University of Huddersfield Repository

Total Page:16

File Type:pdf, Size:1020Kb

University of Huddersfield Repository View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Huddersfield Repository University of Huddersfield Repository Liang, Shuo, Holmes, Violeta and Kureshi, Ibad Hybrid Computer Cluster with High Flexibility Original Citation Liang, Shuo, Holmes, Violeta and Kureshi, Ibad (2012) Hybrid Computer Cluster with High Flexibility. In: IEEE Cluster 2012, 24-28 September 2012, Beijing, China. This version is available at http://eprints.hud.ac.uk/15840/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Hybrid Computer Cluster with High Flexibility Shuo Liang Dr Violeta Holmes Ibad Kureshi School of Computing and Engineering School of Computing and Engineering School of Computing and Engineering University of Huddersfield University of Huddersfield University of Huddersfield Huddersfield, United Kingdom Huddersfield, United Kingdom Huddersfield, United Kingdom Email: [email protected] Email: [email protected] Email: [email protected] Abstract—In this paper we present a cluster middleware, the others support multi-platform, supplying different user designed to implement a Linux-Windows Hybrid HPC Cluster, interfaces and document support. which not only holds the characteristics of both operating sys- One way of running these applications on different operat- tem, but also accepts and schedules jobs in both environments. Beowulf Clusters have become an economical and practical ing systems is to divide a computer cluster into smaller sub- choice for small-and-medium-sized institutions to provide High clusters for each platform, which would lead to a duplication Performance Computing (HPC)resources. The HPC resources and poor utilisation of the resources. Another solution is to are required for running simulations, image rendering and implement virtualised systems. Although the latest virtuali- other calculations, and to support the software requiring a sation technology could be a better alternative, it cannot be specific operating system. To support the software, small- scale computer clusters would have to be divided in two implemented effectively on legacy hardware. Hence, the aim or more clusters if they are to run on a single operating of our research work is to devise and implement a system system. The x86 virtualisation technology would help running that will enable better utilisation of the HPC resources and multiple operating systems on one computer, but only with support multi-platform applications used by our research the latest hardware which many legacy Beowulf clusters do community. not have. To aid the institutions, who rely on legacy non- virtualisation-supported facilities rather than high-end HPC resources, we have developed and deployed a bi-stable hybrid Software Name Description OS Abaqus Finite Element Analysis L system built around Linux CentOS 5.5 with the improved Amber Assisted Model Building with Energy L OSCAR middleware; and Windows Server 2008 and Windows Refinement aimed at biological sys- HPC 2008 R2. This hybrid cluster is utilised as part of the tems University of Huddersfield campus grid. Backburner Rendering software for 3ds Max W Blender Open Source 3D Modeller and Ren- L Keywords-cluster middleware, computer cluster, job sched- derer uler, resource manager CASTEP CAmbridge Sequential Total Energy L Package I. INTRODUCTION COMSOL Multiphysics Modelling, Finite Ele- W&L ment Analysis, Engineering Simulation This paper is motivated by a growing need for High- Software DL POLY General purpose classical molecular L Performance Computing (HPC) resources in Higher Educa- dynamics (MD) simulation software tion Institutions and the development of computer clusters ANSYS FLUENT Computational Fluid Dynamics (CFD) W&L built from Commercial off-the-shelf components (COTS) GAMESS-UK Molecular QM code L GULP General Utility Lattice Program L using open source cluster middleware. Building computer LAMMPS Large-scale Atomic/Molecular Mas- L clusters with legacy x86 hardware is an effective and practi- sively Parallel Simulator cal choice for providing affordable HPC resources. In order MATLAB Numerical Computing Environment W&L METADISE Minimum Energy Techniques Applied L to cater for the variety of user demands, those Beowulf to Defects, Interfaces and Surface En- clusters are expected to support applications that require ergies different hardware and software platforms. NWChem Multi-purpose QM and MM code L Opera Finite Element Analysis for Electro- W Many universities in the UK started to establish their magnetics departmental and campus clusters in the last decade, e.g. a Table I computer cluster at the University of Nottingham was built APPLICATIONS ON THE HUDDERSFIELD CAMPUS CLUSTER in 2004/5, and it had hit the June 2005 TOP500. [1] (W:WINDOWS, L:LINUX) In the University of Huddersfield there are a number of research groups requiring HPC resources for molecular and fluid dynamics simulation, 3D rendering, etc. using software Our initial objective was to devise a simple dual-boot such as DL-POLY, ANSYS, and Backburner. Some packages system to support both Windows and Linux platforms for can be run on Linux or Windows operating systems while the software in table I. A number of case studies were conducted to identify the efficiency and ease of use of these However, hardware support was not provided for their entire software from the scientific and administrative users point range of products. of view. Based on the results from our case studies and A multi-boot computer could be implemented by various the initial dual-boot system evaluation, the improved hybrid approaches, such as: system design had been developed. This system provides 1) Changing active partition more effective multi-platform middleware, which utilises 2) Multi-system bootloader, e.g. GRUB (for Linux as existing hardware to provide the maximum performance in main system), GRUB4DOS (for Windows as main both Linux and Windows based environments. system) The rest of the paper is organised as follows: Section II 3) PXE also can enable multi-boot function introduces our motivation; Section III describes the initial Pros: Multi-boot solution has wide range compatibility simple dual-boot system design and implementation; Section of hardware. It does not require new technology, and there IV describes our proposed hybrid system design. Section V is no performance reduction. summarises the results and outlines possible future develop- Cons: Reboot takes time, normally about 5 mins. ment. A Beowulf cluster at the University of Huddersfield was II. MOTIVATION built from re-used laboratory computers with Intel CoreTM 2 Quad-core Q8200 processor that have no virtualisation As a medium-sized Higher Education institution, the support. Hence, we had to consider other ways to enable University of Huddersfield is still finding its place within the the multi-platform cluster. research community. The HPC Computing Resources centre A multi-boot approach is in our opinion, better suited for was built to aid new research efforts requiring powerful com- the legacy machines that have no hardware virtualisation putational resources. As part of the University Queensgate support. This system could sit alongside High-end HPC campus grid project, a number of computer clusters were resources making an efficient use of legacy machines. built with Windows and Linux operating systems to cover the requirements of Linux Scientific Computing Software III. THE INITIAL DUAL-BOOT OSCAR SYSTEM and Windows exclusive software [2]. While maintaining the Because of native incompatibility between Windows sys- Queensgate Clusters, we had identified that the Clusters tem and UNIX-like system, and the above-mentioned so- need automated software to handle the specialisation for lutions limitations, the multi-boot computer cluster system dual-boot, re-imaging, etc. The need for multiple operat- could be a viable solution for legacy hardware. ing systems is driven by both user needs and application requirements. A. System architecture A lot of closed-source non-Java software, especially some In our initial approach, the dual-boot cluster was imple- large-scale Windows software, that use a large number of mented on a small-scale cluster with 16 compute nodes system exclusive API, have weaknesses in system platform (COTS computers) and 64 processors. Our dual-boot system migration. Since their source code is not published, the is illustrated in Figure 1. user can only run the program on the platform which the developer has offered. Although some of the companies offer WIN QUEUE multi-platform supports, others would not change a platform Users Users JOB1__CPU_NEEDED WINHEAD JOB2__CPU_NEEDED JOB3__CPU_NEEDED policy for the benefit of a small group
Recommended publications
  • MODELLER 10.1 Manual
    MODELLER A Program for Protein Structure Modeling Release 10.1, r12156 Andrej Saliˇ with help from Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Guangqiang Dong, Marc A. Martı-Renom, Narayanan Eswar, Frank Alber, Maya Topf, Baldomero Oliva, Andr´as Fiser, Roberto S´anchez, Bozidar Yerkovich, Azat Badretdinov, Francisco Melo, John P. Overington, and Eric Feyfant email: modeller-care AT salilab.org URL https://salilab.org/modeller/ 2021/03/12 ii Contents Copyright notice xxi Acknowledgments xxv 1 Introduction 1 1.1 What is Modeller?............................................. 1 1.2 Modeller bibliography....................................... .... 2 1.3 Obtainingandinstallingtheprogram. .................... 3 1.4 Bugreports...................................... ............ 4 1.5 Method for comparative protein structure modeling by Modeller ................... 5 1.6 Using Modeller forcomparativemodeling. ... 8 1.6.1 Preparinginputfiles . ............. 8 1.6.2 Running Modeller ......................................... 9 2 Automated comparative modeling with AutoModel 11 2.1 Simpleusage ..................................... ............ 11 2.2 Moreadvancedusage............................... .............. 12 2.2.1 Including water molecules, HETATM residues, and hydrogenatoms .............. 12 2.2.2 Changing the default optimization and refinement protocol ................... 14 2.2.3 Getting a very fast and approximate model . ................. 14 2.2.4 Building a model from multiple templates . .................. 15 2.2.5 Buildinganallhydrogenmodel
    [Show full text]
  • MODELLER 10.0 Manual
    MODELLER A Program for Protein Structure Modeling Release 10.0, r12005 Andrej Saliˇ with help from Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Guangqiang Dong, Marc A. Martı-Renom, Narayanan Eswar, Frank Alber, Maya Topf, Baldomero Oliva, Andr´as Fiser, Roberto S´anchez, Bozidar Yerkovich, Azat Badretdinov, Francisco Melo, John P. Overington, and Eric Feyfant email: modeller-care AT salilab.org URL https://salilab.org/modeller/ 2021/01/25 ii Contents Copyright notice xxi Acknowledgments xxv 1 Introduction 1 1.1 What is Modeller?............................................. 1 1.2 Modeller bibliography....................................... .... 2 1.3 Obtainingandinstallingtheprogram. .................... 3 1.4 Bugreports...................................... ............ 4 1.5 Method for comparative protein structure modeling by Modeller ................... 5 1.6 Using Modeller forcomparativemodeling. ... 8 1.6.1 Preparinginputfiles . ............. 8 1.6.2 Running Modeller ......................................... 9 2 Automated comparative modeling with AutoModel 11 2.1 Simpleusage ..................................... ............ 11 2.2 Moreadvancedusage............................... .............. 12 2.2.1 Including water molecules, HETATM residues, and hydrogenatoms .............. 12 2.2.2 Changing the default optimization and refinement protocol ................... 14 2.2.3 Getting a very fast and approximate model . ................. 14 2.2.4 Building a model from multiple templates . .................. 15 2.2.5 Buildinganallhydrogenmodel
    [Show full text]
  • Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2019 doi:10.20944/preprints201906.0091.v1 Peer-reviewed version available at Biomolecules 2019, 9; doi:10.3390/biom9040123 Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood Abheepsa Mishra1, 2,* and Satyahari Dey1 1Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India; [email protected] (A.M.); [email protected] (S.D.) 2Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA *Correspondence: [email protected]; Tel.:+1(518) 881-9196 Abstract Natural products from plants such as, chemopreventive agents attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, the molecular docking method plays an important role in screening a large set of molecules based on their free binding energies and proposes structural hypotheses of how the molecules can inhibit the target. Several peptide based therapeutics have been developed to combat several health disorders including cancers, metabolic disorders, heart-related, and infectious diseases. Despite the discovery of hundreds of such therapeutic peptides however, only few peptide-based drugs have made it to the market. Moreover, until date the activities of cyclic peptides towards molecular targets such as protein kinases, proteases, and apoptosis related proteins have never been explored. In this study we explore the in silico kinase and protease inhibitor potentials of cyclosaplin as well as study the interactions of cyclosaplin with other cancer-related proteins.
    [Show full text]
  • New Computational Approaches for Investigating the Impact of Mutations on the Transglucosylation Activity of Sucrose Phosphorylase Enzyme
    Thesis submitted to the Université de la Réunion for award of Doctor of Philosophy in Sciences speciality in bioinformatics New computational approaches for investigating the impact of mutations on the transglucosylation activity of sucrose phosphorylase enzyme Mahesh VELUSAMY Thesis to be presented on 18th December 2018 in front of the jury composed of Mme Isabelle ANDRE, Directeur de Recherche CNRS, INSA de TOULOUSE, Rapporteur M. Manuel DAUCHEZ, Professeur, Université de Reims Champagne Ardennes, Rapporteur M. Richard DANIELLOU, Professeur, Université d'Orléans, Examinateur M. Yves-Henri SANEJOUAND, Directeur de Recherche CNRS, Université de Nantes, Examinateur Mme Irène MAFFUCCI, Maître de Conférences, Université de Technologie de Compiègne, Examinateur Mme Corinne MIRAL, Maître de Conférences HDR, Université de Nantes, Examinateur M. Frédéric CADET, Professeur, Université de La Réunion, Co-directeur de thèse M. Bernard OFFMANN, Professeur, Université de Nantes, Directeur de thèse ெ்்ந்ி ிைு்ூுத் ெ்யாம் ெ்த உதி்ு ையகு் ானகு் ஆ்ற் அிு. -ிு்ு் ுதி் அ்ப் ுுக், எனு த்ைத ேுாி, தா் க்ூி, அ்ண் ு்ு்ுமா், த்ைக பா்பா, ஆ்தா ுு்மா், ீனா, அ்ண் ்ுக், ெபிய்பா, ெபிய்மா ம்ு் உுுைணயா் இு்த அைண்ு ந்ப்கு்ு் எனு மனமா்்த ந்ி. இ்த ஆ்ி்ைக ுுைம அை3த்ு ுுுத்்காரண், எனு ஆ்ி்ைக இய்ுன் ேபராிிய் ெப்னா்் ஆஃ்ேம். ப்ேு துண்கி் நா் மனதாு், ெபாுளாதார அளிு் க்3்ி் இு்தேபாு, என்ு இ்ெனாு த்ைதயாகே இு்ு எ்ைன பா்்ு்ெகா்3ா். ுி்பாக, எனு ூ்றா் ஆ்ு இுிி், அ்்ு எ்ளோ தி்ப்3 க3ைமக் ம்ு் ிர்ிைனக் இு்தாு், அைத்ெபாு்பு்தாு, அ் என்ு ெ்த ெபாுளாதார உதி, ப்கைB்கழக பிு ம்ு் இதர ி்ாக ்ப்த்ப்3 உதிகு்ு எ்ன ைகமா்ு ெகாு்தாு் ஈ3ாகாு.
    [Show full text]
  • Graduate Brochure 2014 Draft.Pub
    THETHE UNIVERSITYUNIVERSITY OFOF MISSOURIMISSOURI——ST.ST. LOUISLOUIS 315 Benton Hall (MC 27) One University Blvd. St. Louis, MO 63121-4400 http://www.umsl.edu/chemistry/ DepartmentDepartment ofof ChemistryChemistry && BiochemistryBiochemistry Phone: (314) 516-5311 Fax: (314) 516-5342 ST.LOUIS The St. Louis metropolitan region, located around the ence Center has many educational interactive exhibits confluence of the Missouri and Mississippi Rivers, has including an Omnimax theatre. And finally the St. Louis evolved through the centuries from the homes of ancient Zoo, home to more than 18,000 exotic animals, many of Native American civilizations to major fur trading cen- them rare and endangered, and set in the rolling hills, ter to the "Gateway to the West," marked by lasting lakes and glades of Forest Park, is a great place to visit. French, Spanish and African influences. Today the area is a town with hospitable people rooted in a myriad of Activities and attractions are many, and St. Louis has regional, ethnic, and cultural traditions reflective of our a great variety of night life choices. Blues clubs and complex world, well supported by easy access to parks, restaurants are tucked away in the red brick buildings of educational centers, sports venues, museums, and histor- the historic Soulard neighborhood, while Dixieland and ic sites. blues dinner cruises are available through the port of St. Louis. Clubs and restaurants are alive until early morn- Great ethnic and classic neighborhoods characterize ing hours in the converted warehouses of the Landing, the region. A cross-section of the area can provide ex- north of the Arch, and along the newly-developed "loft" amples of wonderful Victorian architecture, museum, neighborhood of Washington Avenue.
    [Show full text]
  • Biodynamo: a New Platform for Large-Scale Biological Simulation
    Lukas Johannes Breitwieser, BSc BioDynaMo: A New Platform for Large-Scale Biological Simulation MASTER’S THESIS to achieve the university degree of Diplom-Ingenieur Master’s degree programme Software Engineering and Management submitted to Graz University of Technology Supervisor Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger Institute for Technical Informatics Advisor Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger Dr. Fons Rademakers (CERN) November 23, 2016 AFFIDAVIT I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all ma- terial which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master‘s thesis. Date Signature This thesis is dedicated to my parents Monika and Fritz Breitwieser Without their endless love, support and encouragement I would not be where I am today. iii Acknowledgment This thesis would not have been possible without the support of a number of people. I want to thank my supervisor Christian Steger for his guidance, support, and input throughout the creation of this document. Furthermore, I would like to express my deep gratitude towards the entire CERN openlab team, Alberto Di Meglio, Marco Manca and Fons Rademakers for giving me the opportunity to work on this intriguing project. Furthermore, I would like to thank them for vivid discussions, their valuable feedback, scientific freedom and possibility to grow. My gratitude is extended to Roman Bauer from Newcastle University (UK) for his helpful insights about computational biology detailed explanations and valuable feedback.
    [Show full text]
  • CGMD Platform: Integrated Web Servers for the Preparation, Running, and Analysis of Coarse-Grained Molecular Dynamics Simulations
    molecules Article CGMD Platform: Integrated Web Servers for the Preparation, Running, and Analysis of Coarse-Grained Molecular Dynamics Simulations 1,2,3, 2,3, 1, 1 Alessandro Marchetto y , Zeineb Si Chaib y , Carlo Alberto Rossi y, Rui Ribeiro , Sergio Pantano 4, Giulia Rossetti 2,5,6,* and Alejandro Giorgetti 1,2,* 1 Department of Biotechnology, University of Verona, 37134 Verona, Italy; [email protected] (A.M.); [email protected] (C.A.R.); [email protected] (R.R.) 2 Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany; [email protected] 3 Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University,52062 Aachen, Germany 4 Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay; [email protected] 5 Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52428 Jülich, Germany 6 Department of Hematology,Oncology,Hemostaseology,and Stem Cell Transplantation, RWTH Aachen University, 52062 Aachen, Germany * Correspondence: [email protected] (G.R.); [email protected] (A.G.) These authors contributed equally to this work. y Academic Editors: Carmen Domene and Mercedes Alfonso-Prieto Received: 30 October 2020; Accepted: 28 November 2020; Published: 15 December 2020 Abstract: Advances in coarse-grained molecular dynamics (CGMD) simulations have extended the use of computational studies on biological macromolecules and their complexes, as well as the interactions of membrane protein and lipid complexes at a reduced level of representation, allowing longer and larger molecular dynamics simulations. Here, we present a computational platform dedicated to the preparation, running, and analysis of CGMD simulations.
    [Show full text]
  • Elucidating Binding Sites and Affinities of Erα Agonist and Antagonist to Human Alpha-Fetoprotein by in Silico Modeling and Point Mutagenesis Nurbubu T
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2019 doi:10.20944/preprints201912.0374.v1 Peer-reviewed version available at Int. J. Mol. Sci. 2020, 21, 893; doi:10.3390/ijms21030893 Elucidating Binding Sites and Affinities of ERα Agonist and Antagonist to Human Alpha-Fetoprotein by in silico Modeling and Point Mutagenesis Nurbubu T. Moldogazieva1*, Daria S. Ostroverkhova1,2, Nikolai N. Kuzmich1,3, Vladimir V. Kadochnikov4, Alexander A. Terentiev5, Yuri B. Porozov1,4 1 Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University); Moscow, Russia; 2Department of Bioengineering, M.V. Lomonosov Moscow State University; Moscow, Russia; 3Department of Drug Safety, I.M. Smorodintsev Research Institute of Influenza, WHO National Influenza Centre of Russia; Saint Petersburg, Russia 4Department of Information and Communication Technologies, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics; Saint Petersburg, Russia 5Deparment of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University; Moscow Russia *Corresponding author: Nurbubu T. Moldogazieva, e-mail: [email protected] (NM) ¶ These authors contributed equally to this work Short title: Binding of ERα ligands to human alpha-fetoprotein Key words: alpha-fetoprotein, estrogens, selective estrogen receptor modulators, homology-based modeling, molecular docking, protein-ligand interaction, amino acid substitutions. Abbreviations: HAFP, human alpha-fetoprotein; HSA, human serum albumin; E2, 17β-estradiol; DES, diethylstilbestrol. Author contribution: Conceptualization, Nurbubu T. Moldogazieva, Alexander A. Terentiev and Yuri B. Porozov; Data curation, Nurbubu T. Moldogazieva; Formal analysis, Nurbubu T. Moldogazieva and Nikolai N. Kuzmich; Investigation, Daria S. Ostroverkhova and Vladimir V. Kadochnikov; Methodology, Nikolai N. Kuzmich; Supervision, Alexander A.
    [Show full text]
  • Software and Techniques for Bio-Molecular Modelling
    Software and Techniques for Bio-Molecular Modelling Azat Mukhametov Published by Austin Publications LLC Published Date: December 01, 2016 Online Edition available at http://austinpublishinggroup.com/ebooks For reprints, please contact us at [email protected] All book chapters are Open Access distributed under the Creative Commons Attribution 4.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of the publication. Upon publication of the eBook, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work, identifying the original source. Statements and opinions expressed in the book are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Software and Techniques for Bio-Molecular Modelling | www.austinpublishinggroup.com/ebooks 1 Copyright Mukhametov A.This book chapter is open access distributed under the Creative Commons Attribution 4.0 International License, which allows users to download, copy and build upon published articles even for com- mercial purposes, as long as the author and publisher are properly credited. We consider to publish more books on the topics of drug design, molecular modelling, and structure-activity relationships.
    [Show full text]
  • COCOP - EC Grant Agreement: 723661 Public
    Ref. Ares(2019)525674 - 30/01/2019 COCOP - EC Grant Agreement: 723661 Public Project information Project title Coordinating Optimisation of Complex Industrial Processes Project acronym COCOP Project call H2020-SPIRE-2016 Grant number 723661 Project duration 1.10.2016-31.3.2020 (42 months) Document information Deliverable number D4.6 Deliverable title Modelling guideline document and demonstration development kit (update) Version 1.0 Dissemination level Public Work package WP4 Authors VTT Contributing partners TUDO, OPT Delivery date 31.1.2019 Planned delivery month M28 Keywords Modelling, tools, workflow, digital maturity, human factors This project has received European Union’s Horizon 2020 research and innovation funding under grant agreement No 723661. COCOP - EC Grant Agreement: 723661 Public This project has received European Union’s Horizon 2020 research and innovation funding under grant agreement No 723661. COCOP - EC Grant Agreement: 723661 Public VERSION HISTORY Version Description Organisation Date 0.1 Skeleton VTT 22.11.18 0.2 Added MOSAIC VTT 22.11.18 0.3 Digital Maturity, simulators, HF Milestones VTT 14.12.18 0.4 Cleansing VTT 19.12.18 0.5 Executive summary & cleansing VTT 2.1.2019 0.6 Updates per review comments VTT 21.1.2019 1.0 Final checks VTT 28.1.2019 VERSION HISTORY COCOP - EC Grant Agreement: 723661 Public EXECUTIVE SUMMARY This deliverable continues the work reported in deliverable D4.4 "Modelling guideline document and demonstration development kit". The work has progressed on two fronts, simulation tools supporting COCOP and the COCOP implementation workflow. On the former, we present a review of numerous simulators and delve deeper into the most promising ones.
    [Show full text]
  • List of Software Installed on Supercomputer
    List of Software Installed on Supercomputer Version/ S# Software Name Environment Variable(s) to be Added to Startup Script Files (.bashrc & .bash_profile) Year 1 TURBOMOLE 6.6 Access will be provided upon request 2 Gaussian 9 Access will be provided upon request 3 ANSYS - Workbench/ Fluent 16.1 Access will be provided upon request 4 CHARMM 40b1 Access will be provided upon request Amber 12 export PATH=$PATH:/share/apps/packages/amber/amber12/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/share/apps/packages/amber/amber12/lib 5 AMBER 12/ 16 Amber 16 export PATH=$PATH:/share/apps/packages/amber/amber16/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/share/apps/packages/amber/amber16/lib 6 Screen 4.0.3 Default system location - No environment variable is required 7 Desmond 2016 export SCHRODINGER=/share/apps/packages/desmond/Desmond_Maestro_2016.2/installation R-3.2.3 (32-bit) export PATH=$PATH:/share/apps/packages/R/R-3.2.3/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/share/apps/packages/R/R-3.2.3/lib (64-bit) export PATH=$PATH:/share/apps/packages/R/R-3.2.3/lib64/R/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/share/apps/packages/R/R-3.2.3/lib64/R/lib 3.2.3/ 8 R-Statistical 3.4.2 R-3.4.2 (Dependencies: Bzip2, Libiconv, PCRE, XZ, Zlib, Curl) (32-bit) export PATH=$PATH:/share/apps/packages/R/R-3.4.2/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/share/apps/packages/R/R-3.4.2/lib (64-bit) export PATH=$PATH:/share/apps/packages/R/R-3.4.2/lib64/R/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/share/apps/packages/R/R-3.4.2/lib64/R/lib 9 Moloc 2015 export
    [Show full text]
  • A Web Server for Predicting Inhibitors Against Bacterial Target Glmu Protein Deepak Singla1, Meenakshi Anurag2, Debasis Dash2 and Gajendra PS Raghava1*
    CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central Singla et al. BMC Pharmacology 2011, 11:5 http://www.biomedcentral.com/1471-2210/11/5 RESEARCHARTICLE Open Access A web server for predicting inhibitors against bacterial target GlmU protein Deepak Singla1, Meenakshi Anurag2, Debasis Dash2 and Gajendra PS Raghava1* Abstract Background: The emergence of drug resistant tuberculosis poses a serious concern globally and researchers are in rigorous search for new drugs to fight against these dreadful bacteria. Recently, the bacterial GlmU protein, involved in peptidoglycan, lipopolysaccharide and techoic acid synthesis, has been identified as an important drug target. A unique C-terminal disordered tail, essential for survival and the absence of gene in host makes GlmU a suitable target for inhibitor design. Results: This study describes the models developed for predicting inhibitory activity (IC50) of chemical compounds against GlmU protein using QSAR and docking techniques. These models were trained on 84 diverse compounds (GlmU inhibitors) taken from PubChem BioAssay (AID 1376). These inhibitors were docked in the active site of the C-terminal domain of GlmU protein (2OI6) using the AutoDock. A QSAR model was developed using docking 2 energies as descriptors and achieved maximum correlation of 0.35/0.12 (r/r ) between actual and predicted pIC50. Secondly, QSAR models were developed using molecular descriptors calculated using various software packages and achieved maximum correlation of 0.77/0.60 (r/r2). Finally, hybrid models were developed using various types of 2 descriptors and achieved high correlation of 0.83/0.70 (r/r ) between predicted and actual pIC50.
    [Show full text]