GLYCO 21 XXI International Symposium on Glycoconjugates

Total Page:16

File Type:pdf, Size:1020Kb

GLYCO 21 XXI International Symposium on Glycoconjugates GLYCO 21 XXI International Symposium on Glycoconjugates Abstracts August 21-26, 2011 Vienna, Austria Glycoconj J (2011) 28: 197–36 9 Organising Committee Erika Staudacher (Austria) Leopold März (Austria) Günter Allmaier (Austria) Lothar Brecker (Austria) Josef Glössl (Austria) Hanspeter Kählig (Austria) Paul Kosma (Austria) Lukas Mach (Austria) Paul Messner (Austria) Walther Schmid (Austria) Igor Tvaroška (Slovakia) Reinhard Vlasak (Austria) Iain Wilson (Austria) Scientifi c Program Committee Iain Wilson (Austria) Paul Messner (Austria) Günter Allmaier (Austria) Reginald Bittner (Austria) Paul Kosma (Austria) Eva Stöger (Austria) Graham Warren (Austria) John Hanover (USA; nominated by the Society for Glycobiology) Kelly ten Hagen (USA; nominated by the Society for Glycobiology) supported in abstract selection by Michael Duchêne (Austria) Catherine Merry (UK) Tadashi Suzuki (Japan) Abstracts of the 21st International Symposium on Glycoconjugates The International Glycoconjugate Organisation Gerald W. Hart, President Leopold März, President-elect Paul Gleeson, Immediate Past-president Sandro Sonnino, Secretary Thierry Hennet, Treasurer National Representatives Pedro Bonay (Spain) to replace Angelo Reglero Nicolai Bovin (Russia) Jin Won Cho (Korea) Henrik Clausen (Denmark) Anne Dell (UK) Jukka Finne (Finland) Paul Gleeson (Australia) Jianxin Gu (China) Gerald Hart (USA) Thierry Hennet (Switzerland) Jim Jamieson (Canada) Gordan Lauc (Croatia) Hakon Leffl er (Sweden) Jean-Claude Michalski (France) Werner Reutter (Germany) Sandro Sonnino (Italy) Avadhesha Surolia (India) Ken Kitajima (Japan) Maciej Ugorski (Poland) Johannes F.G. Vliegenthart (The Netherlands) Iain Wilson (Austria) to replace Leopold März Albert M. Wu (Taiwan) Lode Wyns (Belgium) Yehiel Zick (Israel) Glycoconj J (2011) 28: 197–369 Past Presidents Eugene. A. Davidson (USA) Alan B. Foster (UK) Paul Gleeson (Australia) Mary Catherine Glick (USA) Colin Hughes (UK) Roger W. Jeanloz (USA) Akira Kobata (Japan) Jerzy Koscielak (Poland) Bengt Lindberg (Sweden) Jean Montreuil (France) Jürgen Roth (Switzerland) Harry Schachter (Canada) Roland Schauer (Germany) Nathan Sharon (Israel) Avadhesha Surolia (India) Guido Tettamanti (Italy) Johannes F.G. Vliegenthart (The Netherlands) Tamio Yamakawa (Japan) Abstracts of the 21st International Symposium on Glycoconjugates 201 International Glycoconjugate Organisation Award 2011 Professor Jeffrey ESKO Jeffrey D. ESKO, Ph.D., M.D. (h.c) is a Professor of Cellular and Molecular Medicine (cmm.ucsd.edu) and Co-Director of the Glycobiology Research and Training Center (grtc.ucsd.edu) at the University of California, San Diego. Dr. Esko received his Ph.D. in Biochemistry at the University of Wisconsin in Madison. After an independent fellowship at the Molecular Biology Institute at the University of California, Los Angeles, he moved to the University of Alabama at Birmingham and then to Department of Cellular and Molecular Medicine at the University of California, San Diego in 1996 to help build a program in Glycobiology. Work in his laboratory focuses on the structure, biosynthesis, and function of proteoglycans, including structural studies of heparan sulphate by mass spectrometry, application of genome-wide methods to identify genes involved in heparan sulphate assembly and lysosomal turnover, analysis of guanidinylated glycosides that act as molecular transporters, studies of proteoglycans in lipoprotein metabolism, and analysis of proteoglycans in modulating vascular permeability (eskolab.ucsd.edu). His work is supported by grants from the National Institutes of Health and the private sector. Dr. Esko has served on the numerous editorial boards and scientifi c boards and is currently on the board for Journal of Cell Biology and as an Associate Editor for Glycobiology. He was past President of the Society for Glycobiology, past Director of the Biomedical Sciences Graduate Program at UCSD (biomedsci.ucsd.edu), and he cofounded Zacharon Pharmaceuticals, Inc (www.zacharon.com). His work has been recognized by the Karl Meyer Award, the highest honor from the Society for Glycobiology, a MERIT Award from the National Institutes of Health, and an honorary degree from the University of Uppsala. In 2011, he is the recipient of the International Glycoconjugate Organisation Award. Gerald W. Hart The Johns Hopkins University, School of Medicine, Baltimore, USA 202 Glycoconj J (2011) 28: 197–369 Plenary Lectures The structure, analysis and biochemistry of carbohydrates were matters of much scientifi c prominence in the fi rst half of the 20th century, garnering several Nobel prizes 001: Heparan sulfate proteoglycans as receptors and and attracting much attention to their roles in metabolism, coreceptors (IGO Award Lecture) cell wall structure, cell surface antigens and microbe-host interactions. The International Symposium on J.D. Esko; Department of Cellular and Molecular Glycoconjugates was a natural outcome of such exciting Medicine, University of California, San Diego, La Jolla/ discoveries. However, the development of viable lectin- CA/US resistant animal cell lines with major defects in [email protected] glycosylation raised questions about whether complex glycans had specifi c functions intrinsic to the vertebrate Heparan sulfate proteoglycans (HSPGs) are glycoproteins, organism itself. The discovery of the Ashwell receptor in with the defi ning characteristic of containing one or more 1969 and specifi c effects of heparin on antithrombin covalently attached heparan sulfate (HS) chains, a type of provided indirect evidence that complex glycans might glycosaminoglycan (GAG). Cells elaborate a relatively carry out such functions. While many complex glycan small set of HSPGs (~17), which show strong conservation biosynthetic pathways were also being elegantly worked through evolution. Much of the early work in the fi eld out, there still remained no direct proof that glycans played concentrated on composition (size, chain number, and intrinsic biological roles within vertebrate systems. As a structure of the HS chains), biosynthesis, and binding trainee, I was fortunate to play a small part in the discovery properties, which led to a large list of potentially relevant by Kornfeld, Von Figura and others about 3 decades ago, ligands and interactions. In 1985, the fi rst somatic cell that mannose 6-phosphate residues on lysosomal enzymes mutants altered in HSPG expression were identifi ed, appeared critical for targeting of newly synthesized which allowed functional studies in the context of a cell enzymes to the lysosome. This proposed biological role culture model. A decade later, the fi rst HSPG mutants in a was confi rmed by the elucidation of human genetic model organism (Drosophila melanogaster) were diseases in which the pathway was affected. The following identifi ed, which was followed by identifi cation of mutants decades have provided a fl ood of information regarding in nematodes, tree frogs, zebrafi sh, and mice. A particularly other biological roles of glycans in vertebrate systems, interesting area of concentration concerns the biological and the suggestion that “all of the theories are correct, but function of rare modifi cations of heparan sulfate. exceptions to each can be found” has proven correct. I will Biochemical and genetic approaches are underway to provide an outline of this historical overview and then identify novel ligands and genes involved in positioning focus on examples of specifi c biological roles of sialic of sulfate groups along the chain. Other studies focus on acids intrinsic to vertebrates, including their contribution the action of cell surface HSPGs as coreceptors, in to selectin ligands, to neuronal stability and plasticity, and particular their capacity to dock with signaling receptors to the recognition of self by the Siglec family of sialic that modulate vascular biology. HSPGs also act as acid-recognizing Ig-like lectins. Finally, I will discuss adsorptive endocytic receptors, resulting in uptake of multiple changes to sialic acid biology during human bound ligands. For example, hepatic HSPGs mediate the evolution and the potential implications for human clearance of triglyceride-rich lipoprotein remnants, diseases. working in parallel with members of the LDL receptor family. When HSPGs enter the cell, they undergo lysosomal catabolism. Defects in enzymes involved in 003: Regulation of spermatogenesis by complex heparan sulfate turnover result in mucopolysaccharidoses N-glycans (Company of Biologists Lecture) (MPS) characterized by lysosomal storage and profound developmental and physiological effects. Efforts are H.-H. Huang, F. Batista, P. Stanley; Cell Biology, Albert underway to improve diagnosis and therapy for MPS Einstein College Medicine, New York/US based on diagnostic carbohydrate biomarkers and [email protected] techniques to exploit HSPGs turnover for delivery of lysosomal enzymes to cells. In database searches to identify novel glycosyltransferase genes we discovered NM_026233.2 that encodes a physiological inhibitor of N-acetylglucosaminyl- 002: Biological roles of vertebrate glycans: a look back transferase I (GlcNAcT-I or Mgat1). We termed this over the decades activity GlcNAcT-I Inhibitory Protein (GnT1IP). When expressed in cultured cells, membrane-anchored GnT1IP A. Varki; Glycobiology Research and Training Center, inhibits GlcNAcT-I activity but not other glycosyl- Medicine & Cellular and Molecular Medicine, Center for transferases such as GlcNAcT-III or galactosyltransferases. Academic
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • Anthropogeny Tracks
    anthropogeny t acksa CARTA newsletter Volume 3, Issue 2 - May 2015 Human-Climate Interactions HUMAN-CLIMATE and Evolution: Past and INTERACTIONS AND EVOLUTION: Future PAST AND FUTURE Our early ancestors evolved on a drying, cooling, and highly variable planet, which has led to competing ideas as to how climate may have shaped human evolution. Equally compelling is the question of how and when humans began to affect their surroundings to such an extent as to become a force of climate change, with disruptions affecting the globe today. According to earth scientists, paleontologists, and scholars in other fields, the planet has entered a new geological phase – the Anthropocene, the age of humans. How did this transition of our species from an ape-like ancestor in Africa to the current planetary force occur? What are the prospects for the future of world climate, ecosystems, and our species? CARTA’s May 15, 2015 symposium, Human-Climate Interactions and Evolution: Past and Future, presents varied perspectives on these critical questions from earth scientists, ecologists, and paleoanthropologists. The fantastic lineup of speakers includes: This CARTA symposium is made possible by The G. Harold and African Climate Change and Human Evolution Leila Y. Mathers Charitable Foundation and Rita Atkinson. Peter deMenocal, Columbia University The Climatic Framework of Neandertal Evolution Jean-Jacques Hublin, Max Planck Institute for Evolutionary Anthropology Symposium Details Climate Instability and the Evolution of Human Adaptability • Friday, May
    [Show full text]
  • PS CV Comp 050917
    CURRICULUM VITAE NAME: Pamela Mary Stanley (nee Fetherstonhaugh) Lab Homepage http://www.einstein.yu.edu/departments/cellbiology/faculty/stanley/home/ NATIONALITY: Australian/American EDUCATION: l965-l967 Bachelor of Science University of Melbourne, Australia Majored in Biochemistry and Microbiology l968 B. Sc. Hons., Walter and Eliza Hall Institute, Melbourne, Australia Commonwealth Post-graduate Award Advisor: Gordon L. Ada Thesis: Tolerance to Foreign Erythrocytes Using Antigen-Containing Extracts of the Erythrocyte Membrane. l969-l972 Research for degree of Doctor of Philosophy in the Department of Microbiology, University of Melbourne, Australia Commonwealth Post-graduate Award Advisor: Professor David O. White Thesis: Influenza Virus Proteins l972-l975 Postdoctoral Fellow of the Medical Research Council of Canada in the Department of Medical Genetics, University of Toronto, Canada Advisor: Dr. Louis Siminovitch Postdoctoral Fellowship from the Medical Research Council of Canada Topic: The Isolation and Characterization of Lectin Resistant Chinese Hamster Ovary Cells. POSITIONS HELD: l976 Research Associate Department of Medical Genetics University of Toronto Toronto, Ontario, Canada l977-1982 Assistant Professor Dept. of Cell Biology Albert Einstein College of Medicine Bronx, New York 1982-1986 Associate Professor Dept. of Cell Biology Albert Einstein College of Medicine Bronx, New York 1986 Professor Department of Cell Biology Albert Einstein College of Medicine Bronx, New York 1994-2007 Director Training Program in Cell & Molecular Biology, Biochemistry & Genetics, NIGMS 1 1988-2012 Program leader Membrane Molecular Biology Albert Einstein Cancer Center 2002- Associate Director for Laboratory Research Albert Einstein NCI Cancer Center 2007- Horace W. Goldsmith Foundation Chair. HONORS: Dunlop Prize for First Place in Biochemistry (1966 and 1967) Aust.
    [Show full text]
  • From So Simple a Beginning... the Expansion of Evolutionary Thought
    From So Simple A Beginning... The Expansion Of Evolutionary Thought #1 #2 From So Simple A Beginning... The Expansion Of Evolutionary Thought Compiled and Edited by T N C Vidya #3 All rights reserved. No parts of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of the publisher. c Indian Academy of Sciences 2019 Reproduced from Resonance–journal of science education Published by Indian Academy of Sciences Production Team: Geetha Sugumaran, Pushpavathi R and Srimathi M Reformatted by : Sriranga Digital Software Technologies Private Limited, Srirangapatna. Printed at: Lotus Printers Pvt. Ltd., Bengaluru #4 Foreword The Masterclass series of eBooks brings together pedagogical articles on single broad top- ics taken from Resonance, the Journal of Science Education, that has been published monthly by the Indian Academy of Sciences since January 1996. Primarily directed at students and teachers at the undergraduate level, the journal has brought out a wide spectrum of articles in a range of scientific disciplines. Articles in the journal are written in a style that makes them accessible to readers from diverse backgrounds, and in addition, they provide a useful source of instruction that is not always available in textbooks. The sixth book in the series, ‘From So Simple A Beginning... The Expansion Of Evolu- tionary Thought’, is a collection of Resonance articles about scientists who made major con- tributions to the development of evolutionary biology, starting with Charles Darwin himself, collated and edited by Prof. T. N. C.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Early Members of the Genus Homo -. EXPLORATIONS: an OPEN INVITATION to BIOLOGICAL ANTHROPOLOGY
    EXPLORATIONS: AN OPEN INVITATION TO BIOLOGICAL ANTHROPOLOGY Editors: Beth Shook, Katie Nelson, Kelsie Aguilera and Lara Braff American Anthropological Association Arlington, VA 2019 Explorations: An Open Invitation to Biological Anthropology is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted. ISBN – 978-1-931303-63-7 www.explorations.americananthro.org 10. Early Members of the Genus Homo Bonnie Yoshida-Levine Ph.D., Grossmont College Learning Objectives • Describe how early Pleistocene climate change influenced the evolution of the genus Homo. • Identify the characteristics that define the genus Homo. • Describe the skeletal anatomy of Homo habilis and Homo erectus based on the fossil evidence. • Assess opposing points of view about how early Homo should be classified. Describe what is known about the adaptive strategies of early members of the Homo genus, including tool technologies, diet, migration patterns, and other behavioral trends.The boy was no older than 9 when he perished by the swampy shores of the lake. After death, his slender, long-limbed body sank into the mud of the lake shallows. His bones fossilized and lay undisturbed for 1.5 million years. In the 1980s, fossil hunter Kimoya Kimeu, working on the western shore of Lake Turkana, Kenya, glimpsed a dark colored piece of bone eroding in a hillside. This small skull fragment led to the discovery of what is arguably the world’s most complete early hominin fossil—a youth identified as a member of the species Homo erectus. Now known as Nariokotome Boy, after the nearby lake village, the skeleton has provided a wealth of information about the early evolution of our own genus, Homo (see Figure 10.1).
    [Show full text]
  • The Role of the Salvage Pathway in Nucleotide Sugar Biosynthesis
    THE ROLE OF THE SALVAGE PATHWAY IN NUCLEOTIDE SUGAR BIOSYNTHESIS: IDENTIFICATION OF SUGAR KINASES AND NDP-SUGAR PYROPHOSPHORYLASES by TING YANG (Under the Direction of Maor Bar-Peled) ABSTRACT The synthesis of polysaccharides, glycoproteins, glycolipids, glycosylated secondary metabolites and hormones requires a large number of glycosyltransferases and a constant supply of nucleotide sugars. In plants, photosynthesis and the NDP-sugar inter-conversion pathway are the major entry points to form NDP-sugars. In addition to these pathways is the salvage pathway, a less understood metabolism that provides the flux of NDP-sugars. This latter pathway involves the hydrolysis of glycans to free sugars, sugar transport, sugar phosphorylation and nucleotidylation. The balance between glycan synthesis and recycling as well as its regulation at various plant developmental stages remains elusive as many of the molecular components are unknown. To understand how the salvage pathway contributes to the sugar flux and cell wall biosynthesis, my research focused on the functional identification of salvage pathway sugar kinases and NDP-sugar pyrophosphorylases. This research led to the first identification and enzymatic characterization of galacturonic acid kinase (GalA kinase), galactokinase (GalK), a broad UDP-sugar pyrophosphorylase (sloppy), two promiscuous UDP-GlcNAc pyrophosphorylases (GlcNAc-1-P uridylyltransferases), as well as UDP-sugar pyrophosphorylase paralogs from Trypanosoma cruzi and Leishmania major. To evaluate the salvage pathway in plant biology, we further investigated a sugar kinase mutant: galacturonic acid kinase mutant (galak) and determined if and how galak KO mutant affects the synthesis of glycans in Arabidopsis. Feeding galacturonic acid to the seedlings exhibited a 40-fold accumulation of free GalA in galak mutant, while the wild type (WT) plant readily metabolizes the fed-sugar.
    [Show full text]
  • Food Microbiology Characterization of Plant Lectins for Their Ability To
    Food Microbiology 82 (2019) 231–239 Contents lists available at ScienceDirect Food Microbiology journal homepage: www.elsevier.com/locate/fm Characterization of plant lectins for their ability to isolate Mycobacterium T avium subsp. paratuberculosis from milk Bernhard F. Hobmaiera, Karina Lutterberga, Kristina J.H. Kleinworta, Ricarda Mayerb, Sieglinde Hirmera, Barbara Amanna, Christina Hölzelb,c, Erwin P. Märtlbauerb, ∗ Cornelia A. Deega, a Chair of Animal Physiology, Department of Veterinary Sciences, LMU Munich, Veterinärstraße 13, D-80539, Munich, Germany b Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, Schönleutnerstr 8, D-85764, Oberschleißheim, Germany c Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, CAU Kiel, Hermann-Rodewald-Str. 6, 24098 Kiel, Germany 1. Introduction combined with PCR (phage-PCR). The zoonotic potential of MAP is still under discussion (Kuenstner et al., 2017). It could potentially play a Mycobacterium avium subsp. paratuberculosis is the causative agent of role in inflammatory bowel diseases, like Crohn's disease and ulcerative paratuberculosis or Johne's disease, a chronic granulomatous enteritis colitis (Timms et al., 2016). Additionally, MAP infections could be in- in cattle and small ruminants, causing emaciation, decreased milk volved in the pathogenesis of autoimmune diseases like type 1 diabetes, production and, in cattle, severe diarrhea (Arsenault et al., 2014). After multiple sclerosis, rheumatoid arthritis and Hashimoto's thyroiditis infection, ruminants go through a long, asymptomatic subclinical (Garvey, 2018; Waddell et al., 2015). Although the causal link between phase, in which they cannot reliably be determined by standard diag- MAP and these diseases is not proven, the possible association ne- nostic tests (Li et al., 2017).
    [Show full text]
  • IMPACT of INFECTIOUS DISEASE on HUMANS and OUR ORIGINS Glossary
    IMPACT OF INFECTIOUS DISEASE ON HUMANS AND OUR ORIGINS Glossary Actin: A protein that forms the internal skeleton of animal cells, Autoimmunity: An organism’s aberrant immune response including red blood cells (RBCs). against its own healthy cells and tissues. Low-level autoimmunity is usually harmless and potentially beneficial, Acute Respiratory Distress Syndrome (ARDS): A serious high-level autoimmunity can cause a broad range of type of respiratory failure characterized by rapid onset of deleterious illnesses known as autoimmune diseases (e.g. widespread fluid buildup in the lungs, which limits oxygen lupus). uptake and causes shortness of breath, rapid breathing, and bluish skin coloration. Bacteria: A type of prokaryotic microorganism. Unlike eukaryotes, bacterial cells do not contain a nucleus and rarely Adhesin: Proteins produced by bacteria and protozoa that harbour membrane-bound organelles. Bacteria were among mediate binding to molecules on host cells. the first life forms to evolve on Earth, and can be found in most every habitat, including soil, water, acidic hot springs, Malarial adhesins can be transferred to the surface of radioactive waste, the deep biosphere of the earth’s crust, and red blood cells (RBCs) causing them to become sticky in and on other living organisms as symbionts and parasites. and adhere to other RBCs and vessel walls, resulting in Bacteria can be beneficial, such as those comprising the gut microvascular inflammation. flora, orpathogenic and cause infectious disease. However, the vast majority of the bacteria in the body are rendered Adjuvant: A pharmacological or immunological agent that harmless by the protective effects of the immune system.
    [Show full text]
  • The Treeness of the Tree of Historical Trees of Life
    RESEARCH ARTICLE The treeness of the tree of historical trees of life 1 2 3 1 Marie Fisler , CeÂdric CreÂmière , Pierre Darlu , Guillaume LecointreID * 1 UMR 7205 CNRS-MNHN-SU-EPHE « Institut de SysteÂmatique, Evolution et Biodiversite », deÂpartement « Origines & E volution », MuseÂum National d'Histoire Naturelle, Paris, France, 2 MuseÂe d'Histoire Naturelle du Havre, Place du vieux marcheÂ, Le Havre, France, 3 UMR 7206 CNRS-MNHN-UPD « Eco-anthropologie et Ethnobiologie », deÂpartement « Hommes, Nature et SocieÂteÂs », MuseÂum National d'Histoire Naturelle, Paris, France a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 This paper compares and categorizes historical ideas about trees showing relationships among biological entities. The hierarchical structure of a tree is used to test the global con- sistency of similarities among these ideas; in other words we assess the ªtreenessº of the OPEN ACCESS tree of historical trees. The collected data are figures and ideas about trees showing rela- Citation: Fisler M, CreÂmière C, Darlu P, Lecointre G tionships among biological entities published or drawn by naturalists from 1555 to 2012. (2020) The treeness of the tree of historical trees of They are coded into a matrix of 235 historical trees and 141 descriptive attributes. From the life. PLoS ONE 15(1): e0226567. https://doi.org/ most parsimonious ªtreeº of historical trees, treeness is measured by consistency index, 10.1371/journal.pone.0226567 retention index and homoplasy excess ratio. This tree is used to create sets or categories of Editor: Marc Robinson-Rechavi, Universite de trees, or to study the circulation of ideas. From an unrooted network of historical trees, tree- Lausanne Faculte de biologie et medecine, ness is measured by the delta-score.
    [Show full text]
  • 1/05661 1 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... - 12 May 2011 (12.05.2011) W 2 11/05661 1 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/00 (2006.0 1) C12Q 1/48 (2006.0 1) kind of national protection available): AE, AG, AL, AM, C12Q 1/42 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 10/054171 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 26 October 2010 (26.10.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/255,068 26 October 2009 (26.10.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, MYREXIS, INC.
    [Show full text]
  • Banlec-Egfp Chimera As a Tool for Evaluation of Lectin Binding to High-Mannose Glycans on Microorganisms
    biomolecules Article BanLec-eGFP Chimera as a Tool for Evaluation of Lectin Binding to High-Mannose Glycans on Microorganisms Zorana Lopandi´c 1 , Luka Dragaˇcevi´c 2, Dragan Popovi´c 3 , Uros Andjelkovi´c 3,4, Rajna Mini´c 2 and Marija Gavrovi´c-Jankulovi´c 1,* 1 Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; [email protected] 2 Institute of Virology, Vaccines and Sera, 11152 Belgrade, Serbia; [email protected] (L.D.); [email protected] (R.M.) 3 Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; [email protected] (D.P.); [email protected] (U.A.) 4 Department of Biotechnology, University of Rijeka, 5100 Rijeka, Croatia * Correspondence: [email protected]; Tel.: +381-11-3336-661 Abstract: Fluorescently labeled lectins are useful tools for in vivo and in vitro studies of the structure and function of tissues and various pathogens such as viruses, bacteria, and fungi. For the evaluation of high-mannose glycans present on various glycoproteins, a three-dimensional (3D) model of the chimera was designed from the crystal structures of recombinant banana lectin (BanLec, Protein Data Bank entry (PDB): 5EXG) and an enhanced green fluorescent protein (eGFP, PDB 4EUL) by applying molecular modeling and molecular mechanics and expressed in Escherichia coli. BanLec- eGFP, produced as a soluble cytosolic protein of about 42 kDa, revealed β-sheets (41%) as the Citation: Lopandi´c,Z.; Dragaˇcevi´c, predominant secondary structures, with the emission peak maximum detected at 509 nm (excitation L.; Popovi´c,D.; Andjelkovi´c,U.; wavelength 488 nm).
    [Show full text]