Oil 96 20061219 150649

Total Page:16

File Type:pdf, Size:1020Kb

Oil 96 20061219 150649 0. Schamburg · 0. Stephan (Eds.) GBF- Gesellschaft für Biotechnologische Forschung Enzyme Handbock Class 2.3.2 - 2.4 Transferases 12 Springer Index (Aiphabetical order of Enzyme names) EC-No. Name EC-No. Name 2.4.1.60 Abequosyltransferase 2.4.99.7 (alpha-N-Acetylneuraminyl- 2.4.99 .3 alpha-N-Acetylgalactos­ 2,3-beta-galactosyl-1 ,3)­ aminide alpha-2,6-sialyl­ N-acetylgalactosaminide transferase alpha-2,6-sialyltransferase 2.4.1.147 Acetylgalactosaminyl-ü-gly• 2.4.1.92 (N-Acetylneuraminyl)-galac­ cosyl-glycoprotein beta- tosylglucosylceramide 1,3-N-acetylglucosaminyl­ N-acetylgalactosaminyl­ transferase transferase 2.4.1.148 Acetylgalactosaminyl-0-gly­ 2.4.1.165 N-Acetylneuraminylgalacto­ cosyl-glycoprotein beta- sylglucosylceramide beta- 1,6-N-acetylglucosaminyl 1,4-N-acetylgalactosaminyl­ transferase transferase 2.4.1.141 N-Acetylglucosaminyl­ 2.4.1.47 N-Acylsphingosine galacto­ diphosphodolichol N-ace­ syltransferase tylglucosaminyltransferase 2.4.2.7 Adenine phosphoribosyl­ 2.4.1.187 N-Acetylglucosaminyl­ transferase diphosphoundecaprenol 2.3.2.9 Agaritine gamma-glutamyl­ N-acetyl-beta-0-mannos­ transferase aminyltransferase 2.3.2.14 0-Aianine gamma-glutamyl­ 2.4.1.188 N-Acetylglucosaminyl­ transferase diphosphoundecaprenol 2.3.2.11 Alanylphosphatidylglycerol glucosyltransferase synthase 2.4.1.38 beta-N-Acetylglucosaminyl­ 2.4.1.162 Aldose beta-D-fructosyl­ glycopeptide beta-1 ,4-ga­ transferase lactosyltransferase 2.4.1.33 Alginate synthase 2.4.1.124 N-Acetyllactosamine 2.4.1.103 Alizarin 2-beta-glucosyl­ 3-alpha-galactosyltrans­ transferase ferase 2. 4.1.140 Alternansucrase 2.4.1.90 N-Acetyllactosamine syn­ 2.4.2.14 Amidophosphoribosyl­ thase transferase 2.4.1.149 N-Acetyllactosaminide beta- 2.4.1.4 Amylosucrase 1, 3-N-acetylg lucosaminyl­ 2.4.1. 115 Anthocyanidin transferase 3-0-glucosyltransferase 2.4.1.150 N-Acetyllactosaminide beta- 2.4.2.18 Anthranilate phosphoribo­ 1,6-N-acetylglucosaminyl­ sylt~ansferase transferase 2.3.2.8 Arginyltransferase 2.4.1.151 N-Acetyllactosaminide 2.4.1. 71 Arylamine glucosyltrans­ alpha-1 ,3-galactosyltrans­ ferase ferase 2.3.2.7 Aspartyltransferase 2.4.99.6 N-Acetyllactosaminide 2.4.2.17 ATP phosphoribosyltrans­ alpha-2,3-sialyltransferase ferase 2.4.99.8 alpha-N-Acetylneuraminate 2.4.1.95 Bilirubin-glucuronoside alpha-2,8-sialyltransferase glucuronosyltransferase XI EC-No. Name EC-No. Name 2.4.1.20 Cellobiose phosphorylase 2.4.1.27 DNA beta-glucosyltrans­ 2.4.1.49 Cellodextrin phosphorylase ferase 2.4.1.29 Cellulose synthase 2.4.1.119 Dolichyl-diphosphooligo­ (GDP-forming) saccharide-protein 2.4.1.12 Cellulose synthase glycotransferase (UDP-forming) 2.4.1.153 Dolichyl-phosphate alpha­ 2.4.1.80 Ceramide glucosyltrans­ N-acetylglucosaminyl­ ferase transferase 2.4.1.16 Chitin synthase 2.4.1.117 Dolichyl-phosphate 2.4.1.142 Chitobiosyldiphosphodo­ beta-glucosyltransferase lichol alpha-mannosyl­ 2.4.1.130 Dolichyl-phosphate-man­ transferase nose-glycolipid alpha­ 2.4.1.177 Cinnamate beta-0-glucosyl­ mannosyltransferase transferase 2.4.1.109 Dolichyl-phosphate-man­ 2.4.1.111 Coniferyl-alcohol glucosyl­ nose-protein mannosyl­ transferase transferase 2.4.1.114 2-Goumarate 0-beta­ 2.4.1.83 Dolichyl-phosphate glucosyltransferase beta-0-mannosyltrans­ 2.4.1.116 Cyanidin-3-rhamnosylgluco­ ferase side 5-ü-glucosyltrans• 2.4.2.32 Dolichyl-phosphate ferase 0-xylosyltransferase 2.4.1.85 Cyanohydrin 2.4.2.33 Dolichyl-xylosyl-phos­ beta-g lucosyltransferase phate-protein xylosyl­ 2.4.1.19 Cyclomaltodextrin transferase glucanotransferase 2.4.2.27 dTDPdihydrostreptose­ 2.4.1.118 Cytokinin 7-beta-glucosyl­ streptidine-6-phosphate transferase dihydrostreptosyltrans­ 2.4.2.23 Deoxyuridine ferase phosphorylase 2.4.1.185 Flavanone 7-0-beta­ 2.4.1.5 Dextransucrase glucosyltransferase 2.4.1.2 Dextrin dextranase 2.4.2.25 Flavone apiosyltransferase 2.4.1.46 1,2-Diacylglycerol 2.4.1.81 Flavone 7-0-beta-glucosyl­ 3-beta-galactosyltrans­ transferase ferase 2.4.1.159 Flavonol-3-0-glucoside 2.4.1.157 1,2-Diacylglycerol L-rhamnosyltransferase 3-glucosyltransferase 2.4.1.91 Flavonol 3-0-glucosyltrans­ 2.4.1.104 o-Dihydroxycoumarin ferase 7-0-glucosyltransferase 2.4.2.35 Flavonoi-3-0~glycoside 2.4.1.202 2,4-Dihydroxy-7-methoxy- xylosyltransferase 2H-1 ,4-benzoxazin-3( 4H)­ 2.4. 1.100 1,2-beta-Fructan one 2-0-glucosyltrans­ 1F -fructosyltransferase ferase 2.4.1.40 Fucosylgalactose alpha-N­ 2.4.2.20 Dioxotetrahydropyrimidine acetylgalactosaminyl­ phosphoribosyltransferase transferase 2.4.1.26 DNA alpha-glucosyltrans­ 2.4.1.37 Fucosylglycoprotein 3-alpha­ ferase galactosyltransferase XII EC-Na. Name EC-Na. Name 2.4.1.67 Galaetinal-raffinase 2.4.1.134 Galaetasylxylasylpratein galaetasyltransferase 3-beta-galaetasyltrans­ 2.4.1.82 Galaetinal-suerase ferase galaetasyltransferase 2.4.1.136 Gallate 1-beta-glueasyl­ 2.4.1.205 Galaetagen 6beta­ transferase galaetasyltransferase 2.4.1.62 Gangliaside galaetasyl-· 2.4.1.184 Galaetalipid galaetasyl­ transferase transferase 2.4.1.176 Gibberellin beta-0- 2.4.1.69 Galaetaside 2-alpha-L­ g lueasyltransferase fueasyltransferase 2.4.1.88 Glabaside alpha-N-aee .. 2.4.1.65 Galaetaside 3(4)-L­ tylgalaetasaminyltrans­ fueasyltransferase ferase 2.4.1.152 Galaetaside 3-fueasyltrans­ 2.4.1.154 Glabatriasyleeramide beta- ferase 1 ,6-N-aeetylgalaetas­ 2.4.99.4 beta-Galaetaside alpha-2,3- aminyltransferase sialyltransferase 2.4.1.18 1 ,4-alpha-Giuean branc:hing 2.4.99.1 beta-Galaetaside alpha-2,6- enzyme sialyltransferase 2.4.1.24 1 ,4-alpha-Giuean 6-alptla­ 2.4.1.163 beta-Galaetasyi-N-aeetyl­ glucasyltransferase glueasaminylgalaetasyl­ 2.4.1.25 4-alpha-Giucanatransferase glueasyleeramide beta- 2.4.1.97 1 ,3-beta-0-Giucan phas­ 1 ,3-aeetylglueasaminyl­ pharylase transferase 2.4.1.113 alpha-1 ,4-Giuean-prateiin 2.4.1.164 Galaetasyi-N-aeetylglueas­ synthase (AOP-farming) aminylgalaetasylglueasyl­ 2.4.1.112 alpha-1 ,4-Giucan-prateiin eeram.ide beta-1,6-N-aee­ synthase (UOP-farming) tylglueosaminyltransferase 2.4.1.34 1 ,3-beta-Giuean synthase 2.4.1.87 beta-0-Galaetasyi-N-aeetyl­ glueosaminylg lyeapeptide 2.4.1.183 alpha-1 ,3-Giuean synthase alpha-1 ,3-galaetasyltrans­ 2.4.1.32 Glucamannan 4-beta- ferase mannasyltransferase 2.4.99.5 Galaetasyldiaeylglyeerol 2.4.1.86 Glucasaminylgalactasyl­ alpha-2,3-sialyltransferase glucasyleeramide beta­ 2.4.1. 79 Galaetasylgalaetasylgluea­ galaetasyltransferase syleeramide beta-0-aeetyl­ 2.4.1.28 Glueasyi-ONA galaetasaminyltransferase beta-glueasyltransferase 2.4.1.135 Galaetasylgalaetasyl­ 2.4.1.17 Glueuranasyltransferase xylasylprotein 3-beta­ 2.4.1.175 Glueuronyi-N-aeetylgalae­ glueuranosyltransferase tasaminylproteaglycan 2.4.1.146 beta-1 ,3-Galaetasyl-0-gly­ beta-1 ,4-N-aeetylgalae­ easyl-glyeopratein beta- tasaminyltransferase 1 ,3-N-aeetylglueasaminyl­ 2.4.1.17 4 Glueuranylgalactasyl­ transferase prateaglyean beta-1 ,4-N­ 2. 4.1. 102 beta-1 ,3-Galaetasyl-0-gly­ aeetylgalaetasaminyl­ easyl-glyeaprotein beta- transferase 1 ,6-N-aeetylglueasaminyl­ 2.3.2.5 Glutaminyl-peptide eyc:lo­ transferase transferase XIII EC-No. Name EC-No. Name 2.3.2.4 gamma-Giutamylcyclo­ 2.4.2.8 Hypoxanthine phospho­ transferase ribosyltransferase 2.3.2.1 D-Giutamyltransferase 2.4.1.121 lndole-3-acetate beta­ 2.3.2.2 gamma-Giutamyltrans­ glucosyltransferase ferase 2.4.2.34 lndolylacetylinositol 2.3.2.15 Glutathione gamma-glut­ arabinosyltransferase amylcysteinyltransferase 2.4.1.1561ndolylacetyl-myo-inositol 2.4.1.96 sn-Giycerol-3-phosphate galactosyltransferase 1-galactosyltransferase 2.4.1.1231nositol1-alpha-galactosyl­ 2.4.1.137 sn-Giycerol-3-phosphate transferase 2-alpha-galactosyltrans­ 2.4.1.200 Inulin fructotransferase ferase (depolymerizing, difructo­ 2.4.1.11 Glycogen (starch) synthase furanose-1 ,2':2', 1-dianhy­ 2.4.1.186 Glycogenin glucosyltrans­ dride forming) ferase 2.4.1.93 Inulin fructotransferase 2.4.1.131 Glycolipid 2-alpha-mannosyl­ (depolymerizing, difructo­ transferase furanose-1 ,2':2,3'-dianhy­ 2.4.1.132 Glycolipid 3-alpha-mannosyl­ dride-forming) transferase 2.4.1.9 lnulosucrase 2.4.1.122 Glycoprotein-N-acetyl­ 2.4.1.170 lsoflavone 7-0-glucosyl­ galactosamine 3-beta­ transferase galactosyltransferase 2.4.1.1 06 lsovitexin beta-glucosyl­ 2.4.1.68 Glycoprotein 6-alpha-L­ transferase fucosyltransferase 2.4.1.22 Lactose synthase 2.4.1. 74 Glycosaminoglycan 2.4.1.206 Lactosylceramide 1,3-N-ace­ galactosyltransferase tyl-beta-D-glucosaminyl­ 2.4.2.15 Guanosine phosphorylase transferase 2.4.1.48 Heteroglycan alpha­ 2.4.1.179 Lactosylceramide beta-1 ,3- mannosyltransferase galactosyltransferase 2.4 .1.197 High-mannose-oligosaccha­ 2.4.99.9 Lactosylceramide ride beta-1 ,4-N-acetyl­ alpha-2, 3-s ialyltransferase glucosaminyltransferase 2.4.99.11 Lactosylceramide alpha- 2.4.1.45 2-Hydroxyacylsphingosine 2,6-N-sialyltransferase 1-beta-galactosyltrans­ ferase 2.4.1.31 Laminaribiose phosphory- 2.4.1.181 Hydroxyanthraquinone lase ,glucosyltransferase 2.3.2.6 Leucyltransferase 2.4.1.194 4-Hydroxybenzoate 4-0- 2.4.1.1 0 Levansucrase beta-D-glucosyltransferase 2.4.1.63 Linamarin synthase 2.4.1.126 Hydroxycinnamate 2.4.1.182 Lipid-A-disaccharide 4-beta-glucosyltransferase synthase 2.4.1.158 13-Hydroxydocosanoate 2.4.1.56 Lipopolysaccharide N-ace­ 13-beta-glucosyltrans­ tylglucosaminyltransferase ferase 2.4.1.180 Lipopolysaccharide N-ace­ 2.4.1.178 Hydroxymandelonitrile tylmannosaminouronosyl­ glucosyltransferase transferase XIV EC-No. Name EC-No. Name 2.4.1.44 Lipopolysaccharide 3-alpha­ 2.4.1.127 Monoterpenol beta­ galactosyltransferase olucosyltransferase 2.4.1.58 Lipopolysaccharide 2.4.2.30 NAO+ AOP-ribosyltrans­ glucosyltransferase I ferase 2.4.1. 73 Lipopolysaccharide 2.4.2.37
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • Thesis Final
    CHARACTERIZATION OF ADENOSINE NUCLEOSIDASE FROM ALASKA PEA SEEDS by Abdullah K. Shamsuddin A Thesis Submitted to the Faculty of the College of Graduate Studies at Middle Tennessee State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Middle Tennessee State University August 2015 Thesis Committee: Dr. Paul C. Kline, Chair Dr. Donald A. Burden Dr. Kevin L. Bicker I dedicate this research to my parents, my sisters, and my brother. I love you all. ii" " ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor, Dr. Paul C. Kline, for his guidance, support, and ongoing encouragement throughout this project. I also wish to thank my committee members, Dr. Donald A. Burden and Dr. Kevin L. Bicker, for their advice and insightful comments. In addition, I would like to thank all the staff and faculty of the Department of Chemistry for their contribution to the success of this study. Lastly, I wish to thank my family and my friends, without whom none of my accomplishments would have been possible. Thank you for you endless support, concern, love, and prayer. iii" " ABSTRACT Adenosine nucleosidase was purified from Alaska pea seeds five days after germination. A 4-fold purification has been reached with a 1.3 % recovery. The subunit molecular weight of adenosine nucleosidase was determined by mass spectrometry to be 26,103 daltons. The number of subunits was 1. The Michaelis constant, Km, and the maximum velocity, V max, for adenosine were determined to be 137 ± 48 µM, and 0.34 ± 0.02 µM/min respectively.
    [Show full text]
  • Proteínas De Superfície De Paracoccidioides Brasiliensis
    UNIVERSIDADE DE BRASÍLIA FACULDADE DE MEDICINA PROGRAMA DE PÓS-GRADUAÇÃO EM PATOLOGIA MOLECULAR Proteínas de superfície de Paracoccidioides brasiliensis CANDIDATA: NADYA DA SILVA CASTRO ORIENTADORA: DRA. CÉLIA MARIA DE ALMEIDA SOARES TESE APRESENTADA AO PROGRAMA DE PÓS-GRADUAÇÃO EM PATOLOGIA MOLECULAR, DA FACULDADE DE MEDICINA, DA UNIVERSIDADE DE BRASÍLIA COMO REQUISITO PARCIAL À OBTENÇÃO DO TÍTULO DE DOUTOR EM PATOLOGIA MOLECULAR. BRASÍLIA – DF MAIO 2008 TRABALHO REALIZADO NO LABORATÓRIO DE BIOLOGIA MOLECULAR, DEPARTAMENTO DE BIOQUÍMICA E BIOLOGIA MOLECULAR, INSTITUTO DE CIÊNCIAS BIOLÓGICAS, DA UNIVERSIDADE FEDERAL DE GOIÁS. APOIO FINANCEIRO: CAPES/ CNPQ/ FINEP/ FAPEG/ SECTEC-GO. II BANCA EXAMINADORA TITULARES Profa. Dra. Célia Maria de Almeida Soares, Instituto de Ciências Biológicas, Universidade Federal de Goiás. Prof. Dr. Augusto Schrank Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul Prof. Dr. Ivan Torres Nicolau de Campos Instituto de Ciências Biológicas, Universidade Federal de Goiás. Prof. Dr. Bergmann Morais Ribeiro Instituto de Ciências Biológicas, Universidade de Brasília. Prof. Dra. Anamélia Lorenzetti Bocca Instituto de Ciências Biológicas, Universidade de Brasília. SUPLENTE Prof. Dr. Fernando Araripe Gonçalves Torres Instituto de Ciências Biológicas, Universidade de Brasília. III ´- Os homens do seu planeta ² disse o pequeno Príncipe ² cultivam cinco mil rosas num jardim... e não encontram o que procuram... - É verdade ² respondi. - E, no entanto, o que eles procuram poderia ser encontrado numa só rosa, ou num pouco de água... - É verdade. E o principezinho acrescentou: Mas os olhos são cegos. eSUHFLVRYHUFRPRFRUDomRµ ³O pequeno príncipe´ de Antonie de Saint-Exupéry IV Dedico esta tese aos meus queridos pais, Nadson e Genialda, que foram e são exemplos de dedicação e de perseverança e cujos incentivos, apoio e amor contribuíram em muito para a realização deste trabalho.
    [Show full text]
  • Native Microorganisms Nucleoside Phosphorylase Cat
    Native Microorganisms Nucleoside Phosphorylase Cat. No. NATE-0606 Lot. No. (See product label) Introduction Description In enzymology, a purine-nucleoside phosphorylase (EC 2.4.2.1) is an enzyme that catalyzes the chemical reaction:purine nucleoside + phosphate↔ purine + alpha-D-ribose 1-phosphate. Thus, the two substrates of this enzyme are purine nucleoside and phosphate, whereas its two products are purine and alpha-D-ribose 1-phosphate. This enzyme belongs to the family of glycosyltransferases, specifically the pentosyltransferases. This enzyme participates in 3 metabolic pathways:purine metabolism, pyrimidine metabolism, and nicotinate and nicotinamide metabolism. Applications Nucleoside phosphorylase is used in coupled enzyme systems to measure protein dephosphorylation. This enzyme is useful for enzymatic determination of inorganic phosphorus, 5′-nucleotidase and adenosine deaminase when coupled with xanthine oxidase (XTO-212) and uricase (UAO-201, UAO-211). Purine nucleoside phosophorylase has shown the ability to perform both phosphorylosis and synthesis of purine deoxy-and ribonucleosides. It has also been found that membrane-ass ociated nucleoside phosphorylases may have a transmembranal orientation with their base and ribose-1-P binding sites on opposite sides of the membrane. Synonyms purine-nucleoside phosphorylase; inosine phosphorylase; PNP; PNPase; PUNPI; PUNPII; inosine-guanosine phosphorylase; nucleotide phosphatase; purine deoxynucleoside phosphorylase; purine deoxyribonucleoside phosphorylase; purine nucleoside phosphorylase;
    [Show full text]
  • Differentiation of Recombinant Myoblasts In
    DIFFERENTIATION OF RECOMBINANT MYOBLASTS IN ALGINATE MICROCAPSULES By KELLY MACMILLAN BOWIE, B.Sc. A Thesis Submitted to the school of Graduate Studies in Partial Fulfillment ofthe Requirements for the Degree Master ofScience McMaster University 1997 © Copyright by Kelly MacMillan Bowie, June, 1997 MASTER OF SCIENCE MCMASTER UNIVERSITY 1997 Hamilton, Ontario TITLE: Differentiation of Recombinant Myoblasts in Alginate Microcapsules AUTHOR: Kelly MacMillan Bowie, B.Sc. (University of Western Ontario) SUPERVISOR: Dr. P.L. Chang EXAMINING COMMITTEE: Dr. M.A. Rudnicki Dr. C. Nurse NUMBER OF PAGES: xii,l75 11 ABSTRACT A cost effective approach to the delivery of therapeutic gene products in vivo is to immunoprotect genetically-engineered, universal, non-autologous cells in biocompatible microcapsules before implantation. Myoblasts may be an ideal cell type for encapsulation due to their inherent ability to differentiate into myotubes, thereby eliminating the problem of cell overgrowth within the capsular space. To evaluate the interaction between the differentiation program and the secretory activity of the myoblasts within the microcapsule environment, we transfected C2C 12 myoblasts to express human growth hormone and followed their expression of muscle differentiation markers, such as creatine phosphate kinase (CPK) protein and up-regulation of muscle-specific genes (ie. myosin light chains 2 & 1/3, Troponin I slow, Troponin T, myogenin and MyoD1). As the transfected myoblasts were induced to differentiate for up to two weeks, their myogenic index (i.e. the percentage of multinucleate myoblasts) increased from 0 to -50%. Concomitantly, up-regulation of differentiation marker RNA levels, and as much as a 23-fold increase in CPK activity, were observed.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Supplementary Table 16 Components of the Secretory Pathway
    Supplementary Table 16 Components of the secretory pathway Aspergillus niger Description of putative Aspergillus niger gene Best homolog to putative A.niger gene A.niger orf A.niger A.nidulans A.fumigatus A.oryzae N.crassa S.cerevisiae Mammal gene Entry into ER Signal recognition YKL122c An01g02800 strong similarity to signal recognition particle 68K protein SRP68 - AN4043.2 Afu1g03940 AO090003000956 NCU10927.2 YPL243w Canis lupus An04g06890 similarity to 72-kD protein of the signal recognition particle SRP72 -AN2014.2 Afu4g10180 AO090003001205 NCU01455.2 YPL210c Canis lupus An01g10070 strong similarity to signal recognition particle chain Sec65 - AN0643.2 Afu1g16820 NCU03485.2 YML105c Saccharomyces cerevisiae AN0642.2 An15g06470 similarity to signal sequence receptor alpha chain - Canis lupus AN2140.2 Afu2g16120 AO090012000186 NCU01146.2 familiaris An07g05800 similarity to signal recognition particle protein srp14 - Canis lupus AN4580.2 Afu2g01990 AO090011000469 YDL092w An09g06320 similarity to signal recognition particle 54K protein SRP54 - AN8246.2 Afu5g03880 AO090102000593 NCU09696.2 YPR088c Saccharomyces cerevisiae Signal peptidase An01g00560 strong similarity to signal peptidase subunit Sec11 - AN3126.2 Afu3g12840 AO090012000838 NCU04519.2 YIR022w Saccharomyces cerevisiae An17g02095 similarity to signal peptidase subunit Spc1 - Saccharomyces Afu5g05800 YJR010c-a cerevisiae An16g07390 strong similarity to signal peptidase subunit Spc2 - AN1525.2 Afu8g05340 AO090005000615 NCU00965.2 YML055w Saccharomyces cerevisiae An09g05420 similarity
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Enzymatic Glycosylation of Small Molecules
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen Enzymatic Glycosylation of Small Molecules Desmet, Tom; Soetaert, Wim; Bojarova, Pavla; Kren, Vladimir; Dijkhuizen, Lubbert; Eastwick- Field, Vanessa; Schiller, Alexander; Křen, Vladimir Published in: Chemistry : a European Journal DOI: 10.1002/chem.201103069 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Desmet, T., Soetaert, W., Bojarova, P., Kren, V., Dijkhuizen, L., Eastwick-Field, V., ... Křen, V. (2012). Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts. Chemistry : a European Journal, 18(35), 10786-10801. https://doi.org/10.1002/chem.201103069 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • GLYCO 21 XXI International Symposium on Glycoconjugates
    GLYCO 21 XXI International Symposium on Glycoconjugates Abstracts August 21-26, 2011 Vienna, Austria Glycoconj J (2011) 28: 197–36 9 Organising Committee Erika Staudacher (Austria) Leopold März (Austria) Günter Allmaier (Austria) Lothar Brecker (Austria) Josef Glössl (Austria) Hanspeter Kählig (Austria) Paul Kosma (Austria) Lukas Mach (Austria) Paul Messner (Austria) Walther Schmid (Austria) Igor Tvaroška (Slovakia) Reinhard Vlasak (Austria) Iain Wilson (Austria) Scientifi c Program Committee Iain Wilson (Austria) Paul Messner (Austria) Günter Allmaier (Austria) Reginald Bittner (Austria) Paul Kosma (Austria) Eva Stöger (Austria) Graham Warren (Austria) John Hanover (USA; nominated by the Society for Glycobiology) Kelly ten Hagen (USA; nominated by the Society for Glycobiology) supported in abstract selection by Michael Duchêne (Austria) Catherine Merry (UK) Tadashi Suzuki (Japan) Abstracts of the 21st International Symposium on Glycoconjugates The International Glycoconjugate Organisation Gerald W. Hart, President Leopold März, President-elect Paul Gleeson, Immediate Past-president Sandro Sonnino, Secretary Thierry Hennet, Treasurer National Representatives Pedro Bonay (Spain) to replace Angelo Reglero Nicolai Bovin (Russia) Jin Won Cho (Korea) Henrik Clausen (Denmark) Anne Dell (UK) Jukka Finne (Finland) Paul Gleeson (Australia) Jianxin Gu (China) Gerald Hart (USA) Thierry Hennet (Switzerland) Jim Jamieson (Canada) Gordan Lauc (Croatia) Hakon Leffl er (Sweden) Jean-Claude Michalski (France) Werner Reutter (Germany) Sandro Sonnino (Italy) Avadhesha Surolia (India) Ken Kitajima (Japan) Maciej Ugorski (Poland) Johannes F.G. Vliegenthart (The Netherlands) Iain Wilson (Austria) to replace Leopold März Albert M. Wu (Taiwan) Lode Wyns (Belgium) Yehiel Zick (Israel) Glycoconj J (2011) 28: 197–369 Past Presidents Eugene. A. Davidson (USA) Alan B. Foster (UK) Paul Gleeson (Australia) Mary Catherine Glick (USA) Colin Hughes (UK) Roger W.
    [Show full text]
  • Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria Sacha A
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar. 2006, p. 157–176 Vol. 70, No. 1 1092-2172/06/$08.00ϩ0 doi:10.1128/MMBR.70.1.157–176.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria Sacha A. F. T. van Hijum,1,2†* Slavko Kralj,1,2† Lukasz K. Ozimek,1,2 Lubbert Dijkhuizen,1,2 and Ineke G. H. van Geel-Schutten1,3 Centre for Carbohydrate Bioprocessing, TNO-University of Groningen,1 and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen,2 9750 AA Haren, The Netherlands, and Innovative Ingredients and Products Department, TNO Quality of Life, Utrechtseweg 48 3704 HE Zeist, The Netherlands3 INTRODUCTION .......................................................................................................................................................157 NOMENCLATURE AND CLASSIFICATION OF SUCRASE ENZYMES ........................................................158 GLUCANSUCRASES .................................................................................................................................................158 Reactions Catalyzed and Glucan Product Synthesis .........................................................................................161 Glucan synthesis .................................................................................................................................................161 Acceptor reaction ................................................................................................................................................161
    [Show full text]
  • Ijms-20-05263-V2
    Delft University of Technology Leloir Glycosyltransferases in Applied Biocatalysis A Multidisciplinary Approach Mestrom, Luuk; Przypis, Marta; Kowalczykiewicz, Daria; Pollender, André; Kumpf, Antje; Marsden, Stefan R.; Szymańska, Katarzyna; Hanefeld, Ulf; Hagedoorn, Peter Leon; More Authors DOI 10.3390/ijms20215263 Publication date 2019 Document Version Final published version Published in International Journal of Molecular Sciences Citation (APA) Mestrom, L., Przypis, M., Kowalczykiewicz, D., Pollender, A., Kumpf, A., Marsden, S. R., Szymańska, K., Hanefeld, U., Hagedoorn, P. L., & More Authors (2019). Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. International Journal of Molecular Sciences, 20(21), [5263]. https://doi.org/10.3390/ijms20215263 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. International Journal of Molecular Sciences Review Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach Luuk Mestrom 1, Marta Przypis 2,3 , Daria Kowalczykiewicz 2,3, André Pollender 4 , Antje Kumpf 4,5, Stefan R. Marsden 1, Isabel Bento 6, Andrzej B.
    [Show full text]