Annex: Soil Groups, Characteristics, Distribution and Ecosystem Services
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soil Properties and Pre-Columbian Settlement Patterns in The
SOIL, 1, 65–81, 2015 www.soil-journal.net/1/65/2015/ doi:10.5194/soil-1-65-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. Soil properties and pre-Columbian settlement patterns in the Monumental Mounds Region of the Llanos de Moxos, Bolivian Amazon U. Lombardo1,2, S. Denier1, and H. Veit1 1Universität Bern, Geographisches Institut, Hallerstrasse 12, 3012 Bern, Switzerland 2CaSeS research group, IMF-CSIC, C/Egipciaques, 15-08001 Barcelona, Spain Correspondence to: U. Lombardo ([email protected]) Received: 5 May 2014 – Published in SOIL Discuss.: 15 May 2014 Revised: – – Accepted: 26 September 2014 – Published: 6 January 2015 Abstract. In the present paper we explore to what degree soil properties might have influenced pre-Columbian settlement patterns in the Monumental Mounds Region (MMR) of the Llanos de Moxos (LM), Bolivian Amazon. Monumental mounds are pre-Hispanic earth buildings and were preferentially built on mid- to late Holocene palaeolevees of the Grande River (here denominated PR1), while levees of older palaeorivers (PR0) were only sparsely occupied. We dug two transects across PR0 and PR1 levee–backswamp catenas and analysed them for grain size, pH, cation exchange capacity (CEC) and Corg. Our data show that PR1 soils, where the density of mounds is higher, have far greater agricultural potential than PR0 soils, which are affected by aluminium toxicity in the backswamps and by high levels of exchangeable sodium in the levees. This study provides new data on the soil properties of the south-eastern Bolivian Amazon and reinforces the hypothesis that environmental constraints and opportunities exerted an important role on pre-Columbian occupation patterns and the population density reached in the Bolivian Amazon. -
Topic: Soil Classification
Programme: M.Sc.(Environmental Science) Course: Soil Science Semester: IV Code: MSESC4007E04 Topic: Soil Classification Prof. Umesh Kumar Singh Department of Environmental Science School of Earth, Environmental and Biological Sciences Central University of South Bihar, Gaya Note: These materials are only for classroom teaching purpose at Central University of South Bihar. All the data/figures/materials are taken from several research articles/e-books/text books including Wikipedia and other online resources. 1 • Pedology: The origin of the soil , its classification, and its description are examined in pedology (pedon-soil or earth in greek). Pedology is the study of the soil as a natural body and does not focus primarily on the soil’s immediate practical use. A pedologist studies, examines, and classifies soils as they occur in their natural environment. • Edaphology (concerned with the influence of soils on living things, particularly plants ) is the study of soil from the stand point of higher plants. Edaphologist considers the various properties of soil in relation to plant production. • Soil Profile: specific series of layers of soil called soil horizons from soil surface down to the unaltered parent material. 2 • By area Soil – can be small or few hectares. • Smallest representative unit – k.a. Pedon • Polypedon • Bordered by its side by the vertical section of soil …the soil profile. • Soil profile – characterize the pedon. So it defines the soil. • Horizon tell- soil properties- colour, texture, structure, permeability, drainage, bio-activity etc. • 6 groups of horizons k.a. master horizons. O,A,E,B,C &R. 3 Soil Sampling and Mapping Units 4 Typical soil profile 5 O • OM deposits (decomposed, partially decomposed) • Lie above mineral horizon • Histic epipedon (Histos Gr. -
Changes in Soil Properties in a Fluvisol (Calcaric) Amended with Coal Fly Ash A
Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash A. Riehl, F. Elsass, J. Duplay, F. Huber, M. Trautmann To cite this version: A. Riehl, F. Elsass, J. Duplay, F. Huber, M. Trautmann. Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash. Geoderma, Elsevier, 2010, 155 (1-2), pp.67-74. 10.1016/j.geoderma.2009.11.025. halsde-00546980 HAL Id: halsde-00546980 https://hal.archives-ouvertes.fr/halsde-00546980 Submitted on 30 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geoderma 155 (2010) 67–74 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash A. Riehl a, F. Elsass b, J. Duplay a,⁎, F. Huber a, M. Trautmann c a Laboratoire d'Hydrologie et de Géochimie de Strasbourg, UMR 7517 CNRS, 1 rue Blessig 67084 Strasbourg Cedex, France b Institut National de Recherche Agronomique, route de Saint-Cyr 78026Versailles, France c UMS 830 UDS/CNRS, Laboratoire d'Analyses des Sols et des Formations Superficielles, 3 rue de l'Argonne 67083 Strasbourg Cedex, France article info abstract Article history: Fluidized bed combustion ash (FBC) is a by-product from coal-fired power stations used for many decades in Received 25 March 2009 concrete, cement and brick manufacturing and more recently for trace metal immobilization and pesticide Received in revised form 17 November 2009 retention in soils. -
Soil Properties, and Soil Organic Carbon Stocks of Tropical Andosol Under Different Land Uses
Open Journal of Soil Science, 2013, 3, 153-162 153 http://dx.doi.org/10.4236/ojss.2013.33018 Published Online July 2013 (http://www.scirp.org/journal/ojss) Soil Properties, and Soil Organic Carbon Stocks of Tropical Andosol under Different Land Uses Girma Abera*, Endalkachew Wolde-Meskel School of Plant and Horticultural Sciences, Hawassa University, Hawassa, Ethiopia. Email: *girmajibat2006 @yahoo.com Received December 21st, 2012; revised April 21st, 2013; accepted April 29th, 2013 Copyright © 2013 Girma Abera, Endalkachew Wolde-Meskel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Land use effect of tropical Andosol, with two from crop lands (Site 1 and Site 2) and one from Agroforestry coffee plantation (Site 3) was explored under laboratory conditions to understand their physical, chemical and biological prop- erties and soil organic carbon (SOC) stocks from the rift valley of Ethiopia. Site 3 that acquired less cultivation than others exhibited better aggregate size fraction (AF, 55%), higher aggregate stability (AS, 91%), and greater active mi- crobial biomass (AMB), reflecting better soil structure development. Comparatively, higher total carbon (TC), organic carbon (OC) and total nitrogen (TN) concentrations were recorded in bulk soils and microaggregate fractions of Site 2 and Site 3 than in intensively cultivated Site 1. As expected, microaggregate fractions displayed greater OC and TN than bulk soils across all land uses. Site 1 revealed higher metabolic quotient (qCO2) and lower SOC stock (2.1 Mg·ha−1), suggesting microbial stress, while micro nutrients deficiencies were observed with the alkaline soil (Site 2). -
Effect of Soil Chiseling on Soil Structure and Root Growth for a Clayey Soil Under No-Tillage
Geoderma 259–260 (2015) 149–155 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Effect of soil chiseling on soil structure and root growth for a clayey soil under no-tillage Márcio Renato Nunes a,⁎, José Eloir Denardin b, Eloy Antônio Pauletto c, Antônio Faganello b, Luiz Fernando Spinelli Pinto c a University of São Paulo, “Luiz de Queiroz” College of Agriculture, Avenida Pádua Dias, 11, CEP 13418-900 Piracicaba, São Paulo, Brazil b Embrapa Trigo, Rodovia BR 285, km. 294, P.O. Box 451, CEP 99001-970 Passo Fundo, Rio Grande do Sul, Brazil c Federal University of Pelotas, Department of Soil Science, Campus Universitário s/n, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil article info abstract Article history: Soil chiseling under no-tillage (NT) promotes root growth in depth. This practice, however, might affect soil ag- Received 11 November 2014 gregation. This study evaluated the chiseling effects on the aggregation of a Ferralic Nitisol (Rhodic), under NT, in Received in revised form 2 June 2015 humid subtropical climate region. The treatments carried out consisted of the time that soil was kept under NT Accepted 3 June 2015 after chiseling: continuous NT for 24 months after chiseling in September 2009; continuous NT for 18 months Available online xxxx after chiseling in March 2010; continuous NT for 12 months after chiseling in September 2010; continuous NT for 6 months after chiseling in March 2011; NT in newly chiseling soil in September 2011; continuous NT without Keywords: Soil physical attributes chiseling (control). -
Plant Uptake of Radionuclides in Lysimeter Experiments
AT9900006 Plant uptake of radionuclides in lysimeter experiments M.H. Gerzabek F. Strebl B. Temmel June 1998 OEFZS—4820 SEIBERSDORF 30-20 / OEFZS-4820 June 1998 Plant uptake of radionuclides in lysimeter experiments In: Environmental Pollution 99 (1998) 93-103 M.H. Gerzabek, F. Strebl, B. Temmel Department of Environmental Research Division of Life Sciences ENVIRONMENTAL POLLUTION ELSEVIER Environmental Pollution 99 (1998) 93-103 Plant uptake of radionuclides in lysimeter experiments M.H. Gerzabek*, F. Strebl, B. Temmel Austrian Research Centre Seibersdorf, Division of Life Sciences, A-2444 Seibersdorf Austria Received 20 June 1997; accepted 15 October 1997 Abstract The results of seven years lysimeter experiments to determine the uptake of 60 Co, 137Cs and 226 Ra into agricultural crops (endive, maize, wheat, mustard, sugarbeet, potato, Faba bean, rye grass) are described. The lysimeter consists of twelve monolithic soil profiles (four soil types and three replicates) and is located in Seibersdorf/Austria, a region with a pannonian climate (pronounced differences between hot and semi-arid summers and humid winter conditions, annual mean of precipitation: 517 mm, mean annual temperature: 9.8°C). Besides soil-to-plant transfer factors (TF), fluxes were calculated taking into account biomass production and growth time. Total median values of TF’s (dry matter basis) for the three radionuclides decreased from 226 Ra (0.068 kg kg" 1) to ,37Cs (0.043 kg kg" 1) and 60 Co (0.018 kg kg" 1); flux values exhibited the same ranking. The varying physical and chemical proper ties of the four experimental soils resulted in statistically significant differences in transfer factors or fluxes between the investigated soils for l37Cs and 226 Ra, but not for 60 Co. -
Evolution of Loess-Derived Soil Along a Topo-Climatic Sequence in The
European Journal of Soil Science, May 2017, 68, 270–280 doi: 10.1111/ejss.12425 Evolution of loess-derived soil along a climatic toposequence in the Qilian Mountains, NE Tibetan Plateau F. Yanga,c ,L.M.Huangb,c,D.G.Rossitera,d,F.Yanga,c,R.M.Yanga,c & G. L. Zhanga,c aState Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, NO. 71 East Beijing Road, Xuanwu District, Nanjing 210008, China, bKey Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11(A), Datun Road, Chaoyang District, Beijing 100101, China, cUniversity of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China, and dSchool of Integrative Plant Sciences, Section of Soil and Crop Sciences, Cornell University, Ithaca NY 14853, USA Summary Holocene loess has been recognized as the primary source of the silty topsoil in the northeast Qinghai-Tibetan Plateau. The processes through which these uniform loess sediments develop into diverse types of soil remain unclear. In this research, we examined 23 loess-derived soil samples from the Qilian Mountains with varying amounts of pedogenic modification. Soil particle-size distribution and non-calcareous mineralogy were changed only slightly because of the weak intensity of chemical weathering. Accumulation of soil organic carbon (SOC) and leaching of carbonate were both identified as predominant pedogenic responses to soil forming processes. Principal component analysis and structural analysis revealed the strong correlations between soil carbon (SOC and carbonate) and several soil properties related to soil functions. -
Integrated Evaluation of Petroleum Impacts to Soil
Integrated Evaluation of Petroleum Impacts to Soil Randy Adams, D. Marín, C. Avila, L. de la Cruz, C. Morales, and V. Domínguez Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico [email protected] 1.00 0.90 0.80 0.70 0.60 R2 = 0.9626 0.50 0.40 1-IAFcorr 0.30 0.20 0.10 0.00 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Conc. hidrocarburos (mg/Kg) Actual Modelo BACKGROUND U J A T •Clean-up criteria for petroleum contaminated soils developed in US in 60’s and 70’s on drilling cuttings •1% considered OK – no or only slight damage to crops, only lasts one growing season •Bioassays confirmed low toxicity of residual oil •Subsequenty used as a basis for clean-up criteria for hydrocarbons in soils in many countries does not consider kind of hydrocarbons does not consider kind of soil SISTEMATIC EVALUATION U J A T •Selection of light, medium, heavy and extra-heavy crudes •Selection of 5 soil types common in petroleum producing region of SE Mexico •Contamination of soil at different concentrations •Measurement of acute toxicity (Microtox), and subchronic toxicity (28 d earthworm) •Measurement of impacts to soil fertility: water repellency, soil moisure, compaction, complemented with in situ weathering experiments •Measurement of plant growth: pasture, black beans Crude Petroleum Used in Study U J A T 100% 80% 60% Aliphatics Aromatics 40% Polars + Resins Asphaltenes 20% 0% Light Crude Medium Crude Heavy Crude Extra-heavy Crude 37 ºAPI 27 ºAPI 15 ºAPI 3 ºAPI U J A T FAO: FLUVISOL VERTISOL GLEYSOL ARENOSOL ACRISOL USDA: FLUVENT -
Sorption and Desorption of Vanadate, Arsenate and Chromate by Two Volcanic Soils of Equatorial Africa
Article Sorption and Desorption of Vanadate, Arsenate and Chromate by Two Volcanic Soils of Equatorial Africa Sara Gonzalez-Rodriguez 1 and Maria Luisa Fernandez-Marcos 1,2,* 1 Department of Soil Science and Agricultural Chemistry, Universidad de Santiago de Compostela, 27002 Lugo, Spain; [email protected] 2 Institute of Agricultural Biodiversity and Rural Development, University of Santiago de Compostela, 27002 Lugo, Spain * Correspondence: [email protected] Abstract: Sorption of oxyanions by soils and mineral surfaces is of interest due to their role as nutrients or pollutants. Volcanic soils are variable charge soils, rich in active forms of aluminum and iron, and capable of sorbing anions. Sorption and desorption of vanadate, arsenate, and chromate by two African andosols was studied in laboratory experiments. Sorption isotherms were determined by equilibrating at 293 K soil samples with oxyanion solutions of concentrations between 0 and 100 mg L−1 V, As, or Cr, equivalent to 0−2.0 mmol V L−1, 0−1.3 mmol As L−1, and −1 0−1.9 mmol Cr L , in NaNO3; V, As, or Cr were determined by ICP-mass spectrometry in the equilibrium solution. After sorption, the soil samples were equilibrated with 0.02 M NaNO3 to study desorption. The isotherms were adjusted to mathematical models. After desorption with NaNO3, desorption experiments were carried out with a 1 mM phosphate. The sorption of vanadate and arsenate was greater than 90% of the amount added, while the chromate sorption was much lower (19–97%). The sorption by the Silandic Andosol is attributed to non-crystalline Fe and Al, while in Citation: Gonzalez-Rodriguez, S.; the Vitric Andosol, crystalline iron species play a relevant role. -
The Soil Map of the Flemish Region Converted to the 3 Edition of the World Reference Base for Soil Resources
Ontwikkelen en toepassen van een methodiek voor de vertaling van de Belgische bodemclassificatie van de kustpolders naar het internationale WRB systeem en generaliseren van de WRB-bodemkaart voor gans Vlaanderen naar het 1 : 250 000 schaalniveau The soil map of the Flemish region converted to the 3 rd edition of the World Reference Base for soil resources Stefaan Dondeyne, Laura Vanierschot, Roger Langohr Eric Van Ranst and Jozef Deckers Oct. 2014 Opdracht van de Vlaamse Overheid Bestek nr. BOD/STUD/2013/01 Contents Contents............................................................................................................................................................3 Acknowledgement ...........................................................................................................................................5 Abstract............................................................................................................................................................7 Samenvatting ...................................................................................................................................................9 1. Background and objectives.......................................................................................................................11 2. The soil map of Belgium............................................................................................................................12 2.1 The soil survey project..........................................................................................................................12 -
Prairie Wetland Soils: Gleysolic and Organic Angela Bedard-Haughn Department of Soil Science, University of Saskatchewan
PS&C Prairie Soils & Crops Journal Agricultural Soils of the Prairies Prairie Wetland Soils: Gleysolic and Organic Angela Bedard-Haughn Department of Soil Science, University of Saskatchewan Summary Gleysolic and Organic soils are collectively referred to as “wetland soils”. They are found in wet low-lying or level landscape positions. Gleysolic soils are found throughout the agricultural Prairies, in association with Chernozemic and Luvisolic soils. In semi-arid regions, they are frequently tilled in dry years and can be very productive due to their relatively high levels of soil moisture and nutrients. In the Prairie Provinces, Organic soils tend to be mostly associated with the Boreal transition zones at the northern and eastern perimeter of the Prairies. With proper management, these can also provide productive agricultural land, particularly for forages. Introduction Soils of the Gleysolic and Organic orders are collectively referred to as “wetland soils”. Soil maps of the agricultural region of the Canadian Prairies seldom have areas mapped as dominantly Gleysolic8 or Organic9; however, these soils are found throughout the region wherever climate and/or topography have led to persistent water-saturated conditions. Gleysols are mineral soils with colors that reflect intermittent or prolonged anaerobic (i.e., saturated, low oxygen) conditions (Fig. 1A). Organic soils reflect permanent anaerobic conditions, which lead to soils that are made up of variably decomposed plant residues, mostly from water-tolerant (i.e., hydrophytic) vegetation (Fig. 1B). Figure 1: A) Humic Luvic Gleysol, Saskatchewan and B) Typic Fibrisol (Organic), Manitoba7. Of the some 100,000,000 ha covered by the Canada Land Inventory (CLI) in the Prairie Provinces12, Gleysolic soils occupy less than 15% of the Prairie ecoregions and up to 40% in the Mid-Boreal (boreal = “northern”) Upland (Alberta) and Interlake Plain (Manitoba) ecoregions12. -
Ecological and Geographical Features of Ontogenesis of Holocene Soils of Kamianets-Podilskyi Fortress
SHS Web of Conferences 100, 05006 (2021) https://doi.org/10.1051/shsconf/202110005006 ISCSAI 2021 Ecological and Geographical Features of Ontogenesis of Holocene Soils of Kamianets-Podilskyi Fortress Roman Malyk1*, Andriy Kyrylchuk1, Zinovy Pankiv1, and Ihor Kasiyanyk2 1Ivan Franko National University of Lviv, 79000, University str. 1, Lviv, Ukraine 2Ivan Ogienko National University of Kamianets-Podilskyi, 32301, Ogienko str. 61, Kamianets-Podilskyi, Ukraine Abstract. The article analyzes the degree of study of the genetic features of Holocene soils of beligerative complexes. A detailed description of natural and anthropogenic conditions and factors determining the geography, genesis and ecological condition of modern and buried soils of beligerative structures of Kamianets-Podilskyi Fortress is given. Considerable attention is paid to the problem of ontogenesis of the dominant natural and anthropogenic soils within the study area, represented by urborendzins and constructional soils. The morphogenetic features of these soils have been studied. The soils of the beligerative complex are represented by naturally anthropogenic soils – urborendzins and constructional soils. They are polygenetic with complex phylogeny and their genesis includes at least two onogenesis. For a long time soils have been evolving naturally in form of typical rendzin, but have undergone quantitative and qualitative changes due to intensive anthropogenic activity. The genetic profile of soils is characterized by significant variability of morphological traits, the presence of eluvium of soil- forming rocks in the entire soil layer. the studied Holocene soils (modern and buried) are an integral part of the historical and cultural lands and need protection, as they contain information about the evolution of the territory and ways of its use.