New Computational Approaches for Investigating the Impact of Mutations on the Transglucosylation Activity of Sucrose Phosphorylase Enzyme

Total Page:16

File Type:pdf, Size:1020Kb

New Computational Approaches for Investigating the Impact of Mutations on the Transglucosylation Activity of Sucrose Phosphorylase Enzyme Thesis submitted to the Université de la Réunion for award of Doctor of Philosophy in Sciences speciality in bioinformatics New computational approaches for investigating the impact of mutations on the transglucosylation activity of sucrose phosphorylase enzyme Mahesh VELUSAMY Thesis to be presented on 18th December 2018 in front of the jury composed of Mme Isabelle ANDRE, Directeur de Recherche CNRS, INSA de TOULOUSE, Rapporteur M. Manuel DAUCHEZ, Professeur, Université de Reims Champagne Ardennes, Rapporteur M. Richard DANIELLOU, Professeur, Université d'Orléans, Examinateur M. Yves-Henri SANEJOUAND, Directeur de Recherche CNRS, Université de Nantes, Examinateur Mme Irène MAFFUCCI, Maître de Conférences, Université de Technologie de Compiègne, Examinateur Mme Corinne MIRAL, Maître de Conférences HDR, Université de Nantes, Examinateur M. Frédéric CADET, Professeur, Université de La Réunion, Co-directeur de thèse M. Bernard OFFMANN, Professeur, Université de Nantes, Directeur de thèse ெ்்ந்ி ிைு்ூுத் ெ்யாம் ெ்த உதி்ு ையகு் ானகு் ஆ்ற் அிு. -ிு்ு் ுதி் அ்ப் ுுக், எனு த்ைத ேுாி, தா் க்ூி, அ்ண் ு்ு்ுமா், த்ைக பா்பா, ஆ்தா ுு்மா், ீனா, அ்ண் ்ுக், ெபிய்பா, ெபிய்மா ம்ு் உுுைணயா் இு்த அைண்ு ந்ப்கு்ு் எனு மனமா்்த ந்ி. இ்த ஆ்ி்ைக ுுைம அை3த்ு ுுுத்்காரண், எனு ஆ்ி்ைக இய்ுன் ேபராிிய் ெப்னா்் ஆஃ்ேம். ப்ேு துண்கி் நா் மனதாு், ெபாுளாதார அளிு் க்3்ி் இு்தேபாு, என்ு இ்ெனாு த்ைதயாகே இு்ு எ்ைன பா்்ு்ெகா்3ா். ுி்பாக, எனு ூ்றா் ஆ்ு இுிி், அ்்ு எ்ளோ தி்ப்3 க3ைமக் ம்ு் ிர்ிைனக் இு்தாு், அைத்ெபாு்பு்தாு, அ் என்ு ெ்த ெபாுளாதார உதி, ப்கைB்கழக பிு ம்ு் இதர ி்ாக ்ப்த்ப்3 உதிகு்ு எ்ன ைகமா்ு ெகாு்தாு் ஈ3ாகாு. ேபராிிய் ஃிரெ3ி் ேக3் ம்ு் ேபராிிய் ிி் ா்3் ஆிேயாரு இைண ேம்பா்ை்ு் எ் உளமா்்த ந்ி. ேபராிிய். ய்்-ெH்ி ேனு்ு அ்கேள உ்குை3ய ிிி ு்3ளா்ுத், ேமாெ3்ேB் ்ப்த்ப்3 ு்ியமான பி்ுைரக் ம்ு் எ்ுுய ஆ்ு க்ுைர எுுத்கான உ்குை3ய அைன்ு ஊ்கமான ா்்ைதகு்ு் ி்க ந்ி. 3ா்3். ிி் அ்னா்் ம்ு் ிேயான் Hாஃ்ேம் ஆிய இுு்ு் ுேராேம்் ்ப்த்ப்3 உ்குை3ய உதி்ு ி்க ந்ி. 3ா்3். ்ெ3பாேன ே3ேB்ேயா அ்கேள உ்குை3ய ிு ிு ெதாி்ு்ப ்ப்த்ப்3 உதிகு்ு ந்ி. எ் ுதBா் ஆ்ி், ீூியி் த்ு் ி ம்ு் இதர ு்ியமான ிகைள ெ்ு த்த ு்ு்ாி ுு்ப்தா்க், ேநாெய்ி மிி் ம்ு் ேபராிிய் பாிி் கா்ெ3ிய் ஆிேயாு்ு எ் ிர் தா்்த ந்ி. ேமு், ிூிய் நா்கி் என்ு மற்க ுியாத ிைனுகைள ெகாு்த ந்ப்க் ேமகBா்கா, அினா், ோு, ேம்், மு்கா, ெக்், அேராரா, ூி, ேUா, மி், ிைர் அ்ணா, எி, எ்ினா, ிி, அிBா, ராUா், அண்யா ம்ு் அி் ீூிய் தி் ொ்தகு்ு் எ்ேBாு்ு் எ் மனமா்்த ந்ி. ுி்பா ெ்ி் அ்ணா, ு்தி அ்ி, Uனி ு்ி ம்ு் Hிதா, உ்குை3ய அளி்Bா அ்ு ம்ு் அ்கைர்ு ெரா்ப ந்ி. Page 3 of 188 பாி்B த்ுறு்ு ீு ுு்ு, அ்த நா்கைள இிதாகு், மற்குியாத துண்களாகு் மா்ுன த்ே் த்ி, பாBா அ்ணா, ி்ப்், ி, ெபி்் அைன்கு்ு் எ் மனமா்்த ந்ி. ிிஎ்ி பாி் ஆ்க க ஊிய்கு்ு், ுி்பாக ேபராிிய். ேக்தி் எ்்ேெப்் அ்கி் மாுB் ு்ப்கைள் ப்ிய பயு்ள அிுைரகு்ு் ம்ு் ிு. ிூெப்் அ்கி் ெதாி்ு்ப ெதா3்பான உதி்ு் எ் மனமா்்த ந்ி. எ்ேனா3, நா்ே3் நா்கைள ெபா்னான துண்களாக மா்ியி் ெபு் ப்ு ி்ப்க் ெபனா்் ே3ி், ேUாக், 3ா்3். ஐயனா் ெ்ிே் ம்ு் மாுி. ுி்பாக, ெபனா்் ே3ி், ேUாH் ெH்ி்் ஆிய இுி் ெதாி்ுைற ீிிBான ப்கி்ு ம்ு் உுக்பு்ுத் ெதா3்ுை3ய அிுைரக் எனு ுைன் பி்ி் ுிுகி் ெபிய ப்ு ி்ிறு. இுு்ுேம எனு மனமா்்த ந்ி. எ்ுை3ய ஆ்ிB்ைத ி பா்்த எ் ேதாிக் ிிகா, ிேனகா ம்ு் ுரி அைனு்ு் ந்ி. இ்கேளாு, எ் ேமB அ்கைற ம்ு் அளி்Bா அ்ு கா்ிய தாரி, ி்ரா்கா, எி், ிஃப், ்ா் ம்ு் இமாு்ு் எ்ுை3ய மணமாண்்த ந்ி. இைத தி்்ு, எ்ுை3ய பி்ி மாண்கி் எ்ே\ா ைB பய்பா்ி்்கான ப்கி்ி்ு மனமா்்த ந்ி. 3ா்3். ெHௌ3ா ெப்ெH்ி-ேமா்ராி, ேபராிிய். பாிி் ிேளயி ம்ு் 3ா்3். யொ்ி் ேரு் இுு்ு், உ்குை3ய அளி்Bா அ்ி்ு் ம்ு் எ்ீு ெகா்3 தி்ப்3 அ்கைர்ு் ி்க ந்ி. ஆர்பகாB்ி், எ் ிறைம ீு ந்ி்ைக ை்ு, எ்ைன இ்த ுைன் ப்3்பி்ு்ு பி்ுைர்த ேபராிிய் ிெரெ3ி் ேக3், ேபராிிய். எ். யி்றா, ிு. ேகா்்்ி் ுணீB் ம்ு் 3ா்3். ி்ிய் ஆிேயாு்ு எ் மனமா்்த ந்ி. எ்ுை3ய ுதBா் ஆ்ி், ுத் ஒு மாத காB் எ்ிு ஆ்ு ூ3்ி் இு்ு ேைB ெ்ய அுமி்த ேபராிிய். எ். ீிா் அ்கு்ு எ் மனமா்்த ந்ி. எ்ுை3ய மி்ுி்க ூ்த மாண் ுரா் ம்ு் இதர எ்ிு க ந்ப்கு்கி் உதி்ு் எ் ந்ி. எ்ுை3ய ிெ3் ேதாிக் ெ்ி, ிேBாினா, ீி ம்ு் ுமருு அ்கி் ஆ்ு க்ுைர ுு்கம ிபா்்த் ம்ு் ெ்்ந்ி ூுத் ஆ்ிB் மா்ற்ி்கான ப்கி்ி்ு, எ் மனமா்்த ந்ி. எனு நB் ிு்ிக் அ்ு்Bா, ேமாக், கேண், க்ண், ஆ்்ி, கUா, ிி, ோு, ுு, ப்ி, க்ூி ந்ப்க் ம்ு் அைன்ு ஆ்க ந்ப்கி் ஊ்க்ி்ு், அ்ி்ு் எ் மனமா்்த ந்ிிைன இ்த மி்்ியான துண்ி் ெதிி்ு ெகா்ிேற். -மேக் ேுாி Page 4 of 188 Acknowledgements Assistance given by those who ne’er received our aid, Is debt by gift of heaven and earth but poorly paid -Thiruvalluvar First and foremost, I would like to extend my sincere gratitude to lord murugan, my family for holding my hands through things that make me nervous and for all the shoves when I needed them. They include my father Velusamy, my mother Kasthuri, my brother Muthukumar, my sister Pappa, my grandmother Kuruvammal, Meena, my brother Shanmugaraj, Periyappa and Periyamma. I am also deeply indebted to my advisor, Professor Bernard Offmann who was the pillar of support through the toughest emotional and financial times of my Doctoral studies. His amazing guidance and care as an academic father were instrumental in motivating me towards success and without him this thesis would not have been possible. I would also like to extend my gratitude to Professor Frederic Cadet and Asst. Prof. Philippe Charton for their co-supervision. I have learnt so much from the three of them, and not just in terms of academics. I would like to thank my thesis committee members Professor Yves-henri Sanejouand and Professor. Catherine Etchebest for giving moral support, valuable suggestions and immense ideas helped me to improve my research day by day. Also, my special thanks to Professor Richard Daniellou, Mme Irène Maffucci, Mme Corinne Miral for accepting to be part of my jury members. I offer my profound gratitude to thank Professors Manuel Dauchez and Isabelle Andre for taking their precious time to review my thesis. Also, my special thanks to our collaborator Professor Tom Desmet and his student Dr. Tom Verhaeghe, whose thesis work served as basics for mine. Dr. Philippe Arnaud and Dr. Lionel Hoffmann cannot thank you enough for all the insightful contributions and wonderful help with GROMACS. My special thanks to Dr. Stephane Téletchea for his many technical advices. My thesis project took me to several places, one and the initial being Region La Reunion. I would like to thank the entire Mr. Muthuswami and family, Noelly Madeleine and Professor Fabrice Gardebien, with my accommodation and housing in La Reunion. I also cherish the wonderful support and happy memories, that I had with my friends Avinash, Somasekar, Mekala, Max, Marushka, Gaile, Aurora, Julie, Joana, Marine, Brice, Eddy, Elvina, Vigna, Akila, Anamya. A Page 5 of 188 special mention to my siblings and friends from the AFIR Reunion Tamil community, brother Senthil, sister Sundari, kids Janani and Haritha for the abounding love and care they shared on me. My sincere gratitude goes to brothers Tharvesh, Bala, Gilbert, Sasidhar and Felix, who helped with my accommodation in Paris and gave me many happy memories. My heartfelt thanks to all the colleagues at DSIMB, Paris, especially Mr. Hubert, who provided many technical helps. I wholeheartedly appreciate all the contribution of Benoit in helping me in with dissertation and his guidance in parameterization work. I am also eternally grateful to Johann, Iyanar for sharing their wisdom with me and providing priceless technical advices during the final year of my Ph.D. in Nantes. Especially, my heartfelt thanks to Johann for his help in parameterization and plotting puckering states. I am also greatly indebted to the help rendered by my friends Sneha, Surbhi and Lipika who shared an important part of my joys and sorrows in Nantes and helped me with my communication and proofreading of my thesis.
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • MODELLER 10.1 Manual
    MODELLER A Program for Protein Structure Modeling Release 10.1, r12156 Andrej Saliˇ with help from Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Guangqiang Dong, Marc A. Martı-Renom, Narayanan Eswar, Frank Alber, Maya Topf, Baldomero Oliva, Andr´as Fiser, Roberto S´anchez, Bozidar Yerkovich, Azat Badretdinov, Francisco Melo, John P. Overington, and Eric Feyfant email: modeller-care AT salilab.org URL https://salilab.org/modeller/ 2021/03/12 ii Contents Copyright notice xxi Acknowledgments xxv 1 Introduction 1 1.1 What is Modeller?............................................. 1 1.2 Modeller bibliography....................................... .... 2 1.3 Obtainingandinstallingtheprogram. .................... 3 1.4 Bugreports...................................... ............ 4 1.5 Method for comparative protein structure modeling by Modeller ................... 5 1.6 Using Modeller forcomparativemodeling. ... 8 1.6.1 Preparinginputfiles . ............. 8 1.6.2 Running Modeller ......................................... 9 2 Automated comparative modeling with AutoModel 11 2.1 Simpleusage ..................................... ............ 11 2.2 Moreadvancedusage............................... .............. 12 2.2.1 Including water molecules, HETATM residues, and hydrogenatoms .............. 12 2.2.2 Changing the default optimization and refinement protocol ................... 14 2.2.3 Getting a very fast and approximate model . ................. 14 2.2.4 Building a model from multiple templates . .................. 15 2.2.5 Buildinganallhydrogenmodel
    [Show full text]
  • MODELLER 10.0 Manual
    MODELLER A Program for Protein Structure Modeling Release 10.0, r12005 Andrej Saliˇ with help from Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Guangqiang Dong, Marc A. Martı-Renom, Narayanan Eswar, Frank Alber, Maya Topf, Baldomero Oliva, Andr´as Fiser, Roberto S´anchez, Bozidar Yerkovich, Azat Badretdinov, Francisco Melo, John P. Overington, and Eric Feyfant email: modeller-care AT salilab.org URL https://salilab.org/modeller/ 2021/01/25 ii Contents Copyright notice xxi Acknowledgments xxv 1 Introduction 1 1.1 What is Modeller?............................................. 1 1.2 Modeller bibliography....................................... .... 2 1.3 Obtainingandinstallingtheprogram. .................... 3 1.4 Bugreports...................................... ............ 4 1.5 Method for comparative protein structure modeling by Modeller ................... 5 1.6 Using Modeller forcomparativemodeling. ... 8 1.6.1 Preparinginputfiles . ............. 8 1.6.2 Running Modeller ......................................... 9 2 Automated comparative modeling with AutoModel 11 2.1 Simpleusage ..................................... ............ 11 2.2 Moreadvancedusage............................... .............. 12 2.2.1 Including water molecules, HETATM residues, and hydrogenatoms .............. 12 2.2.2 Changing the default optimization and refinement protocol ................... 14 2.2.3 Getting a very fast and approximate model . ................. 14 2.2.4 Building a model from multiple templates . .................. 15 2.2.5 Buildinganallhydrogenmodel
    [Show full text]
  • Download Author Version (PDF)
    Green Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/greenchem Page 1 of 30 Green Chemistry 1 A sustainable biotechnological process for the efficient synthesis of kojibiose 2 3 Marina Díez-Municio, Antonia Montilla, F. Javier Moreno * and Miguel Herrero 4 5 Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI 6 (UAM+CSIC), C/ Nicolás Cabrera 9, 28049 Madrid, Spain. 7 8 * Corresponding author: Tel.: +34 91 0017948; E-mail address: [email protected] 9 GreenChemistry Accepted Manuscript Green Chemistry Page 2 of 30 10 ABSTRACT 11 This work reports the optimization of a cost-effective and scalable process for 12 the enzymatic synthesis of kojibiose (2-O-α-D-glucopyranosyl-α-D-glucose) from 13 readily available and low-cost substrates such as sucrose and lactose.
    [Show full text]
  • Stereoselective Synthesis of a 4- -Glucoside of Valienamine and Its X
    www.nature.com/scientificreports OPEN Stereoselective synthesis of a 4‑⍺‑glucoside of valienamine and its X‑ray structure in complex with Streptomyces coelicolor GlgE1‑V279S Anshupriya Si1,4, Thilina D. Jayasinghe2,4, Radhika Thanvi1, Sunayana Kapil3, Donald R. Ronning2* & Steven J. Sucheck1* Glycoside hydrolases (GH) are a large family of hydrolytic enzymes found in all domains of life. As such, they control a plethora of normal and pathogenic biological functions. Thus, understanding selective inhibition of GH enzymes at the atomic level can lead to the identifcation of new classes of therapeutics. In these studies, we identifed a 4‑⍺‑glucoside of valienamine (8) as an inhibitor of Streptomyces coelicolor (Sco) GlgE1‑V279S which belongs to the GH13 Carbohydrate Active EnZyme family. The results obtained from the dose–response experiments show that 8 at a concentration of 1000 µM reduced the enzyme activity of Sco GlgE1‑V279S by 65%. The synthetic route to 8 and a closely related 4‑⍺‑glucoside of validamine (7) was achieved starting from readily available D‑maltose. A key step in the synthesis was a chelation‑controlled addition of vinylmagnesium bromide to a maltose‑derived enone intermediate. X‑ray structures of both 7 and 8 in complex with Sco GlgE1‑ V279S were solved to resolutions of 1.75 and 1.83 Å, respectively. Structural analysis revealed the valienamine derivative 8 binds the enzyme in an E2 conformation for the cyclohexene fragment. Also, the cyclohexene fragment shows a new hydrogen‑bonding contact from the pseudo‑diaxial C(3)–OH to the catalytic nucleophile Asp 394 at the enzyme active site.
    [Show full text]
  • Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2019 doi:10.20944/preprints201906.0091.v1 Peer-reviewed version available at Biomolecules 2019, 9; doi:10.3390/biom9040123 Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood Abheepsa Mishra1, 2,* and Satyahari Dey1 1Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India; [email protected] (A.M.); [email protected] (S.D.) 2Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA *Correspondence: [email protected]; Tel.:+1(518) 881-9196 Abstract Natural products from plants such as, chemopreventive agents attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, the molecular docking method plays an important role in screening a large set of molecules based on their free binding energies and proposes structural hypotheses of how the molecules can inhibit the target. Several peptide based therapeutics have been developed to combat several health disorders including cancers, metabolic disorders, heart-related, and infectious diseases. Despite the discovery of hundreds of such therapeutic peptides however, only few peptide-based drugs have made it to the market. Moreover, until date the activities of cyclic peptides towards molecular targets such as protein kinases, proteases, and apoptosis related proteins have never been explored. In this study we explore the in silico kinase and protease inhibitor potentials of cyclosaplin as well as study the interactions of cyclosaplin with other cancer-related proteins.
    [Show full text]
  • Towards the Molecular Understanding of Glycogen Elongation by Amylosucrase
    Towards the molecular understanding of glycogen elongation by amylosucrase. Cécile Albenne, Lars K Skov, Vinh Tran, Michael Gajhede, Pierre Monsan, Magali Remaud Simeon, Gwenaëlle André-Leroux To cite this version: Cécile Albenne, Lars K Skov, Vinh Tran, Michael Gajhede, Pierre Monsan, et al.. Towards the molecular understanding of glycogen elongation by amylosucrase.. Proteins - Structure, Function and Bioinformatics, Wiley, 2007, 66 (1), pp.118-26. 10.1002/prot.21083. hal-02663870 HAL Id: hal-02663870 https://hal.inrae.fr/hal-02663870 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License PROTEINS: Structure, Function, and Bioinformatics 66:118–126 (2007) Towards the Molecular Understanding of Glycogen Elongation by Amylosucrase Ce´cile Albenne,1 Lars K. Skov,2 Vinh Tran,3 Michael Gajhede,2 Pierre Monsan,4 Magali Remaud-Sime´on,4* and Gwe´nae¨lle Andre´-Leroux5 1Laboratoire Surfaces Cellulaires et Signalisation chez les Ve´ge´taux, UMR 5546
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Enzymatic Glycosylation of Small Molecules
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen Enzymatic Glycosylation of Small Molecules Desmet, Tom; Soetaert, Wim; Bojarova, Pavla; Kren, Vladimir; Dijkhuizen, Lubbert; Eastwick- Field, Vanessa; Schiller, Alexander; Křen, Vladimir Published in: Chemistry : a European Journal DOI: 10.1002/chem.201103069 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Desmet, T., Soetaert, W., Bojarova, P., Kren, V., Dijkhuizen, L., Eastwick-Field, V., ... Křen, V. (2012). Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts. Chemistry : a European Journal, 18(35), 10786-10801. https://doi.org/10.1002/chem.201103069 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • University of Huddersfield Repository
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Huddersfield Repository University of Huddersfield Repository Liang, Shuo, Holmes, Violeta and Kureshi, Ibad Hybrid Computer Cluster with High Flexibility Original Citation Liang, Shuo, Holmes, Violeta and Kureshi, Ibad (2012) Hybrid Computer Cluster with High Flexibility. In: IEEE Cluster 2012, 24-28 September 2012, Beijing, China. This version is available at http://eprints.hud.ac.uk/15840/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Hybrid Computer Cluster with High Flexibility Shuo Liang Dr Violeta Holmes Ibad Kureshi School of Computing and Engineering School of Computing and Engineering School of Computing and Engineering University of Huddersfield University of Huddersfield University of Huddersfield Huddersfield, United Kingdom Huddersfield, United Kingdom Huddersfield, United Kingdom Email: [email protected] Email: [email protected] Email: [email protected] Abstract—In this paper we present a cluster middleware, the others support multi-platform, supplying different user designed to implement a Linux-Windows Hybrid HPC Cluster, interfaces and document support.
    [Show full text]
  • Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community During the Anaerobic Digestion of Hydrolyzed Corncob
    energies Article Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob Luz Breton-Deval 1 , Ilse Salinas-Peralta 1 , Jaime Santiago Alarcón Aguirre 2, Belkis Sulbarán-Rangel 2,* and Kelly Joel Gurubel Tun 2,* 1 Catedras Conacyt, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; [email protected] (L.B.-D.); [email protected] (I.S.-P.) 2 Department of Water and Energy, University of Guadalajara Campus Tonalá, Tonalá 45425, Mexico; [email protected] * Correspondence: [email protected] (B.S.-R.); [email protected] (K.J.G.T.); Tel.: +52-33-2000-2300 (K.J.G.T.) Abstract: Maize forms the basis of Mexican food. As a result, approximately six million tons of corncob are produced each year, which represents an environmental issue, as well as a potential feedstock for biogas production. This research aimed to analyze the taxonomic and functional shift in the microbiome of the fermenters using a whole metagenome shotgun approach. Two strategies were used to understand the microbial community at the beginning and the end of anaerobic digestion: (i) phylogenetic analysis to infer the presence and coverage of clade-specific markers to assign taxonomy and (ii) the recovery of the individual genomes from the samples using the binning of the assembled scaffolds. The results showed that anaerobic digestion brought some noticeable changes and the main microbial community was composed of Corynebacterium variable, Desulfovibrio desulfuricans, Vibrio furnissii, Shewanella spp., Actinoplanes spp., Pseudoxanthomonas spp., Saccharomonospora azurea, Citation: Breton-Deval, L.; Agromyces spp., Serinicoccus spp., Cellulomonas spp., Pseudonocardia spp., Rhodococcus rhodochrous, Salinas-Peralta, I.; Alarcón Aguirre, Sphingobacterium spp.
    [Show full text]
  • Supporting Information High-Throughput Virtual Screening
    Supporting Information High-Throughput Virtual Screening of Proteins using GRID Molecular Interaction Fields Simone Sciabola, Robert V. Stanton, James E. Mills, Maria M. Flocco, Massimo Baroni, Gabriele Cruciani, Francesca Perruccio and Jonathan S. Mason Contents Table S1 S2-S21 Figure S1 S22 * To whom correspondence should be addressed: Simone Sciabola, Pfizer Research Technology Center, Cambridge, 02139 MA, USA Phone: +1-617-551-3327; Fax: +1-617-551-3117; E-mail: [email protected] S1 Table S1. Description of the 990 proteins used as decoy for the Protein Virtual Screening analysis. PDB ID Protein family Molecule Res. (Å) 1n24 ISOMERASE (+)-BORNYL DIPHOSPHATE SYNTHASE 2.3 1g4h HYDROLASE 1,3,4,6-TETRACHLORO-1,4-CYCLOHEXADIENE HYDROLASE 1.8 1cel HYDROLASE(O-GLYCOSYL) 1,4-BETA-D-GLUCAN CELLOBIOHYDROLASE I 1.8 1vyf TRANSPORT PROTEIN 14 KDA FATTY ACID BINDING PROTEIN 1.85 1o9f PROTEIN-BINDING 14-3-3-LIKE PROTEIN C 2.7 1t1s OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.4 1t1r OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 2.3 1q0q OXIDOREDUCTASE 1-DEOXY-D-XYLULOSE 5-PHOSPHATE REDUCTOISOMERASE 1.9 1jcy LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.9 1fww LYASE 2-DEHYDRO-3-DEOXYPHOSPHOOCTONATE ALDOLASE 1.85 1uk7 HYDROLASE 2-HYDROXY-6-OXO-7-METHYLOCTA-2,4-DIENOATE 1.7 1v11 OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.95 1x7w OXIDOREDUCTASE 2-OXOISOVALERATE DEHYDROGENASE ALPHA SUBUNIT 1.73 1d0l TRANSFERASE 35KD SOLUBLE LYTIC TRANSGLYCOSYLASE 1.97 2bt4 LYASE 3-DEHYDROQUINATE DEHYDRATASE
    [Show full text]