Tropical and Subtropical Agroecosystems, 15 (2012): 595 - 609 SOIL HYDRAULIC PROPERTIES OF A NITISOL IN KABETE, KENYA [PROPIEDADES HIDRAULICASL DEL UN NITISOL EN KABETE, KENYA] G.N. Karukua*, C.K.K. Gachenea, N. Karanjaa, W. Cornelisb, H. Verplanckeb and G. Kironchia, aFaculty of Agriculture, University of Nairobi. P. O. Box 29053- 00625 Kangemi, Nairobi, Kenya. Email:
[email protected]: b Department of Soil Management and Soil care, University Ghent, Coupure Links 653, B-9000 Gent, Belgium, *Corresponding author SUMMARY positively by soil organic matter. The Van Genuchten parameters of air entry value (α) and pore size Water relations are among the most important distribution (n) indicated that pore size distribution physical phenomena that affect the use of soils for was not even in the AP and AB horizons. The field agricultural, ecological, environmental, and capacity was attained at higher matric potential at - engineering purposes. To formulate soil-water 5kPa for Bt1 while Bt2 and AP, AB, Bt2 and Bt3 was at relationships, soil hydraulic properties are required as -10kPa.The functional relationship, K(θ) = aθb that essential inputs. The most important hydraulic deals with water redistribution as a result of soil properties are the soil-water retention curve and the hydraulic properties and evaporative demand of the hydraulic conductivity. The objective of this study atmosphere was highly correlated to soil moisture was to determine the soil hydraulic properties of a content and texture with R2 values > 0.85. Nitisol, at Kabete Campus Field Station. Use of an internal drainage procedure to characterize the Key words: Soil water retention; hydraulic hydraulic properties and soil and water retention conductivity; water content; field capacity; permanent curves allowed for the establishment of the moisture wilting point; Van Genuchten parameters and matric potential at field capacity and permanent wilting point.