Enzymatic Glycosylation of Small Molecules

Total Page:16

File Type:pdf, Size:1020Kb

Enzymatic Glycosylation of Small Molecules View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen Enzymatic Glycosylation of Small Molecules Desmet, Tom; Soetaert, Wim; Bojarova, Pavla; Kren, Vladimir; Dijkhuizen, Lubbert; Eastwick- Field, Vanessa; Schiller, Alexander; Křen, Vladimir Published in: Chemistry : a European Journal DOI: 10.1002/chem.201103069 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Desmet, T., Soetaert, W., Bojarova, P., Kren, V., Dijkhuizen, L., Eastwick-Field, V., ... Křen, V. (2012). Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts. Chemistry : a European Journal, 18(35), 10786-10801. https://doi.org/10.1002/chem.201103069 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 DOI: 10.1002/chem.201103069 Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts Tom Desmet,[b] Wim Soetaert,[b, c] Pavla Bojarov,[d] Vladimir Krˇen,[d] Lubbert Dijkhuizen,[e] Vanessa Eastwick-Field,[f] and Alexander Schiller*[a] 10786 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Chem. Eur. J. 2012, 18, 10786 – 10801 REVIEW Abstract: Glycosylation can significantly improve the recent examples. Progress in the field of enzyme engineer- physicochemical and biological properties of small mole- ing and screening are expected to result in new applica- cules like vitamins, antibiotics, flavors, and fragrances. The tions of biocatalytic glycosylation reactions in various in- chemical synthesis of glycosides is, however, far from trivi- dustrial sectors. al and involves multistep routes that generate lots of waste. In this review, biocatalytic alternatives are present- Keywords: acceptor specificity · enzyme engineering · ed that offer both stricter specificities and higher yields. glycosylation · glycosyltransferase · high-throughput The advantages and disadvantages of different enzyme screening classes are discussed and illustrated with a number of Introduction cirrhizin, a terpenoid glycoside from sweetwood (Glycirhyza glabra) that loses most of its sweetness upon hydrolysis.[4] Besides being a source of energy and a structural compo- Since the transfer of a glycosyl group can influence both nent of the cell wall, carbohydrates also mediate various rec- the physicochemical and biological properties of an organic ognition processes when attached to proteins or lipids.[1] molecule, such processes may be used for a wide range of Well-known carbohydrate motifs of such glycoconjugates applications. The most obvious advantage of introducing a are the cancer epitope Sialyl Lewis X and the AB0 blood carbohydrate moiety is the increased solubility of hydropho- group determinants. In addition, glycosylation is an impor- bic compounds. This is nicely illustrated in flavonoids, the tant source of structural diversity of natural products, such pharmaceutical properties of which can often be efficiently as alkaloids, steroids, flavonoids, and antibiotics. Glycosides exploited only in the form of their hydrophilic glycosyl de- typically display properties that differ from those of their rivatives.[2] Glycosylation may also be used to improve the non-glycosylated aglycons.[2] A prime example is naringin, a stability of labile molecules. A famous example is ascorbic flavanone glycoside that is responsible for the bitter taste of acid, a very sensitive vitamin, the long-term storage of citrus fruits. Removal of the glycon part eliminates the which can be drastically extended by glycosylation, resulting bitter taste, which is one of the main goals of enzymatic in high-value applications in cosmetics and tissue culturing.[5] treatment of grapefruit juice.[3] The opposite is true for gly- Another important application of glycosylation is the reduc- tion of skin irritation caused by hydroquinone, employed in cosmetics for its skin whitening effect.[6] Glycosides of fla- vors and fragrances, in turn, can function as controlled re- [a] Prof. A. Schiller lease compounds. The a-glucoside of l-menthol, for exam- Friedrich-Schiller-University Jena ple, is only slowly hydrolyzed in the mouth, resulting in a Institute for Inorganic and Analytical Chemistry [7] Humboldtstr. 8, 07743 Jena (Germany) prolonged sensation of freshness. Last but not least, it has E-mail: [email protected] been possible to modulate the activity spectrum of glyco- [b] Prof. T. Desmet, Prof. W. Soetaert peptide antibiotics by varying their carbohydrate moiety, in University of Ghent a process known as “glycorandomization”.[8,9] Centre for Industrial Biotechnology and Biocatalysis In view of these examples, the development of cheap and Coupure links 653, 9000 Gent (Belgium) efficient glycosylation technologies, useful both in the labo- [c] Prof. W. Soetaert ratory and in industry, is highly desirable. In this review, the BioBase Europe Pilot Plant Rodenhuizekaai 1, Havennummer 4200 challenges and recent innovations concerning the glycosyla- 9042 Gent (Belgium) tion of small, non-carbohydrate molecules are covered. [d] Dr. P. Bojarov, Prof. V. Krˇen Institute of Microbiology Academy of Sciences of the Czech Republic Chemical versus Enzymatic Glycosylation Vdenˇ sk 1083, 142 20 Prague (Czech Republic) [e] Prof. L. Dijkhuizen Microbiology, University of Groningen Glycosylation reactions by conventional chemical synthesis Groningen Biomolecular Sciences and are used intensively in the field of glycochemistry. Despite Biotechnology Institute (GBB) the variety of glycosylation protocols developed to date,[10–25] Nijenborgh 7 P.O. Box 11103 synthesis of glycosylated compounds largely relies on four 9700 CC Groningen (The Netherlands) non-enzymatic reactions (Scheme 1). One of the first was fa- [f] Dr. V. Eastwick-Field mously developed by Koenigs and Knorr, in which glycosyl Carbosynth Limited 8 & 9 Old Station Business Park halides, activated with silver salts, are used as glycosyl Compton, Newbury, Berkshire RG20 6NE (UK) donors.[26–28] Glycosyl trichloroacetimidates were later found Chem. Eur. J. 2012, 18, 10786 – 10801 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemeurj.org 10787 A. Schiller et al. to be very powerful donor substrates with an excellent leav- activated by electrophilic reagents.[30] There are, however, ing group.[29] Alternatively, more stable glycosides, such as two major issues connected with the outcome of these reac- thioglycosides and n-pentenyl glycosides, can be used when tions, that is, the regioselectivity and the configuration of the glycosidic linkage. The former can be solved by appro- priate protection strategies, whereas the latter is strongly de- Tom Desmet received a Ph.D. in Biochem- pendent on the neighboring group participation of the C2 istry from Ghent University for work on substituent. Additionally, solvents and catalysts have an im- the structure–function relationships in portant effect on the anomeric outcome of glycosylation re- (hemi)cellulases. He is particularly interest- actions. ed in the engineering of carbohydrate- The chemical methods suffer from a number of draw- active enzymes for use in biocatalytic proc- esses, and has coordinated several projects backs: labor-intensive activation and protection procedures, in that field. After a postdoctoral stay at multistep synthetic routes with low overall yields, the use of Wageningen University, he was appointed toxic catalysts and solvents and the amount of waste.[31] To Associate Professor at the Centre for In- overcome these limitations, specific enzymes may be used dustrial Biotechnology and Biocatalysis, where he leads a team of about ten re- for the synthesis of glycosides. DeRoode et al. have calculat- searchers. Wim Soetaert holds a Ph.D. in Applied Bi- ological Sciences from Ghent University. Lubbert Dijkhuizen is Professor of Micro- After working in the starch industry for biology, University of Groningen. He is twelve years, he returned to the university scientific director of the Carbohydrate to become Associate Professor for Indus- Competence Center, a public-private part- trial Biotechnology. His research interests nership with 19 companies and 6 knowl- comprise the enzymatic and microbial con- edge institutes (http://www.cccresearch.nl). version of carbohydrates for the produc- His research focuses on the characteriza- tion of added-value chemicals. Wim Soe- tion and engineering of sterol/steroid con- taert also is the director of the Bio Base verting enzymes (Rhodococcus/Mycobac- Europe Pilot Plant as well as the founder terium), and starch and sucrose acting en- and chairman of Ghent Bio-Energy Valley. zymes (bacilli/lactobacilli).
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • New Computational Approaches for Investigating the Impact of Mutations on the Transglucosylation Activity of Sucrose Phosphorylase Enzyme
    Thesis submitted to the Université de la Réunion for award of Doctor of Philosophy in Sciences speciality in bioinformatics New computational approaches for investigating the impact of mutations on the transglucosylation activity of sucrose phosphorylase enzyme Mahesh VELUSAMY Thesis to be presented on 18th December 2018 in front of the jury composed of Mme Isabelle ANDRE, Directeur de Recherche CNRS, INSA de TOULOUSE, Rapporteur M. Manuel DAUCHEZ, Professeur, Université de Reims Champagne Ardennes, Rapporteur M. Richard DANIELLOU, Professeur, Université d'Orléans, Examinateur M. Yves-Henri SANEJOUAND, Directeur de Recherche CNRS, Université de Nantes, Examinateur Mme Irène MAFFUCCI, Maître de Conférences, Université de Technologie de Compiègne, Examinateur Mme Corinne MIRAL, Maître de Conférences HDR, Université de Nantes, Examinateur M. Frédéric CADET, Professeur, Université de La Réunion, Co-directeur de thèse M. Bernard OFFMANN, Professeur, Université de Nantes, Directeur de thèse ெ்்ந்ி ிைு்ூுத் ெ்யாம் ெ்த உதி்ு ையகு் ானகு் ஆ்ற் அிு. -ிு்ு் ுதி் அ்ப் ுுக், எனு த்ைத ேுாி, தா் க்ூி, அ்ண் ு்ு்ுமா், த்ைக பா்பா, ஆ்தா ுு்மா், ீனா, அ்ண் ்ுக், ெபிய்பா, ெபிய்மா ம்ு் உுுைணயா் இு்த அைண்ு ந்ப்கு்ு் எனு மனமா்்த ந்ி. இ்த ஆ்ி்ைக ுுைம அை3த்ு ுுுத்்காரண், எனு ஆ்ி்ைக இய்ுன் ேபராிிய் ெப்னா்் ஆஃ்ேம். ப்ேு துண்கி் நா் மனதாு், ெபாுளாதார அளிு் க்3்ி் இு்தேபாு, என்ு இ்ெனாு த்ைதயாகே இு்ு எ்ைன பா்்ு்ெகா்3ா். ுி்பாக, எனு ூ்றா் ஆ்ு இுிி், அ்்ு எ்ளோ தி்ப்3 க3ைமக் ம்ு் ிர்ிைனக் இு்தாு், அைத்ெபாு்பு்தாு, அ் என்ு ெ்த ெபாுளாதார உதி, ப்கைB்கழக பிு ம்ு் இதர ி்ாக ்ப்த்ப்3 உதிகு்ு எ்ன ைகமா்ு ெகாு்தாு் ஈ3ாகாு.
    [Show full text]
  • Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community During the Anaerobic Digestion of Hydrolyzed Corncob
    energies Article Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob Luz Breton-Deval 1 , Ilse Salinas-Peralta 1 , Jaime Santiago Alarcón Aguirre 2, Belkis Sulbarán-Rangel 2,* and Kelly Joel Gurubel Tun 2,* 1 Catedras Conacyt, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; [email protected] (L.B.-D.); [email protected] (I.S.-P.) 2 Department of Water and Energy, University of Guadalajara Campus Tonalá, Tonalá 45425, Mexico; [email protected] * Correspondence: [email protected] (B.S.-R.); [email protected] (K.J.G.T.); Tel.: +52-33-2000-2300 (K.J.G.T.) Abstract: Maize forms the basis of Mexican food. As a result, approximately six million tons of corncob are produced each year, which represents an environmental issue, as well as a potential feedstock for biogas production. This research aimed to analyze the taxonomic and functional shift in the microbiome of the fermenters using a whole metagenome shotgun approach. Two strategies were used to understand the microbial community at the beginning and the end of anaerobic digestion: (i) phylogenetic analysis to infer the presence and coverage of clade-specific markers to assign taxonomy and (ii) the recovery of the individual genomes from the samples using the binning of the assembled scaffolds. The results showed that anaerobic digestion brought some noticeable changes and the main microbial community was composed of Corynebacterium variable, Desulfovibrio desulfuricans, Vibrio furnissii, Shewanella spp., Actinoplanes spp., Pseudoxanthomonas spp., Saccharomonospora azurea, Citation: Breton-Deval, L.; Agromyces spp., Serinicoccus spp., Cellulomonas spp., Pseudonocardia spp., Rhodococcus rhodochrous, Salinas-Peralta, I.; Alarcón Aguirre, Sphingobacterium spp.
    [Show full text]
  • Protein & Peptide Letters
    696 Send Orders for Reprints to [email protected] Protein & Peptide Letters, 2017, 24, 696-709 REVIEW ARTICLE ISSN: 0929-8665 eISSN: 1875-5305 Impact Factor: 1.068 Glycan Phosphorylases in Multi-Enzyme Synthetic Processes BENTHAM Editor-in-Chief: SCIENCE Ben M. Dunn Giulia Pergolizzia, Sakonwan Kuhaudomlarpa, Eeshan Kalitaa,b and Robert A. Fielda,* aDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; bDepartment of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam -784028, India Abstract: Glycoside phosphorylases catalyse the reversible synthesis of glycosidic bonds by glyco- A R T I C L E H I S T O R Y sylation with concomitant release of inorganic phosphate. The equilibrium position of such reac- tions can render them of limited synthetic utility, unless coupled with a secondary enzymatic step Received: January 17, 2017 Revised: May 24, 2017 where the reaction lies heavily in favour of product. This article surveys recent works on the com- Accepted: June 20, 2017 bined use of glycan phosphorylases with other enzymes to achieve synthetically useful processes. DOI: 10.2174/0929866524666170811125109 Keywords: Phosphorylase, disaccharide, α-glucan, cellodextrin, high-value products, biofuel. O O 1. INTRODUCTION + HO OH Glycoside phosphorylases (GPs) are carbohydrate-active GH enzymes (CAZymes) (URL: http://www.cazy.org/) [1] in- H2O O GP volved in the formation/cleavage of glycosidic bond together O O GT O O + HO O + HO with glycosyltransferase (GT) and glycoside hydrolase (GH) O -- NDP OPO3 NDP -- families (Figure 1) [2-6]. GT reactions favour the thermody- HPO4 namically more stable glycoside product [7]; however, these GS R enzymes can be challenging to work with because of their O O + HO current limited availability and relative instability, along R with the expense of sugar nucleotide substrates [7].
    [Show full text]
  • In Vitro and in Vivo Exploration of the Cellobiose and Cellodextrin Phosphorylases Panel in Ruminiclostridium Cellulolyticum: Im
    Liu et al. Biotechnol Biofuels (2019) 12:208 https://doi.org/10.1186/s13068-019-1549-x Biotechnology for Biofuels RESEARCH Open Access In vitro and in vivo exploration of the cellobiose and cellodextrin phosphorylases panel in Ruminiclostridium cellulolyticum: implication for cellulose catabolism Nian Liu1, Aurélie Fosses1, Clara Kampik1, Goetz Parsiegla2, Yann Denis3, Nicolas Vita1, Henri‑Pierre Fierobe1 and Stéphanie Perret1* Abstract Background: In anaerobic cellulolytic micro‑organisms, cellulolysis results in the action of several cellulases gathered in extracellular multi‑enzyme complexes called cellulosomes. Their action releases cellobiose and longer cellodex‑ trins which are imported and further degraded in the cytosol to fuel the cells. In Ruminiclostridium cellulolyticum, an anaerobic and cellulolytic mesophilic bacteria, three cellodextrin phosphorylases named CdpA, CdpB, and CdpC, were identifed in addition to the cellobiose phosphorylase (CbpA) previously characterized. The present study aimed at characterizing them, exploring their implication during growth on cellulose to better understand the life‑style of cellulolytic bacteria on such substrate. Results: The three cellodextrin phosphorylases from R. cellulolyticum displayed marked diferent enzymatic char‑ acteristics. They are specifc for cellodextrins of diferent lengths and present diferent kcat values. CdpC is the most active enzyme before CdpA, and CdpB is weakly active. Modeling studies revealed that a mutation of a conserved histidine residue in the phosphate ion‑binding pocket in CdpB and CdpC might explain their activity‑level diferences. The genes encoding these enzymes are scattered over the chromosome of R. cellulolyticum and only the expression of the gene encoding the cellobiose phosphorylase and the gene cdpA is induced during cellulose growth. Char‑ acterization of four independent mutants constructed in R.
    [Show full text]
  • Recent Advances in Enzymatic Synthesis of β-Glucan and Cellulose
    Scotland's Rural College Recent advances in enzymatic synthesis of -glucan and cellulose Bulmer, Gregory S.; de Andrade, Peterson; Field, Robert A.; van Munster, Jolanda M. Published in: Carbohydrate Research DOI: 10.1016/j.carres.2021.108411 Print publication: 01/10/2021 Document Version Publisher's PDF, also known as Version of record Link to publication Citation for pulished version (APA): Bulmer, G. S., de Andrade, P., Field, R. A., & van Munster, J. M. (2021). Recent advances in enzymatic synthesis of -glucan and cellulose. Carbohydrate Research, 508, [108411]. https://doi.org/10.1016/j.carres.2021.108411 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Carbohydrate Research 508 (2021) 108411 Contents lists available at ScienceDirect Carbohydrate Research journal homepage: www.elsevier.com/locate/carres Recent advances in enzymatic synthesis of β-glucan and cellulose Gregory S.
    [Show full text]
  • アミロース製造に利用する酵素の開発と改良 Phosphorylase and Muscle Phosphorylase B
    125 J. Appl. Glycosci., 54, 125―131 (2007) !C 2007 The Japanese Society of Applied Glycoscience Proceedings of the Symposium on Amylases and Related Enzymes, 2006 Developing and Engineering Enzymes for Manufacturing Amylose (Received December 5, 2006; Accepted January 5, 2007) Michiyo Yanase,1,* Takeshi Takaha1 and Takashi Kuriki1 1 Biochemical Research Laboratory, Ezaki Glico Co., Ltd. (4 ―6 ―5, Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan) Abstract: Amylose is a functional biomaterial and is expected to be used for various industries. However at present, manufacturing of amylose is not done, since the purification of amylose from starch is very difficult. It has been known that amylose can be produced in vitro by using α-glucan phosphorylases. In order to ob- tain α-glucan phosphorylase suitable for manufacturing amylose, we isolated an α-glucan phosphorylase gene from Thermus aquaticus and expressed it in Escherichia coli. We also obtained thermostable α-glucan phos- phorylase by introducing amino acid replacement onto potato enzyme. α-Glucan phosphorylase is suitable for the synthesis of amylose; the only problem is that it requires an expensive substrate, glucose 1-phosphate. We have avoided this problem by using α-glucan phosphorylase either with sucrose phosphorylase or cellobiose phosphorylase, where inexpensive raw material, sucrose or cellobiose, can be used instead. In these combined enzymatic systems, α-glucan phosphorylase is a key enzyme. This paper summarizes our work on engineering practical α-glucan phosphorylase for industrial processes and its use in the enzymatic synthesis of essentially linear amylose and other glucose polymers. Key words: amylose, glucose polymer, α-glucan phosphorylase, glycogen debranching enzyme, protein engi- neering α-1,4 glucan is the major form of energy reserve from Enzymes for amylose synthesis.
    [Show full text]
  • Enzymatic Glycosylation of Small Molecules
    University of Groningen Enzymatic Glycosylation of Small Molecules Desmet, Tom; Soetaert, Wim; Bojarova, Pavla; Kren, Vladimir; Dijkhuizen, Lubbert; Eastwick- Field, Vanessa; Schiller, Alexander; Křen, Vladimir Published in: Chemistry : a European Journal DOI: 10.1002/chem.201103069 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Desmet, T., Soetaert, W., Bojarova, P., Kren, V., Dijkhuizen, L., Eastwick-Field, V., Schiller, A., & Křen, V. (2012). Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts. Chemistry : a European Journal, 18(35), 10786-10801. https://doi.org/10.1002/chem.201103069 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 24-09-2021 DOI: 10.1002/chem.201103069 Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts Tom Desmet,[b] Wim Soetaert,[b, c] Pavla Bojarov,[d] Vladimir Krˇen,[d] Lubbert Dijkhuizen,[e] Vanessa Eastwick-Field,[f] and Alexander Schiller*[a] 10786 2012 Wiley-VCH Verlag GmbH & Co.
    [Show full text]
  • Ep 1 117 822 B1
    Europäisches Patentamt (19) European Patent Office & Office européen des brevets (11) EP 1 117 822 B1 (12) EUROPÄISCHE PATENTSCHRIFT (45) Veröffentlichungstag und Bekanntmachung des (51) Int Cl.: Hinweises auf die Patenterteilung: C12P 19/18 (2006.01) C12N 9/10 (2006.01) 03.05.2006 Patentblatt 2006/18 C12N 15/54 (2006.01) C08B 30/00 (2006.01) A61K 47/36 (2006.01) (21) Anmeldenummer: 99950660.3 (86) Internationale Anmeldenummer: (22) Anmeldetag: 07.10.1999 PCT/EP1999/007518 (87) Internationale Veröffentlichungsnummer: WO 2000/022155 (20.04.2000 Gazette 2000/16) (54) HERSTELLUNG VON POLYGLUCANEN DURCH AMYLOSUCRASE IN GEGENWART EINER TRANSFERASE PREPARATION OF POLYGLUCANS BY AMYLOSUCRASE IN THE PRESENCE OF A TRANSFERASE PREPARATION DES POLYGLUCANES PAR AMYLOSUCRASE EN PRESENCE D’UNE TRANSFERASE (84) Benannte Vertragsstaaten: (56) Entgegenhaltungen: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU WO-A-00/14249 WO-A-00/22140 MC NL PT SE WO-A-95/31553 (30) Priorität: 09.10.1998 DE 19846492 • OKADA, GENTARO ET AL: "New studies on amylosucrase, a bacterial.alpha.-D-glucosylase (43) Veröffentlichungstag der Anmeldung: that directly converts sucrose to a glycogen- 25.07.2001 Patentblatt 2001/30 like.alpha.-glucan" J. BIOL. CHEM. (1974), 249(1), 126-35, XP000867741 (73) Patentinhaber: Südzucker AG Mannheim/ • BUTTCHER, VOLKER ET AL: "Cloning and Ochsenfurt characterization of the gene for amylosucrase 68165 Mannheim (DE) from Neisseria polysaccharea: production of a linear.alpha.-1,4-glucan" J. BACTERIOL. (1997), (72) Erfinder: 179(10), 3324-3330, XP002129879 • GALLERT, Karl-Christian • DE MONTALK, G. POTOCKI ET AL: "Sequence D-61184 Karben (DE) analysis of the gene encoding amylosucrase • BENGS, Holger from Neisseria polysaccharea and D-60598 Frankfurt am Main (DE) characterization of the recombinant enzyme" J.
    [Show full text]
  • Exploring Microbial Dark Matter in East Antarctic Soils
    EXPLORING MICROBIAL DARK MATTER IN EAST ANTARCTIC SOILS Mukan Ji A thesis in fulfilment of requirements for the degree of Doctor of Philosophy School of Biotechnology and Biomolecular Science Faculty of Science UNSW Australia ORIGINALITY sYfrEMENT 'I hereby declare that this submission is my own work and to the best of my knowledge it contains no·materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presenta · and linguistic expression is acknowledged.' Signed Date COPYRIGHT STATEMENT 'I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media. now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only).
    [Show full text]
  • Structural Determinants of Product Specificity of Sucrose Isomerases
    FEBS Letters 583 (2009) 1964–1968 journal homepage: www.FEBSLetters.org Structural determinants of product specificity of sucrose isomerases Stéphanie Ravaud a,1, Xavier Robert a, Hildegard Watzlawick b, Richard Haser a, Ralf Mattes b, Nushin Aghajari a,* a Laboratoire de BioCristallographie, Institut de Biologie et Chimie des Protéines, UMR 5086-CNRS/Université de Lyon, IFR128 ‘‘BioSciences Gerland – Lyon Sud”, 7 Passage du Vercors, F-69367 Lyon cedex 07, France b Universität Stuttgart, Institut für Industrielle Genetik, Allmandring 31, D-70569 Stuttgart, Germany article info abstract Article history: The healthy sweetener isomaltulose is industrially produced from the conversion of sucrose by the Received 21 April 2009 sucrose isomerase SmuA from Protaminobacter rubrum. Crystal structures of SmuA in native and Accepted 2 May 2009 deoxynojirimycin complexed forms completed with modeling studies unravel the characteristics Available online 8 May 2009 of the isomaltulose synthases catalytic pocket and their substrate binding mode. Comparison with the trehalulose synthase MutB highlights the role of Arg298 and Arg306 active site residues and sur- Edited by Hans Eklund face charges in controlling product specificity of sucrose isomerases (isomaltulose versus trehalu- lose). The results provide a rationale for the specific design of optimized enzymes. Keywords: Ó 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Sucrose isomerase Glycoside hydrolase Aromatic clamp Crystal structure Deoxynojirimycin Molecular modeling 1. Introduction ature, pH and reaction conditions [5]. Crystal structures of two SI’s with distinct product specificity and physico-chemical parameters The market for alternative sweeteners holds considerable poten- (Supplementary Table 1) were determined: PalI an isomaltulose tial with the rising health concerns on diet, obesity and cardiovascu- synthase from Klebsiella sp.
    [Show full text]
  • 55856192.Pdf
    Members of the jury: Prof. dr. ir. Frank Devlieghere (chairman) Prof. dr. ir. Wim Soetaert (promotor) Prof. dr. ir. Erick Vandamme (promotor) Prof. dr. Els Vandamme Prof. dr. Savvas Savvides Dr. Tom Desmet Dr. Henk-Jan Joosten Promotors: Prof. dr. ir. Wim SOETAERT (promotor) Prof. dr. ir. Erick VANDAMME (promotor) Centre of expertise – Industrial Biotechnology and Biocatalysis Department of Biochemical and Microbial Technology Ghent University, Belgium Dean: Prof. dr. ir. Guido Van Huylenbroeck Rector: Prof. dr. Paul Van Cauwenberge The research was conducted at the Centre of expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University (Ghent, Belgium) ir. An CERDOBBEL ENGINEERING THE THERMOSTABILITY OF SUCROSE PHOSPHORYLASE FOR INDUSTRIAL APPLICATIONS Thesis submitted in fulfilment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Dutch translation of the title: Engineering van de thermostabiliteit van sucrose phosphorylase voor industriële toepassingen Cover illustration: “Three-dimensional structure of sucrose phosphorylase colored by B-factor.” Printed by University Press, Zelzate To refer to this thesis: Cerdobbel, A. (2011). Engineering the thermostability of sucrose phosphorylase for industrial applications. PhD thesis, Faculty of Bioscience Engineering, Ghent University, Ghent, 200 p. ISBN-number: 978-90-5989-414-3 The author and the promoter give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. WOORD VOORAF Er wordt wel eens gezegd dat het woord vooraf het meest gelezen stukje is van een proefschrift.
    [Show full text]