more recent years, the Chemistry Nobel Laureates have increased our understanding of chemical processes and their molecular basis, and have also contributed to many of the technological advancements we enjoy today.” (source:www.nobel.se) The Nobel Prize in said interest shall be divided into five equal parts, Chemistry is awarded which shall be apportioned as follows: one part to the once a year by the Royal person who shall have made the most important Swedish Academy of discovery or invention within the field of physics; Sciences. It is one of the one part to the person who shall have made the most f i v e N o b e l P r i z e s important chemical discovery or improvement; one established by the will of part to the person who shall have made the most Alfred Nobel in 1895, awarded for outstanding important discovery within the domain of physiology contributions in physics, chemistry, literature, peace, or medicine; one part to the person who shall have and physiology or medicine since 1901. This award produced in the field of literature the most is administered by the Nobel Foundation and widely outstanding work in an ideal direction; and one part regarded as the most prestigious award that a to the person who shall have done the most or the scientist in the various fields of chemistry can best work for fraternity between nations, for the receive. The first Nobel Prize in Chemistry was abolition or reduction of standing armies and for the awarded in 1901 to Jacobus Henricus van 't Hoff, of holding and promotion of peace congresses.
Recommended publications
  • Stoddart Research Professor of Chemistry, a Position Northwestern University He Held Until His Death in 1977
    PREVIOUS J.K.N. JONES JONES LECTURERS John Kenyon Netherton Jones, Ph.D. Department of Chemistry Birmingham University. Assistant lecturer Queen’s University and then lecturer at Bristol University 1936- 2011 • J.A. Caruso 1944, he was engaged in munitions research and training during the Second World War. 2010 • T. Marks He resigned at the end of the war with the is honoured to host the rank of captain, and returned to academic 2012 Jones Lecturer: work as senior lecturer at Manchester 2010 • G. van Koten University 1945-1948 and then as reader in chemistry at Bristol University 1948-1953. 2009 • P.B. Corkum He came to Queen's in 1953 as Chown Prof. J Fraser Stoddart Research Professor of Chemistry, a position Northwestern University he held until his death in 1977. 2008 • M. Gruebele Evanston, Illinois, USA Professor Jones' outstanding achievements in carbohydrate chemistry were recognized by 2005 • W. Klemperer his election as Fellow of the Royal Society of London in 1957 and of the Royal Society of Canada in 1959. The Division of 2001 • G. Ozin Carbohydrate Chemistry of the American Chemical Society presented him with the 1997 • M.S. Brookhart Claude S. Hudson Award in 1969, and in 1975 he received the Anselme Payen Award from the Cellulose, Paper and Textile 1993 • B.O. Fraser-Reid Public Lecture Division. In March 1975 he was awarded the third Sir Norman Haworth Memorial Medal of “Mingling Art with Science” The Chemical Society (London). 1990 • S. Hanessian Professor Jones was, at all times, an Thursday, March 22, 2012 educator of the highest rank and an 1982 • R.
    [Show full text]
  • Vitamin C: Prevention of Chronic Diseases and Optimal Doses
    NFT 9-2010 s. 20-27 08.09.10 13.00 Side 20 Vitenskap Review Vitamin C: Prevention of Chronic Diseases and Optimal Doses TEXT: Purusotam Basnet, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, e-mail: [email protected] INTRODUCTION acid because of its anti-scorbutic property ABSTRACT It has been known for a long time that (Latin word scorbutus = scurvy). In absence of fresh fruit and vegetables in the solution, it releases a proton to give an The role of vitamin C in prevention and human diet leads to scurvy, a fatal disease anion called ascorbate. Ascorbate easily treatment of scurvy is well accepted. In widely described throughout written transfers one electron and one additional spite of having long history as the candidate of alternative therapy for the history (Lind, 1753). Later, it was dis - proton and can remains in the stable prevention and treatment of cancer, still covered that ascorbic acid in fresh fruits radical form as semidehydroascorbate there is no common conclusion on the and vegetables prevents scurvy and that is (SDA), a state in between dehydroa- topic. However, its biochemical reaction why it is a vitamin for humans and must be scorbic acid (DHA) and ascorbate in the as an antioxidant and its immuno- a part of human diet (Mandl et al., 2009). physiological condition (figure 1). stimulating effects drew further Among the long list of people who Because of the unique electron trans- attention towards its health beneficial contributed to the knowledge regarding ferring capability, ascorbate plays a vital effects. Current official recommended vitamin C, three Nobel prize-winners are in role in living cells.
    [Show full text]
  • Ian Rae: “Two Croatian Chemists Who Were Awarded the Nobel Prize in Chemistry”
    Croatian Studies Review 13 (2017) Ian Rae: “Two Croatian Chemists who were Awarded the Nobel Prize in Chemistry” Ian Rae School of Chemistry University of Melbourne [email protected] Abstract Two organic chemists of Croatian origin, Leopold Ružička and Vladimir Prelog, made significant contributions to natural product chemistry during the twentieth century. They received their university education and research training in Germany and Czechoslovakia, respectively. Both made their careers in Zürich, Switzerland, and both shared the Nobel Prize in Chemistry, in 1939 and 1975, respectively. In this article, I have set the details of their lives and achievements against the education and research climates in Europe and other regions, especially as they apply to the field of chemistry. Key words: Croatia, organic, chemistry, Nobel, Ružička, Prelog 31 Croatian Studies Review 13 (2017) Introduction1 In the twentieth century two organic chemists of Croatian origin were awarded the Nobel Prize in Chemistry. They were Lavoslav (Leopold) Ružička (1887-1976) and Vladimir Prelog (1906-1998), whose awards came in 1939 and 1975, respectively. Both were living and working in Switzerland at the time of the awards and it was in that country – specifically in the city of Zürich – that they performed the research that made them Nobel Laureates. To understand the careers of Ružička and Prelog, and of many other twentieth century organic chemists, we need to look back to the nineteenth century when German chemists were the leaders in this field of science. Two developments characterise this German hegemony: the introduction of the research degree of Doctor of Philosophy (PhD), and the close collaboration between organic chemists in industry and university.
    [Show full text]
  • Molecular Geometry and Molecular Graphics: Natta's Polypropylene And
    Molecular geometry and molecular graphics: Natta's polypropylene and beyond Guido Raos Dip. di Chimica, Materiali e Ing. Chimica \G. Natta", Politecnico di Milano Via L. Mancinelli 7, 20131 Milano, Italy [email protected] Abstract. In this introductory lecture I will try to summarize Natta's contribution to chemistry and materials science. The research by his group, which earned him the Noble prize in 1963, provided unprece- dented control over the synthesis of macromolecules with well-defined three-dimensional structures. I will emphasize how this structure is the key for the properties of these materials, or for that matter for any molec- ular object. More generally, I will put Natta's research in a historical context, by discussing the pervasive importance of molecular geometry in chemistry, from the 19th century up to the present day. Advances in molecular graphics, alongside those in experimental and computational methods, are allowing chemists, materials scientists and biologists to ap- preciate the structure and properties of ever more complex materials. Keywords: molecular geometry, stereochemistry, chirality, polymers, self-assembly, Giulio Natta To be presented at the 18th International Conference on Geometry and Graphics, Politecnico di Milano, August 2018: http://www.icgg2018.polimi.it/ 1 Introduction: the birth of stereochemistry Modern chemistry was born in the years spanning the transition from the 18th to the 19th century. Two key figures were Antoine Lavoisier (1943-1794), whose em- phasis on quantitative measurements helped to transform alchemy into a science on an equal footing with physics, and John Dalton (1766-1844), whose atomic theory provided a simple rationalization for the way chemical elements combine with each other to form compounds.
    [Show full text]
  • Facts and Figures 2013
    Facts and Figures 201 3 Contents The University 2 World ranking 4 Academic pedigree 6 Areas of impact 8 Research power 10 Spin-outs 12 Income 14 Students 16 Graduate careers 18 Alumni 20 Faculties and Schools 22 Staff 24 Estates investment 26 Visitor attractions 28 Widening participation 30 At a glance 32 1 The University of Manchester Our Strategic Vision 2020 states our mission: “By 2020, The University of Manchester will be one of the top 25 research universities in the world, where all students enjoy a rewarding educational and wider experience; known worldwide as a place where the highest academic values and educational innovation are cherished; where research prospers and makes a real difference; and where the fruits of scholarship resonate throughout society.” Our core goals 1 World-class research 2 Outstanding learning and student experience 3 Social responsibility 2 3 World ranking The quality of our teaching and the impact of our research are the cornerstones of our success. 5 The Shanghai Jiao Tong University UK Academic Ranking of World ranking Universities assesses the best teaching and research universities, and in 2012 we were ranked 40th in the world. 7 World European UK European Year Ranking Ranking Ranking ranking 2012 40 7 5 2010 44 9 5 2005 53 12 6 2004* 78* 24* 9* 40 Source: 2012 Shanghai Jiao Tong University World Academic Ranking of World Universities ranking *2004 ranking refers to the Victoria University of Manchester prior to the merger with UMIST. 4 5 Academic pedigree Nobel laureates 1900 JJ Thomson , Physics (1906) We attract the highest calibre researchers and Ernest Rutherford , Chemistry (1908) teachers, boasting 25 Nobel Prize winners among 1910 William Lawrence Bragg , Physics (1915) current and former staff and students.
    [Show full text]
  • Los Premios Nobel De Química
    Los premios Nobel de Química MATERIAL RECOPILADO POR: DULCE MARÍA DE ANDRÉS CABRERIZO Los premios Nobel de Química El campo de la Química que más premios ha recibido es el de la Quí- mica Orgánica. Frederick Sanger es el único laurea- do que ganó el premio en dos oca- siones, en 1958 y 1980. Otros dos también ganaron premios Nobel en otros campos: Marie Curie (física en El Premio Nobel de Química es entregado anual- 1903, química en 1911) y Linus Carl mente por la Academia Sueca a científicos que so- bresalen por sus contribuciones en el campo de la Pauling (química en 1954, paz en Física. 1962). Seis mujeres han ganado el Es uno de los cinco premios Nobel establecidos en premio: Marie Curie, Irène Joliot- el testamento de Alfred Nobel, en 1895, y que son dados a todos aquellos individuos que realizan Curie (1935), Dorothy Crowfoot Ho- contribuciones notables en la Química, la Física, la dgkin (1964), Ada Yonath (2009) y Literatura, la Paz y la Fisiología o Medicina. Emmanuelle Charpentier y Jennifer Según el testamento de Nobel, este reconocimien- to es administrado directamente por la Fundación Doudna (2020) Nobel y concedido por un comité conformado por Ha habido ocho años en los que no cinco miembros que son elegidos por la Real Aca- demia Sueca de las Ciencias. se entregó el premio Nobel de Quí- El primer Premio Nobel de Química fue otorgado mica, en algunas ocasiones por de- en 1901 al holandés Jacobus Henricus van't Hoff. clararse desierto y en otras por la Cada destinatario recibe una medalla, un diploma y situación de guerra mundial y el exi- un premio económico que ha variado a lo largo de los años.
    [Show full text]
  • A Nobel Synthesis
    MILESTONES IN CHEMISTRY Ian Grayson A nobel synthesis IAN GRAYSON Evonik Degussa GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang, 63457, Germany he first Nobel Prize for chemistry was because it is a scientific challenge, as he awarded in 1901 (to Jacobus van’t Hoff). described in his Nobel lecture: “The synthesis T Up to 2010, the chemistry prize has been of brazilin would have no industrial value; awarded 102 times, to 160 laureates, of whom its biological importance is problematical, only four have been women (1). The most but it is worth while to attempt it for the prominent area for awarding the Nobel Prize sufficient reason that we have no idea how for chemistry has been in organic chemistry, in to accomplish the task” (4). which the Nobel committee includes natural Continuing the list of Nobel Laureates in products, synthesis, catalysis, and polymers. organic synthesis we arrive next at R. B. This amounts to 24 of the prizes. Reading the Woodward. Considered by many the greatest achievements of the earlier organic chemists organic chemist of the 20th century, he who were recipients of the prize, we see that devised syntheses of numerous natural they were drawn to synthesis by the structural Alfred Nobel, 1833-1896 products, including lysergic acid, quinine, analysis and characterisation of natural cortisone and strychnine (Figure 1). 6 compounds. In order to prove the structure conclusively, some In collaboration with Albert Eschenmoser, he achieved the synthesis, even if only a partial synthesis, had to be attempted. It is synthesis of vitamin B12, a mammoth task involving nearly 100 impressive to read of some of the structures which were deduced students and post-docs over many years.
    [Show full text]
  • Blue Plaque Guide
    Blue Plaque Guide Research and Cultural Collections 2 Blue Plaque Guide Foreword 3 Introduction 4 1 Dame Hilda Lloyd 6 2 Leon Abrams and Ray Lightwood 7 3 Sir Norman Haworth 8 4 Sir Peter Medawar 9 5 Charles Lapworth 10 6 Frederick Shotton 11 7 Sir Edward Elgar 12 8 Sir Granville Bantock 13 9 Otto Robert Frisch and Sir Rudolf E Peierls 14 10 John Randall and Harry Boot 15 11 Sir Mark Oliphant 16 12 John Henry Poynting 17 13 Margery Fry 18 14 Sir William Ashley 19 15 George Neville Watson 20 16 Louis MacNeice 21 17 Sir Nikolaus Pevsner 22 18 David Lodge 23 19 Francois Lafi tte 24 20 The Centre for Contemporary Cultural Studies 25 21 John Sutton Nettlefold 26 22 John Sinclair 27 23 Marie Corelli 28 Acknowledgments 29 Visit us 30 Map 31 Blue Plaque Guide 3 Foreword Across the main entrance to the Aston Webb Building, the historic centre of our campus, is a line of standing male figures carved into the fabric by Henry Pegram. If this were a cathedral, they would be saints or prophets; changed the world, from their common home the University but this is the University of Birmingham, and the people of Birmingham. who greet us as we pass through those doors are Beethoven, Virgil, Michelangelo, Plato, Shakespeare, The University’s Research and Cultural Collections, Newton, Watt, Faraday and Darwin. While only one of working with Special Collections, the Lapworth Museum, those (Shakespeare) was a local lad, and another (Watt) the Barber Institute of Fine Arts and Winterbourne House local by adoption, together they stand for the primacy of and Garden, reflect the cross-disciplinary nature of the creativity.
    [Show full text]
  • Philip D. Lane Ziegler-Natta Catalysis: the Nature of the Active Site Literature Seminar April 3, 1992 Karl Ziegler, While Study
    47 Ziegler-Natta Catalysis: The Nature of the Active Site Philip D. Lane Literature Seminar April 3, 1992 Karl Ziegler, while studying ethylene insertion into aluminum-alkyl bonds, serendipi­ tously discovered the effect transition metals had on ethylene polymerization. He and Guilio Natta made significant contributions to the catalytic polymerization of olefins using a transition metal from groups 4-8 and an organometallic from groups 1, 2, or 13, the most famous com­ bination being TiC4 + Al(C2H5)3 for the polymerization of polyethylene. The Nobel Prize in Chemistry was awarded to them in 1963 for their contributions in this area [l,2]. The impor­ tance of this catalytic process can be seen by the amount of polyethylene produced in the U.S. In 1990, 8.3 billion lbs. of high-density polyethylene were produced [3]. The heterogeneous nature of Ziegler-Natta catalysts make them difficult to study [l,4,5]. Despite improved techniques for studying surfaces, information on an atomic level about the active sites remains elusive. For example, the surface reaction of [Zr(allyl)4] with SiQi leads to different surface species [5]. It is not clear which of the resulting surface species is responsible for the polymerization process. Various mechanisms [6,7] have been proposed for Ziegler-Natta catalysis, with the most widely accepted proposal from Cossee and Adman (Figure 1). The aluminum-alkyl is suggested to be responsible for alkylating the transition metal which is in an octahedral environment with one site vacant. Ethylene is thought to coordinate, followed by direct insertion into the metal-alkyl bond of the transition metal.
    [Show full text]
  • Estates Facts Checked by Sal
    Candidate Information Pack Head of School, School of Chemistry, College of Engineering and Physical Sciences The University We have a long and proud history of firsts at the University of Birmingham; we were the first – and are now one of the largest - civic universities in the UK. We were also the first UK University to, amongst other things, be built on a campus model; establish a Faculty of Commerce; incorporate a Medical School; and, welcome women to take medical degrees. More recently we were the first University to establish a fully comprehensive secondary school and when we open our new campus in Dubai this autumn, we will become the first Russell Group and Global Top 100 university to do so. Our heritage as the original ‘redbrick’ is combined with one of the most compelling and ambitious agendas in higher education. Quite simply, at Birmingham we make things happen. Birmingham is a leading member of the Russell Group and a founder member of the Universitas 21 global network of research universities. Home to world-class researchers, we count 11 Nobel Laureates among our staff and alumni, including three prizes awarded in 2016 for Physics and Chemistry. We have been integral to some of the greatest scientific discoveries of recent times, such as the Higgs Bosun and Gravitational Waves, and are pioneering new approaches to tackling some of the biggest global challenges facing society; from antibiotic resistance and maternal health to conflict resolution and access to education. With more than 7,500 staff, 34,000 students and 300,000 alumni across the globe, we think, recruit and compete worldwide.
    [Show full text]
  • Archive Accessions 2011 Nobel Prize Diploma Awarded to Dorothy Crowfoot Hodgkin (1910-1994)
    Archive Accessions 2011 Nobel Prize diploma awarded to Dorothy Crowfoot Hodgkin (1910-1994). Illustrated by Elsa Noreen and with calligraphy by Kerstin Anckers. The prize for chemistry was won by Hodgkin in 1964. 1 item in a leather presentation wallet. Presented 10 March 2011. Photograph albums compiled using original prints by Brevet Colonel Albert Ernest Hamerton (1873-1955), documenting the Royal Society Sleeping Sickness Commission, Uganda, 1908-1910. 2 albums. Presented 11 March 2011. Letter from James Tisdall to Sir Robert Southwell FRS (1635-1702) on financial matters regarding the construction of a fort near Kinsale. Ireland. 1 item. Purchased 24 March 2011. Personal papers of Alec Bangham FRS (1921-2010), biochemist, including correspondence and papers on Liposome research, 1950s-2010. 29 boxes. Presented 3 April 2011. Scientific notebooks of David Tabor FRS (1913-2005) materials scientist and pioneer of tribology. Includes work on friction, rolling bearings and indentation and scratch hardness of steels. c.1929-1954. 4 notebooks and 1 file. Presented, 12 April 2011. Additional papers of Professor Gustav Victor Rudolph Born FRS (b.1921) pharmacologist. 1950s-2000s. 17 boxes. Presented 20 April 2011. 2010 Letters of Dr Edward Bancroft FRS (1744-1821) 1773 and nd..3 letters. Purchased April 2010. Letters of Charles Lennox, 2nd Duke of Richmond and Duke of Aubigny FRS (!701-1750), to Martin Folkes FRS (1690-1754), President of the Royal Society. Personal and scientific letters including material on Royal Society business, notably elections. Contains material on the hydra experiments of Abraham Trembley FRS (1710-1784).1725-1744, 36 items. Presented 20 May 2010.
    [Show full text]
  • The Royal Society of Chemistry Presidents 1841 T0 2021
    The Presidents of the Chemical Society & Royal Society of Chemistry (1841–2024) Contents Introduction 04 Chemical Society Presidents (1841–1980) 07 Royal Society of Chemistry Presidents (1980–2024) 34 Researching Past Presidents 45 Presidents by Date 47 Cover images (left to right): Professor Thomas Graham; Sir Ewart Ray Herbert Jones; Professor Lesley Yellowlees; The President’s Badge of Office Introduction On Tuesday 23 February 1841, a meeting was convened by Robert Warington that resolved to form a society of members interested in the advancement of chemistry. On 30 March, the 77 men who’d already leant their support met at what would be the Chemical Society’s first official meeting; at that meeting, Thomas Graham was unanimously elected to be the Society’s first president. The other main decision made at the 30 March meeting was on the system by which the Chemical Society would be organised: “That the ordinary members shall elect out of their own body, by ballot, a President, four Vice-Presidents, a Treasurer, two Secretaries, and a Council of twelve, four of Introduction whom may be non-resident, by whom the business of the Society shall be conducted.” At the first Annual General Meeting the following year, in March 1842, the Bye Laws were formally enshrined, and the ‘Duty of the President’ was stated: “To preside at all Meetings of the Society and Council. To take the Chair at all ordinary Meetings of the Society, at eight o’clock precisely, and to regulate the order of the proceedings. A Member shall not be eligible as President of the Society for more than two years in succession, but shall be re-eligible after the lapse of one year.” Little has changed in the way presidents are elected; they still have to be a member of the Society and are elected by other members.
    [Show full text]