Protein & Peptide Letters

Total Page:16

File Type:pdf, Size:1020Kb

Protein & Peptide Letters 696 Send Orders for Reprints to [email protected] Protein & Peptide Letters, 2017, 24, 696-709 REVIEW ARTICLE ISSN: 0929-8665 eISSN: 1875-5305 Impact Factor: 1.068 Glycan Phosphorylases in Multi-Enzyme Synthetic Processes BENTHAM Editor-in-Chief: SCIENCE Ben M. Dunn Giulia Pergolizzia, Sakonwan Kuhaudomlarpa, Eeshan Kalitaa,b and Robert A. Fielda,* aDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; bDepartment of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam -784028, India Abstract: Glycoside phosphorylases catalyse the reversible synthesis of glycosidic bonds by glyco- A R T I C L E H I S T O R Y sylation with concomitant release of inorganic phosphate. The equilibrium position of such reac- tions can render them of limited synthetic utility, unless coupled with a secondary enzymatic step Received: January 17, 2017 Revised: May 24, 2017 where the reaction lies heavily in favour of product. This article surveys recent works on the com- Accepted: June 20, 2017 bined use of glycan phosphorylases with other enzymes to achieve synthetically useful processes. DOI: 10.2174/0929866524666170811125109 Keywords: Phosphorylase, disaccharide, α-glucan, cellodextrin, high-value products, biofuel. O O 1. INTRODUCTION + HO OH Glycoside phosphorylases (GPs) are carbohydrate-active GH enzymes (CAZymes) (URL: http://www.cazy.org/) [1] in- H2O O GP volved in the formation/cleavage of glycosidic bond together O O GT O O + HO O + HO with glycosyltransferase (GT) and glycoside hydrolase (GH) O -- NDP OPO3 NDP -- families (Figure 1) [2-6]. GT reactions favour the thermody- HPO4 namically more stable glycoside product [7]; however, these GS R enzymes can be challenging to work with because of their O O + HO current limited availability and relative instability, along R with the expense of sugar nucleotide substrates [7]. GHs R = F, OpNP thermodynamically favour the hydrolysis of glycosidic bonds; however, active site mutation has allowed their trans- formation into glycosynthases (GSs), which use activated Figure 1. Enzymes involved in glycosidic bond formation and sugars (such as fluoro or p-nitrophenyl glycosides) to drive cleavage. GT = glycosyltransferase; GP = glycoside phosphorylase; reaction in the synthetic direction [7, 8]. GH = glycoside hydrolase; GS = glycoside synthase; NDP = nu- cleotide diphosphate; OpNP = O-para-nitrophenyl. In contrast to GTs and GHs, the equilibrium position for GP reactions tends to result in a mix of starting materials and products, rendering them of modest use in a synthetic sense. glycosidic bond cleavage is similar to that released by the However, GPs can be used to generate sugar-1-phosphates; sugar phosphate ester cleavage (Figure 2) [4, 5]. Phosphory- in addition, coupling GP reactions with a secondary glycosy- lases have been classified into different families depending lation step provides a means of capitalizing on these robust on the sequence similarity to GTs and GHs in CAZy data- enzymes, which employ cheap and accessible substrates. base (Table 1) [4, 5]. Most of the GPs belong to GH families, [5] and they can be distinguished into retaining and inverting 1.1. Background on Glycoside Phosphorylases phosphorylases depending on whether the new glycosidic bond is formed with inversion or retention of the anomeric GPs use inorganic phosphate to breakdown glycosidic configuration with respect to the sugar-1-phosphate substrate bonds (phosphorolysis), releasing sugar-1-phosphate and (Figure 2, Table 1) [4, 5]. acceptor (Figure 1) [3-5]. The phosphorylase reaction is an equilibrium between the phosphorolysis and the reverse syn- The characterised GPs comprise enzymes that are able to thetic reaction, since the free energy released by the act on a wide range of glycosidic linkages (Table 1), with the exception for α/β-(1→6) and β-(1→1) linkages, for which no specific GPs have been characterised at the moment. *Address correspondence to this author at the Department of Biological Protein & Peptide Letters Most of the GPs known so far use D-Glc-1-phosphate as a Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; Tel/Fax: +001-1603-450720, +001-1603-450018; donor substrate, forming disaccharides or oligosaccharides; E-mail: [email protected] far fewer GPs use D-Gal-1-phosphate [9], D-GlcNAc-1- 1875-5305/17 $58.00+.00 © 2017 Bentham Science Publishers Glycan Phosphorylases in Multi-Enzyme Synthetic Processes Protein & Peptide Letters, 2017, Vol. 24, No. 8 697 phosphate [10] or D-Man-1-phosphate [11-13] as their donor the industrial interest in GPs as a result of their cheap and substrates (Table 1) [3, 5, 14-17]. There are currently no readily available substrates, in the last decade a big effort has known phosphorylases that transfer N-acetylneuraminic acid been put into the discovery of new GP activities, as well as (Neu5Ac), L-fucose (L-Fuc), L-rhamnose (L-Rha), D- GP engineering to overcome the limitations associated with fructose (D-Fru), D-glucuronic acid (D-GlcA) or D- their strict specificity in terms of substrates or linkage [19]; glucosamine (D-GlcN) as their physiological substrates. In efforts to improve their thermostability and catalytic effi- this respect, GTs and GHs cover a broader range of carbohy- ciency with non-natural substrates have also been reported drate specificities and have been much more extensively [20, 21]. studied, characterised and modified in order to optimise their GPs have been exploited in academia and also in industry use in the synthesis of complex carbohydrates [8, 18]. for the synthesis of glycosylated compounds, high-value carbohydrates and both natural and unnatural polysaccha- -- rides. On the other hand, the phosphorolytic reaction of GPs HPO4 O HO is currently being investigated as an alternative route for R O waste recycling and biofuel production. The aim of the arti- O O O HO + HO OH cle is to provide an overview of recent developments in GP OH -- !-linkage applications, especially where they have been used in con- OPO3 I junction with other GPs (phosphorylase coupling) [8] and/or !-sugar-1-P O O HO O with other enzymes. The review will be focused on three -- HPO4 OH main classes of GPs: disaccharide phosphorylases for the "-linkage production of small molecules [5, 8, 19]; α-glucan phos- phorylases for starch synthesis and/or degradation [22, 23]; Figure 2. Reaction mechanism of glycoside phosphorylases. R, finally, cellodextrin/cellobiose phosphorylases (CDP/CBP) retaining; I, inverting. for cellulose synthesis and/or degradation [24]. All of these areas are being explored because of their potential industrial While GP synthetic reactions can be used for carbohy- application in the production of more soluble glycosylated drate/glyco-molecule synthesis, GP phosphorolysis reactions drugs, excipients, prebiotics, food additives, adhesives and can be exploited for the degradation of glyco-polymers, lead- new materials. ing to the production of useful sugar-1-phosphates. Due to Table 1. Classification of characterised glycoside phosphorylases [3]. Mechanism Family Linkage Donor Acceptor Product GT4 α,α-(1→1) α-D-Glc-1-P D-Glc Trehalose [14, 15] GT35 α-(1→4) α-D-Glc-1-P α-D-Glc-(1→4)- α-D-(Glc)n Glycogen [16]/starch [17] Retaining α,α-(1→2) α-D-Glc-1-P D-Fru Sucrose GH13 α-(1→4) α-D-Maltose-1-P α-D-Glc-(1→4)-α-D-(Glc)n α-D-Glc-(1→4)-α-D-(Glc)n+2 α,α-(1→1) β-D-Glc-1-P D-Glc/D-Glc-6-P Trehalose/trehalose-6-P α-(1→2) β-D-Glc-1-P D-Glc Kojibiose GH65 α-(1→3) β-D-Glc-1-P D-Glc Nigerose α-(1→4) β-D-Glc-1-P D-Glc Maltose β-(1→2) α-D-Glc-1-P D-Glc Sophorose β-(1→3) α-D-Glc-1-P D-Glc Laminaribiose GH94 Inverting β-(1→4) α-D-Glc-1-P D-Glc/ β-D-Glc-(1→4)-β-D-(Glc)n Cellobiose/cellodextrin β-(1→4) α-D-GlcNAc-1-P D-GlcNAc Chitobiose β-(1→3) α-D-Gal-1-P D-GalNAc/D-GlcNAc Galacto-N-biose/lacto-N-biose GH112 β-(1→4) α-D-Gal-1-P L-Rha β-D-Gal-(1→4)-L-Rha α-D-Man-1-P D-Glc β-D-Man-(1→4)-D-Glc GH130 β-(1→4) α-D-Man-1-P β-D-Man-(1→4)-β-D-(Man)n Mannan α-D-Man-1-P D-GlcNAc β-D-Man-(1→4)-D-GlcNAc 698 Protein & Peptide Letters, 2017, Vol. 24, No. 8 Pergolizzi et al. 2. DISACCHARIDE PHOSPHORYLASES by the choice of enzyme specificity and monosaccharide compositions of the product by the supplied substrates. As Disaccharide phosphorylases carry out a reversible phos- previously mentioned, relaxed acceptor preference is the key phorolytic reaction using a glycosyl phosphate and a mono- property that has been used by many research groups for the saccharide as sugar donor and acceptor, respectively. They production of rare disaccharides. Morimoto and co-workers are all members of GH and GT families that are mentioned have shown that SP from Leuconostoc mesenteroides exhib- in Table 1, except for GT35 which contains exclusively oli- its activity towards eight different ketohexose acceptors gosaccharide phosphorylases (starch and glycogen phos- while using α -D-Glc-1-phosphate as a donor, allowing the phorylases). Since the CAZy classification is based largely production of eight corresponding D-glucosyl-ketohexoses, on amino acid sequence homology [1], disaccharide phos- which are rare or absent in nature [26]. phorylases with different substrate specificities are often classified in the same family. For example, GH94 family Disaccharide phosphorylases can also be used in con- contains disaccharide phosphorylases acting on β-D-Glc- junction with other biocatalysts to expand the range of possi- (1→2)-D-Glc (sophorose), β -D-Glc-(1→4)-D-Glc (cello- ble products through a “one-pot” enzymatic approach.
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • Isolation and Characterization of Achromobacter Sp. CX2 From
    Ann Microbiol (2015) 65:1699–1707 DOI 10.1007/s13213-014-1009-6 ORIGINAL ARTICLE Isolation and characterization of Achromobacter sp. CX2 from symbiotic Cytophagales, a non-cellulolytic bacterium showing synergism with cellulolytic microbes by producing β-glucosidase Xiaoyi Chen & Ying Wang & Fan Yang & Yinbo Qu & Xianzhen Li Received: 27 August 2014 /Accepted: 24 November 2014 /Published online: 10 December 2014 # Springer-Verlag Berlin Heidelberg and the University of Milan 2014 Abstract A Gram-negative, obligately aerobic, non- degradation by cellulase (Carpita and Gibeaut 1993). There- cellulolytic bacterium was isolated from the cellulolytic asso- fore, efficient degradation is the result of multiple activities ciation of Cytophagales. It exhibits biochemical properties working synergistically to efficiently solubilize crystalline cel- that are consistent with its classification in the genus lulose (Sánchez et al. 2004;Lietal.2009). Most known Achromobacter. Phylogenetic analysis together with the phe- cellulolytic organisms produce multiple cellulases that act syn- notypic characteristics suggest that the isolate could be a novel ergistically on native cellulose (Wilson 2008)aswellaspro- species of the genus Achromobacter and designated as CX2 (= duce some other proteins that enhance cellulose hydrolysis CGMCC 1.12675=CICC 23807). The strain CX2 is the sym- (Wang et al. 2011a, b). Synergistic cooperation of different biotic microbe of Cytophagales and produces β-glucosidase. enzymes is a prerequisite for the efficient degradation of cellu- The results showed that the non-cellulolytic Achromobacter lose (Jalak et al. 2012). Both Trichoderma reesi and Aspergillus sp. CX2 has synergistic activity with cellulolytic microbes by niger were co-cultured to increase the levels of different enzy- producing β-glucosidase.
    [Show full text]
  • Download (PDF)
    Tomono et al.: Glycan evolution based on phylogenetic profiling 1 Supplementary Table S1. List of 173 enzymes that are composed of glycosyltransferases and functionally-linked glycan synthetic enzymes UniProt ID Protein Name Categories of Glycan Localization CAZy Class 1 Q8N5D6 Globoside -1,3-N -acetylgalactosaminyltransferase 1 Glycosphingolipid Golgi apparatus GT6 P16442 Histo-blood group ABO system transferase Glycosphingolipid Golgi apparatus GT6 P19526 Galactoside 2--L-fucosyltransferase 1 Glycosphingolipid Golgi apparatus GT11 Q10981 Galactoside 2--L-fucosyltransferase 2 Glycosphingolipid Golgi apparatus GT11 Q00973 -1,4 N -acetylgalactosaminyltransferase 1 Glycosphingolipid Golgi apparatus GT12 Q8NHY0 -1,4 N -acetylgalactosaminyltransferase 2 O -Glycan, N -Glycan, Glycosphingolipid Golgi apparatus GT12 Q09327 -1,4-mannosyl-glycoprotein 4--N -acetylglucosaminyltransferase N -Glycan Golgi apparatus GT17 Q09328 -1,6-mannosylglycoprotein 6--N -acetylglucosaminyltransferase A N -Glycan Golgi apparatus GT18 Q3V5L5 -1,6-mannosylglycoprotein 6--N -acetylglucosaminyltransferase B O -Glycan, N -Glycan Golgi apparatus GT18 Q92186 -2,8-sialyltransferase 8B (SIAT8-B) (ST8SiaII) (STX) N -Glycan Golgi apparatus GT29 O15466 -2,8-sialyltransferase 8E (SIAT8-E) (ST8SiaV) Glycosphingolipid Golgi apparatus GT29 P61647 -2,8-sialyltransferase 8F (SIAT8-F) (ST8SiaVI) O -Glycan Golgi apparatus GT29 Q9NSC7 -N -acetylgalactosaminide -2,6-sialyltransferase 1 (ST6GalNAcI) (SIAT7-A) O -Glycan Golgi apparatus GT29 Q9UJ37 -N -acetylgalactosaminide -2,6-sialyltransferase
    [Show full text]
  • Insights Into the Oxidative Degradation of Cellulose by a Copper Metalloenzyme That Exploits Biomass Components
    Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components R. Jason Quinlana,1, Matt D. Sweeneya,1, Leila Lo Leggiob, Harm Ottenb, Jens-Christian N. Poulsenb, Katja Salomon Johansenc,2, Kristian B. R. M. Kroghc, Christian Isak Jørgensenc, Morten Tovborgc, Annika Anthonsenc, Theodora Tryfonad, Clive P. Walterc, Paul Dupreed, Feng Xua, Gideon J. Daviese, and Paul H. Waltone aNovozymes, Inc., Davis, CA 95618; bDepartment of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark; cNovozymes A/S, DK-2880 Bagsværd, Denmark; dDepartment of Biochemistry, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QW, United Kingdom; and eDepartment of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom Edited* by Diter von Wettstein, Washington State University, Pullman, WA, and approved August 2, 2011 (received for review April 13, 2011) The enzymatic degradation of recalcitrant plant biomass is one lysis. From this work, it was suggested that GH61s act directly on of the key industrial challenges of the 21st century. Accordingly, cellulose rendering it more accessible to traditional cellulase there is a continuing drive to discover new routes to promote action (11). Moreover, recent genomic sequencing of the brown polysaccharide degradation. Perhaps the most promising approach rot fungi Postia placenta showed a number of GH61 genes in this involves the application of “cellulase-enhancing factors,” such as organism (13–15), indicating the widespread nature of this those from the glycoside hydrolase (CAZy) GH61 family. Here we family of enzymes in cellulose degradation. As such, GH61s show that GH61 enzymes are a unique family of copper-depen- likely hold major potential for industrial decomposition of dent oxidases.
    [Show full text]
  • Enzymatic Glycosylation of Small Molecules
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen Enzymatic Glycosylation of Small Molecules Desmet, Tom; Soetaert, Wim; Bojarova, Pavla; Kren, Vladimir; Dijkhuizen, Lubbert; Eastwick- Field, Vanessa; Schiller, Alexander; Křen, Vladimir Published in: Chemistry : a European Journal DOI: 10.1002/chem.201103069 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Desmet, T., Soetaert, W., Bojarova, P., Kren, V., Dijkhuizen, L., Eastwick-Field, V., ... Křen, V. (2012). Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts. Chemistry : a European Journal, 18(35), 10786-10801. https://doi.org/10.1002/chem.201103069 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • Aberrant Sialylation in Cancer: Biomarker and Potential Target for Therapeutic Intervention?
    cancers Review Aberrant Sialylation in Cancer: Biomarker and Potential Target for Therapeutic Intervention? Silvia Pietrobono * and Barbara Stecca * Tumor Cell Biology Unit, Core Research Laboratory, Institute for Cancer Research and Prevention (ISPRO), Viale Pieraccini 6, 50139 Florence, Italy * Correspondence: [email protected] (S.P.); [email protected] (B.S.); Tel.: +39-055-7944568 (S.P.); +39-055-7944567 (B.S.) Simple Summary: Sialylation is a post-translational modification that consists in the addition of sialic acid to growing glycan chains on glycoproteins and glycolipids. Aberrant sialylation is an established hallmark of several types of cancer, including breast, ovarian, pancreatic, prostate, colorectal and lung cancers, melanoma and hepatocellular carcinoma. Hypersialylation can be the effect of increased activity of sialyltransferases and results in an excess of negatively charged sialic acid on the surface of cancer cells. Sialic acid accumulation contributes to tumor progression by several paths, including stimulation of tumor invasion and migration, and enhancing immune evasion and tumor cell survival. In this review we explore the mechanisms by which sialyltransferases promote cancer progression. In addition, we provide insights into the possible use of sialyltransferases as biomarkers for cancer and summarize findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments. Abstract: Sialylation is an integral part of cellular function, governing many biological processes Citation: Pietrobono, S.; Stecca, B. including cellular recognition, adhesion, molecular trafficking, signal transduction and endocytosis. Aberrant Sialylation in Cancer: Sialylation is controlled by the levels and the activities of sialyltransferases on glycoproteins and Biomarker and Potential Target for lipids. Altered gene expression of these enzymes in cancer yields to cancer-specific alterations of Therapeutic Intervention? Cancers glycoprotein sialylation.
    [Show full text]
  • TO Thermostable Sucrose Phosphorylase 20120924
    Thermostable sucrose phosphorylase Ghent Bio-Energy Valley, a consortium of research laboratories of Ghent University, is seeking partners interested in the industrial and enzymatic production of glycosides or glucose-1-phosphate at temperatures of 60°C or higher using a thermostable phosphorylase. Introduction Sucrose phosphorylase catalyses the reversible phosphorolysis of sucrose into α-glucose-1-phosphate and fructose. Because of the broad acceptor specificity of the enzyme, it can further be used for the production of a number of glycosylated compounds. At the industrial scale, such production processes are preferably run at 60°C or higher, mainly to avoid microbial contamination. Unfortunately, no sucrose phosphorylases are known yet which perform well at such high temperatures. Technology Researchers at Ghent University have identified a thermostable sucrose phosphorylase derived from the prokaryote Bifidobacterium adolescentis which performs well at 60°C or higher. The enzyme is active for at least 16h at 60°C when it is in the continuous presence of its substrate, and/or, when it is mutated at specific residues, and/or, when it is immobilized on a carrier or when it is immobilized by cross-linking so that it is part of a so-called “cross- linked enzyme aggregate (CLEA)”. Applications Enzymatic and/or recombinant methods to produce high value glycosides at elevated temperatures. Advantages • being able to produce glycosylated compounds at high temperatures avoids microbial contamination; • recycling of the immobilized biocatalyst in consecutive reactions increases the commercial potential. Status of development The sucrose phosphorylase of B. adolescentis was recombinantly expressed in E. coli and further purified. In addition, the enzyme was immobilized on an epoxy- activated enzyme carrier (Sepabeads EC-HFA) or was incorporated in a CLEA or was mutated to obtain enzyme variants.
    [Show full text]
  • Two Arabidopsis Proteins Synthesize Acetylated Xylan Invitro
    The Plant Journal (2014) 80, 197–206 doi: 10.1111/tpj.12643 FEATURED ARTICLE Two Arabidopsis proteins synthesize acetylated xylan in vitro Breeanna R. Urbanowicz, Maria J. Pena*,~ Heather A. Moniz, Kelley W. Moremen and William S. York* Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA Received 4 June 2014; revised 18 July 2014; accepted 1 August 2014; published online 21 August 2014. *For correspondence (e-mails [email protected]; [email protected]). SUMMARY Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, pro- viding plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally because of collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis; however, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10–L (IRX10-L) and ESKIMO1/TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vi- tro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccha- ride O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry.
    [Show full text]
  • Of Sucrose Phosphorylase: Combining Improved Stability with Altered Specificity
    Int. J. Mol. Sci. 2012, 13, 11333-11342; doi:10.3390/ijms130911333 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article An Imprinted Cross-Linked Enzyme Aggregate (iCLEA) of Sucrose Phosphorylase: Combining Improved Stability with Altered Specificity Karel De Winter, Wim Soetaert and Tom Desmet * Centre of Expertise for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium; E-Mails: [email protected] (K.D.W.); [email protected] (W.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-9-2649-920; Fax: +32-9-2646-032. Received: 28 August 2012; in revised form: 5 September 2012 / Accepted: 5 September 2012 / Published: 11 September 2012 Abstract: The industrial use of sucrose phosphorylase (SP), an interesting biocatalyst for the selective transfer of α-glucosyl residues to various acceptor molecules, has been hampered by a lack of long-term stability and low activity towards alternative substrates. We have recently shown that the stability of the SP from Bifidobacterium adolescentis can be significantly improved by the formation of a cross-linked enzyme aggregate (CLEA). In this work, it is shown that the transglucosylation activity of such a CLEA can also be improved by molecular imprinting with a suitable substrate. To obtain proof of concept, SP was imprinted with α-glucosyl glycerol and subsequently cross-linked with glutaraldehyde. As a consequence, the enzyme’s specific activity towards glycerol as acceptor substrate was increased two-fold while simultaneously providing an exceptional stability at 60 °C.
    [Show full text]
  • Multiplexed Engineering Glycosyltransferase Genes in CHO Cells Via Targeted Integration for Producing Antibodies with Diverse Complex‑Type N‑Glycans Ngan T
    www.nature.com/scientificreports OPEN Multiplexed engineering glycosyltransferase genes in CHO cells via targeted integration for producing antibodies with diverse complex‑type N‑glycans Ngan T. B. Nguyen, Jianer Lin, Shi Jie Tay, Mariati, Jessna Yeo, Terry Nguyen‑Khuong & Yuansheng Yang* Therapeutic antibodies are decorated with complex‑type N‑glycans that signifcantly afect their biodistribution and bioactivity. The N‑glycan structures on antibodies are incompletely processed in wild‑type CHO cells due to their limited glycosylation capacity. To improve N‑glycan processing, glycosyltransferase genes have been traditionally overexpressed in CHO cells to engineer the cellular N‑glycosylation pathway by using random integration, which is often associated with large clonal variations in gene expression levels. In order to minimize the clonal variations, we used recombinase‑mediated‑cassette‑exchange (RMCE) technology to overexpress a panel of 42 human glycosyltransferase genes to screen their impact on antibody N‑linked glycosylation. The bottlenecks in the N‑glycosylation pathway were identifed and then released by overexpressing single or multiple critical genes. Overexpressing B4GalT1 gene alone in the CHO cells produced antibodies with more than 80% galactosylated bi‑antennary N‑glycans. Combinatorial overexpression of B4GalT1 and ST6Gal1 produced antibodies containing more than 70% sialylated bi‑antennary N‑glycans. In addition, antibodies with various tri‑antennary N‑glycans were obtained for the frst time by overexpressing MGAT5 alone or in combination with B4GalT1 and ST6Gal1. The various N‑glycan structures and the method for producing them in this work provide opportunities to study the glycan structure‑and‑function and develop novel recombinant antibodies for addressing diferent therapeutic applications.
    [Show full text]
  • New Computational Approaches for Investigating the Impact of Mutations on the Transglucosylation Activity of Sucrose Phosphorylase Enzyme
    Thesis submitted to the Université de la Réunion for award of Doctor of Philosophy in Sciences speciality in bioinformatics New computational approaches for investigating the impact of mutations on the transglucosylation activity of sucrose phosphorylase enzyme Mahesh VELUSAMY Thesis to be presented on 18th December 2018 in front of the jury composed of Mme Isabelle ANDRE, Directeur de Recherche CNRS, INSA de TOULOUSE, Rapporteur M. Manuel DAUCHEZ, Professeur, Université de Reims Champagne Ardennes, Rapporteur M. Richard DANIELLOU, Professeur, Université d'Orléans, Examinateur M. Yves-Henri SANEJOUAND, Directeur de Recherche CNRS, Université de Nantes, Examinateur Mme Irène MAFFUCCI, Maître de Conférences, Université de Technologie de Compiègne, Examinateur Mme Corinne MIRAL, Maître de Conférences HDR, Université de Nantes, Examinateur M. Frédéric CADET, Professeur, Université de La Réunion, Co-directeur de thèse M. Bernard OFFMANN, Professeur, Université de Nantes, Directeur de thèse ெ்்ந்ி ிைு்ூுத் ெ்யாம் ெ்த உதி்ு ையகு் ானகு் ஆ்ற் அிு. -ிு்ு் ுதி் அ்ப் ுுக், எனு த்ைத ேுாி, தா் க்ூி, அ்ண் ு்ு்ுமா், த்ைக பா்பா, ஆ்தா ுு்மா், ீனா, அ்ண் ்ுக், ெபிய்பா, ெபிய்மா ம்ு் உுுைணயா் இு்த அைண்ு ந்ப்கு்ு் எனு மனமா்்த ந்ி. இ்த ஆ்ி்ைக ுுைம அை3த்ு ுுுத்்காரண், எனு ஆ்ி்ைக இய்ுன் ேபராிிய் ெப்னா்் ஆஃ்ேம். ப்ேு துண்கி் நா் மனதாு், ெபாுளாதார அளிு் க்3்ி் இு்தேபாு, என்ு இ்ெனாு த்ைதயாகே இு்ு எ்ைன பா்்ு்ெகா்3ா். ுி்பாக, எனு ூ்றா் ஆ்ு இுிி், அ்்ு எ்ளோ தி்ப்3 க3ைமக் ம்ு் ிர்ிைனக் இு்தாு், அைத்ெபாு்பு்தாு, அ் என்ு ெ்த ெபாுளாதார உதி, ப்கைB்கழக பிு ம்ு் இதர ி்ாக ்ப்த்ப்3 உதிகு்ு எ்ன ைகமா்ு ெகாு்தாு் ஈ3ாகாு.
    [Show full text]
  • Induced Structural Changes in a Multifunctional Sialyltransferase
    Biochemistry 2006, 45, 2139-2148 2139 Cytidine 5′-Monophosphate (CMP)-Induced Structural Changes in a Multifunctional Sialyltransferase from Pasteurella multocida†,‡ Lisheng Ni,§ Mingchi Sun,§ Hai Yu,§ Harshal Chokhawala,§ Xi Chen,*,§ and Andrew J. Fisher*,§,| Department of Chemistry and the Section of Molecular and Cellular Biology, UniVersity of California, One Shields AVenue, DaVis, California 95616 ReceiVed NoVember 23, 2005; ReVised Manuscript ReceiVed December 19, 2005 ABSTRACT: Sialyltransferases catalyze reactions that transfer a sialic acid from CMP-sialic acid to an acceptor (a structure terminated with galactose, N-acetylgalactosamine, or sialic acid). They are key enzymes that catalyze the synthesis of sialic acid-containing oligosaccharides, polysaccharides, and glycoconjugates that play pivotal roles in many critical physiological and pathological processes. The structures of a truncated multifunctional Pasteurella multocida sialyltransferase (∆24PmST1), in the absence and presence of CMP, have been determined by X-ray crystallography at 1.65 and 2.0 Å resolutions, respectively. The ∆24PmST1 exists as a monomer in solution and in crystals. Different from the reported crystal structure of a bifunctional sialyltransferase CstII that has only one Rossmann domain, the overall structure of the ∆24PmST1 consists of two separate Rossmann nucleotide-binding domains. The ∆24PmST1 structure, thus, represents the first sialyltransferase structure that belongs to the glycosyltransferase-B (GT-B) structural group. Unlike all other known GT-B structures, however, there is no C-terminal extension that interacts with the N-terminal domain in the ∆24PmST1 structure. The CMP binding site is located in the deep cleft between the two Rossmann domains. Nevertheless, the CMP only forms interactions with residues in the C-terminal domain.
    [Show full text]