MODELLER 10.1 Manual

Total Page:16

File Type:pdf, Size:1020Kb

MODELLER 10.1 Manual MODELLER A Program for Protein Structure Modeling Release 10.1, r12156 Andrej Saliˇ with help from Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Guangqiang Dong, Marc A. Martı-Renom, Narayanan Eswar, Frank Alber, Maya Topf, Baldomero Oliva, Andr´as Fiser, Roberto S´anchez, Bozidar Yerkovich, Azat Badretdinov, Francisco Melo, John P. Overington, and Eric Feyfant email: modeller-care AT salilab.org URL https://salilab.org/modeller/ 2021/03/12 ii Contents Copyright notice xxi Acknowledgments xxv 1 Introduction 1 1.1 What is Modeller?............................................. 1 1.2 Modeller bibliography....................................... .... 2 1.3 Obtainingandinstallingtheprogram. .................... 3 1.4 Bugreports...................................... ............ 4 1.5 Method for comparative protein structure modeling by Modeller ................... 5 1.6 Using Modeller forcomparativemodeling. ... 8 1.6.1 Preparinginputfiles . ............. 8 1.6.2 Running Modeller ......................................... 9 2 Automated comparative modeling with AutoModel 11 2.1 Simpleusage ..................................... ............ 11 2.2 Moreadvancedusage............................... .............. 12 2.2.1 Including water molecules, HETATM residues, and hydrogenatoms .............. 12 2.2.2 Changing the default optimization and refinement protocol ................... 14 2.2.3 Getting a very fast and approximate model . ................. 14 2.2.4 Building a model from multiple templates . .................. 15 2.2.5 Buildinganallhydrogenmodel . ............... 16 2.2.6 Refiningonlypartofthemodel. .............. 16 2.2.7 Includingdisulfidebridges . ................ 18 2.2.8 Generating new-style PDBx/mmCIF outputs . ................. 19 2.2.9 Providingyourownrestraintsfile . ................. 19 2.2.10 Usingyourowninitialmodel . ............... 20 2.2.11 Adding additional restraints to the defaults . ...................... 21 2.2.12 Buildingmulti-chainmodels. ................. 22 2.2.13 Residues and chains in multi-chain models . .................... 23 2.2.14 Accessing output data after modeling is complete . ...................... 24 2.2.15 Fully automated alignment and modeling . .................. 25 2.3 Loopoptimization ................................ .............. 26 2.3.1 Automatic loop refinement after model building . .................... 26 2.3.2 Definingloopregionsforrefinement . ................ 27 iii iv CONTENTS 2.3.3 RefininganexistingPDBfile . ............. 28 3 Frequently asked questions and history 31 3.1 Frequently asked questions (FAQ) and examples . ..................... 31 3.2 Modeller updates ............................................ 38 3.2.1 Changessincerelease10.0 . ............... 38 3.2.2 Changessincerelease9.25 . ............... 38 4 Comparative modeling class reference 39 4.1 AutoModel reference .......................................... 39 4.1.1 AutoModel() — prepare to build one or more comparative models ............... 39 4.1.2 AutoModel.library schedule—selectoptimizationschedule . 40 4.1.3 AutoModel.md level—controlthemodelrefinementlevel . 40 4.1.4 AutoModel.outputs — all output data for generated models................... 40 4.1.5 AutoModel.rand method — control initial model randomization . 40 4.1.6 AutoModel.generate method—controlinitialmodelgeneration. 40 4.1.7 AutoModel.max var iterations — select length of optimizations . 41 4.1.8 AutoModel.repeat optimization — number of times to repeat optimization . ..... 41 4.1.9 AutoModel.max molpdf—objectivefunctioncutoff . 41 4.1.10 AutoModel.initial malign3d—initialtemplatealignment . 41 4.1.11 AutoModel.starting model—firstmodeltobuild. 41 4.1.12 AutoModel.ending model—lastmodeltobuild . 41 4.1.13 AutoModel.final malign3d—finaltemplate-modelalignment . 41 4.1.14 AutoModel.write intermediates — write intermediate files during optimization ........ 41 4.1.15 AutoModel.trace output—controloptimizationoutput . 41 4.1.16 AutoModel.max ca ca distance — Distance cutoff for CA-CA homology-derived restraints . 42 4.1.17 AutoModel.max n o distance — Distance cutoff for N-O homology-derived restraints..... 42 4.1.18 AutoModel.max sc mc distance — Distance cutoff for sidechain-mainchain homology-derived restraints 42 4.1.19 AutoModel.max sc sc distance — Distance cutoff for sidechain-sidechain homology-derived restraints 42 4.1.20 AutoModel.blank single chain — Control chain ID for single-chain models . 42 4.1.21 AutoModel.set output model format()—setformatforoutputmodels. 42 4.1.22 AutoModel.get optimize actions() — get actions to carry out during the initial optimization . 43 4.1.23 AutoModel.get refine actions() — get actions to carry out during the refinement . 43 4.1.24 AutoModel.select atoms() — select region for optimization and assessment . ....... 43 4.1.25 AutoModel.auto align() — generate an automatic initial alignment . ....... 43 4.1.26 AutoModel.very fast()—requestrapidoptimization . 43 4.1.27 AutoModel.make() —buildallmodels . ................. 43 4.1.28 AutoModel.cluster() — cluster all built models . ...................... 44 4.1.29 AutoModel.special restraints()—addadditionalrestraints . 44 4.1.30 AutoModel.nonstd restraints()—addrestraintsonligands . 44 4.1.31 AutoModel.special patches() — add additional patches to the topology . 44 4.1.32 AutoModel.user after single model()—analyzeorrefineeachmodel . 45 4.1.33 AutoModel.get model filename()—getthemodelPDB/mmCIFname. 45 4.1.34 AutoModel.use parallel job()—parallelizemodelbuilding. 45 CONTENTS v 4.1.35 AutoModel.guess atom types() — automatically assign Charmm atomtypes . 45 4.1.36 AutoModel.guess atom type() — automatically assign Charmm atomtype .......... 45 4.2 AllHModel reference .......................................... 46 4.2.1 AllHModel() — prepare to build all-hydrogen models . .................... 46 4.3 LoopModel reference .......................................... 46 4.3.1 LoopModel() — prepare to build models with loop refinement.................. 46 4.3.2 LoopModel.loop.md level — control the loop model refinement level . 46 4.3.3 LoopModel.loop.max var iterations — select length of optimizations . 46 4.3.4 LoopModel.loop.library schedule—selectoptimizationschedule . 47 4.3.5 LoopModel.loop.starting model—firstloopmodeltobuild . 47 4.3.6 LoopModel.loop.ending model—lastloopmodeltobuild . 47 4.3.7 LoopModel.loop.write selection only — write PDB/mmCIFs containing only the loops . 47 4.3.8 LoopModel.loop.write defined only — only write non-loop atoms present in the input model 47 4.3.9 LoopModel.loop.outputs — all output data for generatedloopmodels . 47 4.3.10 LoopModel.select loop atoms() — select region for loop optimization and assessment..... 47 4.3.11 LoopModel.get loop model filename() — get the model PDB/mmCIF name . 48 4.3.12 LoopModel.user after single loop model() — analyze or refine each loop model . 48 4.3.13 LoopModel.read potential() — read in the loop modeling potential . ...... 48 4.3.14 LoopModel.build ini loop() — create the initial conformation of the loop . 48 4.4 DOPELoopModel reference .......................................... 48 4.4.1 DOPELoopModel() — prepare to build models with DOPE looprefinement. 49 4.5 DOPEHRLoopModel reference ......................................... 49 5 Modeller general reference 51 5.1 Miscellaneous rules and features of Modeller .............................. 51 5.1.1 Modeller system.......................................... 51 5.1.2 Controlling breakpoints and the amount of output . .................... 51 5.1.3 Filenaming.................................... .......... 51 5.1.4 Filetypes ..................................... .......... 53 5.2 Stereochemical parameters and molecular topology . ........................ 54 5.2.1 Modeling residues with non-existing or incomplete entries in the topology and parameter libraries 54 5.3 Spatialrestraints ............................... ................ 55 5.3.1 Specificationofrestraints . ................ 55 5.3.2 Specificationofpseudoatoms . ............... 58 5.3.3 Excludedpairs ................................. ........... 59 5.3.4 Rigidbodies ................................... .......... 60 5.3.5 Symmetryrestraints . ............. 61 6 Modeller command reference 65 6.1 Keyforcommanddescriptions . ................ 65 6.2 The Environ class: Modeller environment ............................... 65 6.2.1 Environ() — create a new Modeller environment........................ 65 6.2.2 Environ.io — default input parameters. .................. 66 6.2.3 Environ.edat — default objective function parameters ...................... 66 vi CONTENTS 6.2.4 Environ.libs — Modeller libraries ................................ 66 6.2.5 Environ.schedule scale—energyfunctionscalingfactors. 66 6.2.6 Environ.dendrogram()—clustering . ................. 66 6.2.7 Environ.principal components()—clustering . 66 6.2.8 Environ.system() — execute system command . ................. 67 6.2.9 Environ.make pssmdb() — Create a database of PSSMs given a list of profiles . ....... 67 6.3 The EnergyData class: objectivefunctionparameters. ......... 69 6.3.1 EnergyData() — create a new set of objective function parameters ............... 69 6.3.2 EnergyData.contact shell—nonbonddistancecutoff. 69 6.3.3 EnergyData.update dynamic — nonbond recalculation threshold . 69 6.3.4 EnergyData.sphere stdv—soft-spherestandarddeviation . 70 6.3.5 EnergyData.dynamic sphere — calculate soft-sphere overlap restraints . ...... 70 6.3.6 EnergyData.dynamic lennard — calculate Lennard-Jones restraints . 70 6.3.7 EnergyData.dynamic coulomb—calculateCoulombrestraints
Recommended publications
  • MODELLER 10.0 Manual
    MODELLER A Program for Protein Structure Modeling Release 10.0, r12005 Andrej Saliˇ with help from Ben Webb, M.S. Madhusudhan, Min-Yi Shen, Guangqiang Dong, Marc A. Martı-Renom, Narayanan Eswar, Frank Alber, Maya Topf, Baldomero Oliva, Andr´as Fiser, Roberto S´anchez, Bozidar Yerkovich, Azat Badretdinov, Francisco Melo, John P. Overington, and Eric Feyfant email: modeller-care AT salilab.org URL https://salilab.org/modeller/ 2021/01/25 ii Contents Copyright notice xxi Acknowledgments xxv 1 Introduction 1 1.1 What is Modeller?............................................. 1 1.2 Modeller bibliography....................................... .... 2 1.3 Obtainingandinstallingtheprogram. .................... 3 1.4 Bugreports...................................... ............ 4 1.5 Method for comparative protein structure modeling by Modeller ................... 5 1.6 Using Modeller forcomparativemodeling. ... 8 1.6.1 Preparinginputfiles . ............. 8 1.6.2 Running Modeller ......................................... 9 2 Automated comparative modeling with AutoModel 11 2.1 Simpleusage ..................................... ............ 11 2.2 Moreadvancedusage............................... .............. 12 2.2.1 Including water molecules, HETATM residues, and hydrogenatoms .............. 12 2.2.2 Changing the default optimization and refinement protocol ................... 14 2.2.3 Getting a very fast and approximate model . ................. 14 2.2.4 Building a model from multiple templates . .................. 15 2.2.5 Buildinganallhydrogenmodel
    [Show full text]
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2019 doi:10.20944/preprints201906.0091.v1 Peer-reviewed version available at Biomolecules 2019, 9; doi:10.3390/biom9040123 Molecular Docking Studies of a Cyclic Octapeptide-Cyclosaplin from Sandalwood Abheepsa Mishra1, 2,* and Satyahari Dey1 1Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India; [email protected] (A.M.); [email protected] (S.D.) 2Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA *Correspondence: [email protected]; Tel.:+1(518) 881-9196 Abstract Natural products from plants such as, chemopreventive agents attract huge attention because of their low toxicity and high specificity. The rational drug design in combination with structure based modeling and rapid screening methods offer significant potential for identifying and developing lead anticancer molecules. Thus, the molecular docking method plays an important role in screening a large set of molecules based on their free binding energies and proposes structural hypotheses of how the molecules can inhibit the target. Several peptide based therapeutics have been developed to combat several health disorders including cancers, metabolic disorders, heart-related, and infectious diseases. Despite the discovery of hundreds of such therapeutic peptides however, only few peptide-based drugs have made it to the market. Moreover, until date the activities of cyclic peptides towards molecular targets such as protein kinases, proteases, and apoptosis related proteins have never been explored. In this study we explore the in silico kinase and protease inhibitor potentials of cyclosaplin as well as study the interactions of cyclosaplin with other cancer-related proteins.
    [Show full text]
  • Parameterizing a Novel Residue
    University of Illinois at Urbana-Champaign Luthey-Schulten Group, Department of Chemistry Theoretical and Computational Biophysics Group Computational Biophysics Workshop Parameterizing a Novel Residue Rommie Amaro Brijeet Dhaliwal Zaida Luthey-Schulten Current Editors: Christopher Mayne Po-Chao Wen February 2012 CONTENTS 2 Contents 1 Biological Background and Chemical Mechanism 4 2 HisH System Setup 7 3 Testing out your new residue 9 4 The CHARMM Force Field 12 5 Developing Topology and Parameter Files 13 5.1 An Introduction to a CHARMM Topology File . 13 5.2 An Introduction to a CHARMM Parameter File . 16 5.3 Assigning Initial Values for Unknown Parameters . 18 5.4 A Closer Look at Dihedral Parameters . 18 6 Parameter generation using SPARTAN (Optional) 20 7 Minimization with new parameters 32 CONTENTS 3 Introduction Molecular dynamics (MD) simulations are a powerful scientific tool used to study a wide variety of systems in atomic detail. From a standard protein simulation, to the use of steered molecular dynamics (SMD), to modelling DNA-protein interactions, there are many useful applications. With the advent of massively parallel simulation programs such as NAMD2, the limits of computational anal- ysis are being pushed even further. Inevitably there comes a time in any molecular modelling scientist’s career when the need to simulate an entirely new molecule or ligand arises. The tech- nique of determining new force field parameters to describe these novel system components therefore becomes an invaluable skill. Determining the correct sys- tem parameters to use in conjunction with the chosen force field is only one important aspect of the process.
    [Show full text]
  • New Computational Approaches for Investigating the Impact of Mutations on the Transglucosylation Activity of Sucrose Phosphorylase Enzyme
    Thesis submitted to the Université de la Réunion for award of Doctor of Philosophy in Sciences speciality in bioinformatics New computational approaches for investigating the impact of mutations on the transglucosylation activity of sucrose phosphorylase enzyme Mahesh VELUSAMY Thesis to be presented on 18th December 2018 in front of the jury composed of Mme Isabelle ANDRE, Directeur de Recherche CNRS, INSA de TOULOUSE, Rapporteur M. Manuel DAUCHEZ, Professeur, Université de Reims Champagne Ardennes, Rapporteur M. Richard DANIELLOU, Professeur, Université d'Orléans, Examinateur M. Yves-Henri SANEJOUAND, Directeur de Recherche CNRS, Université de Nantes, Examinateur Mme Irène MAFFUCCI, Maître de Conférences, Université de Technologie de Compiègne, Examinateur Mme Corinne MIRAL, Maître de Conférences HDR, Université de Nantes, Examinateur M. Frédéric CADET, Professeur, Université de La Réunion, Co-directeur de thèse M. Bernard OFFMANN, Professeur, Université de Nantes, Directeur de thèse ெ்்ந்ி ிைு்ூுத் ெ்யாம் ெ்த உதி்ு ையகு் ானகு் ஆ்ற் அிு. -ிு்ு் ுதி் அ்ப் ுுக், எனு த்ைத ேுாி, தா் க்ூி, அ்ண் ு்ு்ுமா், த்ைக பா்பா, ஆ்தா ுு்மா், ீனா, அ்ண் ்ுக், ெபிய்பா, ெபிய்மா ம்ு் உுுைணயா் இு்த அைண்ு ந்ப்கு்ு் எனு மனமா்்த ந்ி. இ்த ஆ்ி்ைக ுுைம அை3த்ு ுுுத்்காரண், எனு ஆ்ி்ைக இய்ுன் ேபராிிய் ெப்னா்் ஆஃ்ேம். ப்ேு துண்கி் நா் மனதாு், ெபாுளாதார அளிு் க்3்ி் இு்தேபாு, என்ு இ்ெனாு த்ைதயாகே இு்ு எ்ைன பா்்ு்ெகா்3ா். ுி்பாக, எனு ூ்றா் ஆ்ு இுிி், அ்்ு எ்ளோ தி்ப்3 க3ைமக் ம்ு் ிர்ிைனக் இு்தாு், அைத்ெபாு்பு்தாு, அ் என்ு ெ்த ெபாுளாதார உதி, ப்கைB்கழக பிு ம்ு் இதர ி்ாக ்ப்த்ப்3 உதிகு்ு எ்ன ைகமா்ு ெகாு்தாு் ஈ3ாகாு.
    [Show full text]
  • University of Huddersfield Repository
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Huddersfield Repository University of Huddersfield Repository Liang, Shuo, Holmes, Violeta and Kureshi, Ibad Hybrid Computer Cluster with High Flexibility Original Citation Liang, Shuo, Holmes, Violeta and Kureshi, Ibad (2012) Hybrid Computer Cluster with High Flexibility. In: IEEE Cluster 2012, 24-28 September 2012, Beijing, China. This version is available at http://eprints.hud.ac.uk/15840/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Hybrid Computer Cluster with High Flexibility Shuo Liang Dr Violeta Holmes Ibad Kureshi School of Computing and Engineering School of Computing and Engineering School of Computing and Engineering University of Huddersfield University of Huddersfield University of Huddersfield Huddersfield, United Kingdom Huddersfield, United Kingdom Huddersfield, United Kingdom Email: [email protected] Email: [email protected] Email: [email protected] Abstract—In this paper we present a cluster middleware, the others support multi-platform, supplying different user designed to implement a Linux-Windows Hybrid HPC Cluster, interfaces and document support.
    [Show full text]
  • Graduate Brochure 2014 Draft.Pub
    THETHE UNIVERSITYUNIVERSITY OFOF MISSOURIMISSOURI——ST.ST. LOUISLOUIS 315 Benton Hall (MC 27) One University Blvd. St. Louis, MO 63121-4400 http://www.umsl.edu/chemistry/ DepartmentDepartment ofof ChemistryChemistry && BiochemistryBiochemistry Phone: (314) 516-5311 Fax: (314) 516-5342 ST.LOUIS The St. Louis metropolitan region, located around the ence Center has many educational interactive exhibits confluence of the Missouri and Mississippi Rivers, has including an Omnimax theatre. And finally the St. Louis evolved through the centuries from the homes of ancient Zoo, home to more than 18,000 exotic animals, many of Native American civilizations to major fur trading cen- them rare and endangered, and set in the rolling hills, ter to the "Gateway to the West," marked by lasting lakes and glades of Forest Park, is a great place to visit. French, Spanish and African influences. Today the area is a town with hospitable people rooted in a myriad of Activities and attractions are many, and St. Louis has regional, ethnic, and cultural traditions reflective of our a great variety of night life choices. Blues clubs and complex world, well supported by easy access to parks, restaurants are tucked away in the red brick buildings of educational centers, sports venues, museums, and histor- the historic Soulard neighborhood, while Dixieland and ic sites. blues dinner cruises are available through the port of St. Louis. Clubs and restaurants are alive until early morn- Great ethnic and classic neighborhoods characterize ing hours in the converted warehouses of the Landing, the region. A cross-section of the area can provide ex- north of the Arch, and along the newly-developed "loft" amples of wonderful Victorian architecture, museum, neighborhood of Washington Avenue.
    [Show full text]
  • Computational Chemistry (F14CCH)
    Computational Chemistry (F14CCH) Connecting to Remote Machines Using CCP1GUI CONDOR is a queuing system that can be accessed from the Linux Left Mouse Button: Turn machines of the theoretical research groups and distributes the Hold right + up or down: Zoom submitted jobs to free compute nodes. Since the machines are protected Hold wheel + move: Move by firewalls you have to connect to a specific node, Porthos, on which you were given an account. Click Atom => Select Fragment => Add Assign all elements, also the hydrogens, before creating the GAMESS Use PuTTY to connect to remote machines, porthos in this case. Open input file (click on “All X => H” in the tool panel). If you cannot see one of putty.exe, enter the hostname as porthos.chem.nott.ac.uk. The login the windows of CCP1GUI, it might be hiding outside the desktop area. is your university username and the default password is Right click on the taskbar icon => Move => hold cursor keys to the left ChangeMeSoon. When you first log in on CONDOR you must change until the window appears. your password using kpasswd! It must be strong, including mixed case letters and numbers. Creating a GAMESS Input File / Running a Local Job Compute => GAMESS-UK Copying Files from/to Porthos To exchange files with porthos in order to submit files to CONDOR for Molecule: Options => Title calculation or copy results back, you first have to copy them from the Task => select requested task Windows machine to porthos via the SSHClient. It cannot be installed in Theory: Select SCF Method (and post SCF Method, if required) the CAL but can be accessed at NAL => Accessing the Internet => Optimisation: Runtype => Opt.
    [Show full text]
  • Molecular Simulation and Structure Prediction Using CHARMM and the MMTSB Tool Set Introduction
    Molecular simulation and structure prediction using CHARMM and the MMTSB Tool Set Introduction Charles L. Brooks III MMTSB/CTBP 2006 Summer Workshop MMTSB/CTBP Summer Workshop © Charles L. Brooks III, 2006. CTBP and MMTSB: Who are we? • The CTBP is the Center for Theoretical Biological Physics – Funded by the NSF as a Physics Frontiers Center – Partnership between UCSD, Scripps and Salk, lead by UCSD • The CTBP encompasses a broad spectrum of research and training activities at the forefront of the biology- physics interface. – Principal scientists include • José Onuchic, Herbie Levine, Henry Abarbanel, Charles Brooks, David Case, Mike Holst, Terry Hwa, David Kleinfeld, Andy McCammon, Wouter Rappel, Terry Sejnowski, Wei Wang, Peter Wolynes MMTSB/CTBP Summer Workshop © Charles L. Brooks III, 2006. CTBP and MMTSB: Who are we? MMTSB/CTBP Summer Workshop http://ctbp.ucsd.edu © Charles L. Brooks III, 2006. CTBP and MMTSB: Who are we? • The MMTSB is the Center for Multi-scale Modeling Tools for Structural Biology – Funded by the NIH as a National Research Resource Center – Partnership between Scripps and Georgia Tech, lead by Scripps • The MMTSB aims to develop new tools and theoretical models to aid molecular and structural biologists in interpreting their biological data. – Principal scientists include • Charles Brooks, David Case, Steve Harvey, Jack Johnson, Vijay Reddy, Jeff Skolnick MMTSB/CTBP Summer Workshop © Charles L. Brooks III, 2006. CTBP and MMTSB: Who are we? http://mmtsb.scripps.edu MMTSB/CTBP Summer Workshop © Charles L. Brooks III, 2006. CTBP and MMTSB: Who are we? • Activities – Fundamental research across a broad spectrum – Software and methods development and distribution • MMTSB distributes multiple software packages as well as hosts a variety of web services and databases – Training and research workshops and educational outreach • Both centers have extensive workshop programs – Visitors • Both centers host visitors and collaborators for short and longer term (sabbatical) visits MMTSB/CTBP Summer Workshop © Charles L.
    [Show full text]
  • Biodynamo: a New Platform for Large-Scale Biological Simulation
    Lukas Johannes Breitwieser, BSc BioDynaMo: A New Platform for Large-Scale Biological Simulation MASTER’S THESIS to achieve the university degree of Diplom-Ingenieur Master’s degree programme Software Engineering and Management submitted to Graz University of Technology Supervisor Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger Institute for Technical Informatics Advisor Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger Dr. Fons Rademakers (CERN) November 23, 2016 AFFIDAVIT I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all ma- terial which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master‘s thesis. Date Signature This thesis is dedicated to my parents Monika and Fritz Breitwieser Without their endless love, support and encouragement I would not be where I am today. iii Acknowledgment This thesis would not have been possible without the support of a number of people. I want to thank my supervisor Christian Steger for his guidance, support, and input throughout the creation of this document. Furthermore, I would like to express my deep gratitude towards the entire CERN openlab team, Alberto Di Meglio, Marco Manca and Fons Rademakers for giving me the opportunity to work on this intriguing project. Furthermore, I would like to thank them for vivid discussions, their valuable feedback, scientific freedom and possibility to grow. My gratitude is extended to Roman Bauer from Newcastle University (UK) for his helpful insights about computational biology detailed explanations and valuable feedback.
    [Show full text]
  • Trends in Atomistic Simulation Software Usage [1.3]
    A LiveCoMS Perpetual Review Trends in atomistic simulation software usage [1.3] Leopold Talirz1,2,3*, Luca M. Ghiringhelli4, Berend Smit1,3 1Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingenierie Chimiques, Valais, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland; 2Theory and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de l’Ingénieur, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 3National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 4The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society and Humboldt University, Berlin, Germany This LiveCoMS document is Abstract Driven by the unprecedented computational power available to scientific research, the maintained online on GitHub at https: use of computers in solid-state physics, chemistry and materials science has been on a continuous //github.com/ltalirz/ rise. This review focuses on the software used for the simulation of matter at the atomic scale. We livecoms-atomistic-software; provide a comprehensive overview of major codes in the field, and analyze how citations to these to provide feedback, suggestions, or help codes in the academic literature have evolved since 2010. An interactive version of the underlying improve it, please visit the data set is available at https://atomistic.software. GitHub repository and participate via the issue tracker. This version dated August *For correspondence: 30, 2021 [email protected] (LT) 1 Introduction Gaussian [2], were already released in the 1970s, followed Scientists today have unprecedented access to computa- by force-field codes, such as GROMOS [3], and periodic tional power.
    [Show full text]
  • CGMD Platform: Integrated Web Servers for the Preparation, Running, and Analysis of Coarse-Grained Molecular Dynamics Simulations
    molecules Article CGMD Platform: Integrated Web Servers for the Preparation, Running, and Analysis of Coarse-Grained Molecular Dynamics Simulations 1,2,3, 2,3, 1, 1 Alessandro Marchetto y , Zeineb Si Chaib y , Carlo Alberto Rossi y, Rui Ribeiro , Sergio Pantano 4, Giulia Rossetti 2,5,6,* and Alejandro Giorgetti 1,2,* 1 Department of Biotechnology, University of Verona, 37134 Verona, Italy; [email protected] (A.M.); [email protected] (C.A.R.); [email protected] (R.R.) 2 Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany; [email protected] 3 Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University,52062 Aachen, Germany 4 Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay; [email protected] 5 Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52428 Jülich, Germany 6 Department of Hematology,Oncology,Hemostaseology,and Stem Cell Transplantation, RWTH Aachen University, 52062 Aachen, Germany * Correspondence: [email protected] (G.R.); [email protected] (A.G.) These authors contributed equally to this work. y Academic Editors: Carmen Domene and Mercedes Alfonso-Prieto Received: 30 October 2020; Accepted: 28 November 2020; Published: 15 December 2020 Abstract: Advances in coarse-grained molecular dynamics (CGMD) simulations have extended the use of computational studies on biological macromolecules and their complexes, as well as the interactions of membrane protein and lipid complexes at a reduced level of representation, allowing longer and larger molecular dynamics simulations. Here, we present a computational platform dedicated to the preparation, running, and analysis of CGMD simulations.
    [Show full text]