Topic: Soil Classification

Total Page:16

File Type:pdf, Size:1020Kb

Topic: Soil Classification Programme: M.Sc.(Environmental Science) Course: Soil Science Semester: IV Code: MSESC4007E04 Topic: Soil Classification Prof. Umesh Kumar Singh Department of Environmental Science School of Earth, Environmental and Biological Sciences Central University of South Bihar, Gaya Note: These materials are only for classroom teaching purpose at Central University of South Bihar. All the data/figures/materials are taken from several research articles/e-books/text books including Wikipedia and other online resources. 1 • Pedology: The origin of the soil , its classification, and its description are examined in pedology (pedon-soil or earth in greek). Pedology is the study of the soil as a natural body and does not focus primarily on the soil’s immediate practical use. A pedologist studies, examines, and classifies soils as they occur in their natural environment. • Edaphology (concerned with the influence of soils on living things, particularly plants ) is the study of soil from the stand point of higher plants. Edaphologist considers the various properties of soil in relation to plant production. • Soil Profile: specific series of layers of soil called soil horizons from soil surface down to the unaltered parent material. 2 • By area Soil – can be small or few hectares. • Smallest representative unit – k.a. Pedon • Polypedon • Bordered by its side by the vertical section of soil …the soil profile. • Soil profile – characterize the pedon. So it defines the soil. • Horizon tell- soil properties- colour, texture, structure, permeability, drainage, bio-activity etc. • 6 groups of horizons k.a. master horizons. O,A,E,B,C &R. 3 Soil Sampling and Mapping Units 4 Typical soil profile 5 O • OM deposits (decomposed, partially decomposed) • Lie above mineral horizon • Histic epipedon (Histos Gr. – tissue) • Oi (non to slightly decomposed) • Oe (intermediately decomposed) 6 A • Top most mineral horizons • Inorganic – OM • Usually dark in colour • If O horizon not there – k.a. – Ap (p= plow) • A horizon- used to classify soil (a.k.a diagonsistic epipedons) (Gr. Epi= over; pedon = soil) • Seven major epipedons are there. 7 Diagnostic Surface Horizons 8 E horizons • Located under A • Zone of eluviation (Clay, humus, Fe, Al) • Deposit (eluvial deposit) is the remaining material. • Usually white and pale (k.a. albic horizon) • AE • EB 9 B horizons • Illuviation • The B horizon is a zone of illuviation where downward moving, especially fine material, is accumulated. The accumulation of fine material leads to the creation of a dense layer in the soil. • Accumulation from A, E (Clay, Fe, Al, Humus) • Transition zone BC • Diagnostic subsurface horizons. 10 DIAGNOSTIC SUBSURFACE HORIZONS • Cambic Horizon (Bw horizon)- recently young • Argillic (Bt horizons) – enriched with clay • Natric Horizons - sodium • Albic Horizon- white in colour • Oxic Horizon – highly weathered horizon • Calcic Horizons, • Gypsic Horizons, and • Salic Horizons 11 DIAGNOSTIC SUBSURFACE HORIZONS: • Cambic Horizon (Bw horizon) • A young B Horizon • The cambic horizon can form quickly, relatively speaking, because changes in the color and structure, and some leaching will convert the subsoil parent material into a cambic horizon. • Cambic horizons are not illuvial horizons and, generally, they are not extremely weathered. A cambic horizon is a Bw horizon. 12 DIAGNOSTIC SUBSURFACE HORIZONS • Argillic (Bt horizons) and Natric Horizons (Btn horizons) • The gradual illuvial accumulation of clay in a cambic horizon converts a cambic horizon (Bw horizon) into a Bt horizon. Typically, clay skins occur on the ped surfaces of Bt horizons • A natric horizon is a special kind of argillic horizon. These horizons have typically been affected by soluble salts. The natric horizon is a Btn horizon; the n indicates the accumulation of exchangeable sodium. 13 DIAGNOSTIC SUBSURFACE HORIZONS • Albic Horizon • The loss by eluviation of sesquioxides • (A sesquioxide is an oxide containing three atoms of oxygen with two atoms (or radicals) of another element. For example, aluminium oxide (Al2O3) is a sesquioxide),and clay, during the formation of spodic and argillic horizons, tends to leave behind a light-colored overlying eluvial horizon called the albic horizon. • Albic is derived from the word white. The horizon is eluviated and is labeled an E horizon. The color of the albic horizon is due to the color of the primary sand and silt particles rather than to the particle coatings. Albic horizons are commonly underlain by spodic, argillic, or kandic horizons. 14 DIAGNOSTIC SUBSURFACE HORIZONS • Oxic Horizon • The oxic horizon (Bo horizon) is a subsurface horizon at least 30 centimeters thick, that is in an advanced stage of weathering. It is not dependent on a difference in the clay content of subsoil versus the topsoil horizons. • Oxic is derived from the word oxide. • Oxic horizons consist of a mixture of iron and/or aluminum oxides with variable amounts of kaolinite and highly insoluble accessory minerals such as quartz sand. • Soils with oxic horizons have essentially reached the end point of weathering. 15 DIAGNOSTIC SUBSURFACE HORIZONS • Calcic, Gypsic, and Salic Horizons • The calcic horizon is a horizon of calcium carbonate or calcium and magnesium carbonate accumulation. • Calcic horizons develop in soils in which there is limited leaching and the carbonates are translocated downward. However, the carbonates are deposited within the soil profile because there is insufficient water to leach the carbonates to the water table. The symbol k indicates an accumulation of carbonates, as in Bwk or Ck. • Gypsic horizons have an accumulation of secondary sulfates, and that is indicated with the symbol y. Cemented calcic and gypsic horizons are petrocalcic and petrogypsic horizons, respectively. • Salic horizons contain a secondary enrichment of salts more soluble than gypsic and are indicated with the symbol z. 16 Soil Profile = layers in soil observed with depth; Individual layers are horizons O horizon – contains litter on surface, humus + OM beneath A horizon – various stages of breakdown of organic matter B horizon – mineral soil in which organic compounds have been converted into inorganic C horizon – unmodified parent material Bedrock 17 Zonation in Soil Profile Rain, Leaching A horizon – may show color gradient as OM decreases – eluvial horizons = leaching B horizon – inorganic compounds leached from A horizon accumulate here – illuvial horizons = accumulation Bedrock 18 Eluviation: It is the mobilization and translocation of certain constituent’s viz. Clay, Fe2O3, Al2O3, SiO2, humus, CaCO3, other salts etc. from one point of soil body to another. Eluviation means washing out. It is the process of removal of constituents in suspension or solution by the percolating water from the upper to lower layers. The eluviation encompasses mobilization and translocation of mobile constituents resulting in textural differences. The horizon formed by the process of eluviation is termed as eluvial horizon (A2 or E horizon). Illuviation: The process of deposition of soil materials (removed from the eluvial horizon) in the lower layer (or horizon of gains having the property of stabilizing translocated clay materials) is termed as Illuviation. The horizons formed by this process are termed as illuvial horizons (B-horizons, especially Bt) The process leads to textural contrast between E and Bt horizons, and higher fine: total clay ratio in the Bt horizon. 19 Soil Profile is determined by • Vegetation • Climate ---- rainfall and leaching • Weathering ---- geological history, age • Topography • Parent Material • Etc. 20 Soil Classification • Profile • Texture • Origin • Vegetation • Minerals • Climate • Age • Etc. 21 Soil Taxonomy Hierarchy Kingdom Phylum Order Class 12 Order Family Suborder 63 Genus Species Great group 250 Sub group 1400 Family 8000 Series 19,000 22 Soil Orders 12 recognized, 10 used in agriculture 1. Histosols 2. Vertisols 3. Entisols 4. Inceptisols 5. Aridisols 6. Mollisols 7. Alfisols 8. Spodosols 9. Oxisols 10. Ultisols 11. Andisols 12. Gelisols 23 Soil Orders Use in Agriculture • Histosol • Vertisol Best • Entisol • Inceptisol Many types respond to • Aridisol management (fertilizer, irrigation) • Mollisol • Alfisol • Spodosol • Oxisol Poor • Ultisol 24 Formative Syllables, Derivations, and Meanings of Soil Orders Gelisols el Gk. Gelid very cold, pergelic soil temp. regime 25 Diagnostic Subsurface Horizons Formation Translocation Transformation Clays Organic Matter Oxides 26 Mollic Horizon • The word mollic is derived from mollify, which means to soften. The mollic horizon is a surface horizon that is soft rather than hard and massive when dry. • Mollic epipedon formation is favored where numerous grass roots permeate the soil and a moderate to strong grade of structure is created. • Except for special cases, mollic horizons are dark-colored, contain at least 1 percent organic matter, and are at least 18 centimeters thick. • They are only minimally or moderately weathered and leached. • The cation exchange capacity is 50 percent or more saturated with calcium, magnesium, potassium, and sodium when the cation exchange capacity is determined at pH 7. • The major grassland soils of the world have mollic epipedons. 27 Umbric and Ochric Horizons • The umbric epipedon is similar to the mollic in overall appearance of thickness and color; however, it is more leached and has a saturation with basic cations calcium, magnesium, potassium, and sodium that is less than 50 percent when the cation exchange
Recommended publications
  • Engineering Behavior and Classification of Lateritic Soils in Relation to Soil Genesis Erdil Riza Tuncer Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1976 Engineering behavior and classification of lateritic soils in relation to soil genesis Erdil Riza Tuncer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Civil Engineering Commons Recommended Citation Tuncer, Erdil Riza, "Engineering behavior and classification of lateritic soils in relation to soil genesis " (1976). Retrospective Theses and Dissertations. 5712. https://lib.dr.iastate.edu/rtd/5712 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Basic Soil Science W
    Basic Soil Science W. Lee Daniels See http://pubs.ext.vt.edu/430/430-350/430-350_pdf.pdf for more information on basic soils! [email protected]; 540-231-7175 http://www.cses.vt.edu/revegetation/ Well weathered A Horizon -- Topsoil (red, clayey) soil from the Piedmont of Virginia. This soil has formed from B Horizon - Subsoil long term weathering of granite into soil like materials. C Horizon (deeper) Native Forest Soil Leaf litter and roots (> 5 T/Ac/year are “bio- processed” to form humus, which is the dark black material seen in this topsoil layer. In the process, nutrients and energy are released to plant uptake and the higher food chain. These are the “natural soil cycles” that we attempt to manage today. Soil Profiles Soil profiles are two-dimensional slices or exposures of soils like we can view from a road cut or a soil pit. Soil profiles reveal soil horizons, which are fundamental genetic layers, weathered into underlying parent materials, in response to leaching and organic matter decomposition. Fig. 1.12 -- Soils develop horizons due to the combined process of (1) organic matter deposition and decomposition and (2) illuviation of clays, oxides and other mobile compounds downward with the wetting front. In moist environments (e.g. Virginia) free salts (Cl and SO4 ) are leached completely out of the profile, but they accumulate in desert soils. Master Horizons O A • O horizon E • A horizon • E horizon B • B horizon • C horizon C • R horizon R Master Horizons • O horizon o predominantly organic matter (litter and humus) • A horizon o organic carbon accumulation, some removal of clay • E horizon o zone of maximum removal (loss of OC, Fe, Mn, Al, clay…) • B horizon o forms below O, A, and E horizons o zone of maximum accumulation (clay, Fe, Al, CaC03, salts…) o most developed part of subsoil (structure, texture, color) o < 50% rock structure or thin bedding from water deposition Master Horizons • C horizon o little or no pedogenic alteration o unconsolidated parent material or soft bedrock o < 50% soil structure • R horizon o hard, continuous bedrock A vs.
    [Show full text]
  • Soils Section
    Soils Section 2003 Florida Envirothon Study Sections Soil Key Points SOIL KEY POINTS • Recognize soil as an important dynamic resource. • Describe basic soil properties and soil formation factors. • Understand soil drainage classes and know how wetlands are defined. • Determine basic soil properties and limitations, such as mottling and permeability by observing a soil pit or soil profile. • Identify types of soil erosion and discuss methods for reducing erosion. • Use soil information, including a soil survey, in land use planning discussions. • Discuss how soil is a factor in, or is impacted by, nonpoint and point source pollution. Florida’s State Soil Florida has the largest total acreage of sandy, siliceous, hyperthermic Aeric Haplaquods in the nation. This is commonly called Myakka fine sand. It does not occur anywhere else in the United States. There are more than 1.5 million acres of Myakka fine sand in Florida. On May 22, 1989, Governor Bob Martinez signed Senate Bill 525 into law making Myakka fine sand Florida’s official state soil. iii Florida Envirothon Study Packet — Soils Section iv Contents CONTENTS INTRODUCTION .........................................................................................................................1 WHAT IS SOIL AND HOW IS SOIL FORMED? .....................................................................3 SOIL CHARACTERISTICS..........................................................................................................7 Texture......................................................................................................................................7
    [Show full text]
  • The Impact of White Pine (Pinus Strobus) on a Mollisol After Seven Decades of Soil Development
    Journal of the Iowa Academy of Science: JIAS Volume 111 Number 3-4 Article 4 2004 The Impact of White Pine (Pinus strobus) on a Mollisol After Seven Decades of Soil Development Irina Kovda Institute of Geography, Moscow Eric C. Brevik Iowa State University Thomas E. Fenton Moscow State University Maria Gerasimova Valdosta State University Let us know how access to this document benefits ouy Copyright © Copyright 2005 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/jias Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation Kovda, Irina; Brevik, Eric C.; Fenton, Thomas E.; and Gerasimova, Maria (2004) "The Impact of White Pine (Pinus strobus) on a Mollisol After Seven Decades of Soil Development," Journal of the Iowa Academy of Science: JIAS, 111(3-4), 58-66. Available at: https://scholarworks.uni.edu/jias/vol111/iss3/4 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Jour. Iowa Acad. Sci. 111(3,4):58-66, 2004 The Impact of White Pine (Pinus strobus) on a Mollisol After Seven Decades of Soil Development IRINA KOVDA1, ERIC C. BREVIK2A, THOMAS E. FENTON2, and MARIA GERASIMOVA3 1 Institute of Geography, Staromonetny 29, Moscow, 109017,
    [Show full text]
  • National University of Engineering Ge111
    NATIONAL UNIVERSITY OF ENGINEERING COLLEGE OF ENVIRONMENTAL ENGINEERING ENVIRONMENTAL ENGINEERING PROGRAM GE111 – EDAPHOLOGY I. GENERAL INFORMATION CODE : GE111 – Edaphology SEMESTER : 5 CREDITS : 03 HOURS PER WEEK : 04 (Theory – Practices – Laboratory) PREREQUISITES : GE102 – Geography CONDITION : Mandatory II. COURSE DESCRIPTION Concept and importance of edaphological soil and its interest for Engineering. Detailed knowledge of the components, physical and chemical properties, genesis, classification and principles of cartography, of natural soils and anthropogenic urban soils. Principle of soil evaluation, as a starting point in studies of environmental planning, territorial planning and environmental impact assessment. Finally, it is intended that students understand the importance of soil as a non-renewable resource and the degradations to which its inappropriate use leads; It is also intended to train in the corrective and rehabilitating measures of degraded soils. III. COURSE OUTCOMES At the end of the course the student will: Organizes data for proper analysis and interpretation and calculations (soil densities, physical chemical and biological properties). Explains and determines the genesis of the soil, the physical properties of the soil, geo reference, physiographic units. Understand and apply densities, to determine the consistency of the soil, the probability of resistance in an earthquake. Interpret and perform types of soil sampling to take to the laboratory to determine their physical, chemical, and biological characteristics. Build models to determine the degree of contamination, is determined by the parameters, using the LMOs, ECAs, In soils. IV. LEARNING UNITS 1. SOIL GENESIS / 4 HOURS Objective of soil science: Interest in Engineering. Genesis. Pedological and edaphological approach. Factors of soil formation. Climate action. Properties of the soil affected by the climate.
    [Show full text]
  • Subsurface Stratigraphy and Genesis of Pre-Wisconsin Paleosols in Whitebreast Creek Watershed, South-Central Iowa
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 Subsurface stratigraphy and genesis of pre- Wisconsin paleosols in Whitebreast Creek Watershed, south-central Iowa Amir Hossein Charkhabi Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Geology Commons, and the Mineral Physics Commons Recommended Citation Charkhabi, Amir Hossein, "Subsurface stratigraphy and genesis of pre-Wisconsin paleosols in Whitebreast Creek Watershed, south- central Iowa " (1995). Retrospective Theses and Dissertations. 10887. https://lib.dr.iastate.edu/rtd/10887 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI filmc the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in ^pewriter face, while others may be from any type of computer printer. The qnalify of this reprodnction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and inqjroper aligmnent can adversefy affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Dynamics of Carbon 14 in Soils: a Review C
    Radioprotection, Suppl. 1, vol. 40 (2005) S465-S470 © EDP Sciences, 2005 DOI: 10.1051/radiopro:2005s1-068 Dynamics of Carbon 14 in soils: A review C. Tamponnet Institute of Radioprotection and Nuclear Safety, DEI/SECRE, CADARACHE, BP. 1, 13108 Saint-Paul-lez-Durance Cedex, France, e-mail: [email protected] Abstract. In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial ecosphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. 1. INTRODUCTION The importance of carbon 14 of anthropic origin in the environment has been quite early a matter of concern for the authorities [1]. When the behaviour of carbon 14 in the environment is to be modelled, it is an absolute necessity to understand the biogeochemical cycles of carbon. One can distinguish indeed, a global cycle of carbon from different local cycles. As far as the biosphere is concerned, pedosphere is considered as a primordial exchange zone. Pedosphere, which will be named from now on as soils, is mainly located at the interface between atmosphere and lithosphere.
    [Show full text]
  • Field Indicators of Hydric Soils
    United States Department of Field Indicators of Agriculture Natural Resources Hydric Soils in the Conservation Service United States In cooperation with A Guide for Identifying and Delineating the National Technical Committee for Hydric Soils Hydric Soils, Version 8.2, 2018 Field Indicators of Hydric Soils in the United States A Guide for Identifying and Delineating Hydric Soils Version 8.2, 2018 (Including revisions to versions 8.0 and 8.1) United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with the National Technical Committee for Hydric Soils Edited by L.M. Vasilas, Soil Scientist, NRCS, Washington, DC; G.W. Hurt, Soil Scientist, University of Florida, Gainesville, FL; and J.F. Berkowitz, Soil Scientist, USACE, Vicksburg, MS ii In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339.
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Diagnostic Horizons
    Exam III Wednesday, November 7th Study Guide Posted Tomorrow Review Session in Class on Monday the 4th Soil Taxonomy and Classification Diagnostic Horizons Epipedons Subsurface Mollic Albic Umbric Kandic Ochric Histic Argillic Melanic Spodic Plaggen Anthropic Oxic 1 Surface Horizons: Mollic- thick, dark colored, high %B.S., structure Umbric – same, but lower B.S. Ochric – pale, low O.M., thin Histic – High O.M., thick, wet, dark Sub-Surface Horizons: Argillic – illuvial accum. of clay (high activity) Kandic – accum. of clay (low activity) Spodic – Illuvial O.M. accumulation (Al and/or Fe) Oxic – highly weathered, kaolinite, Fe and Al oxides Albic – light colored, elluvial, low reactivity Elluviation and Illuviation Elluviation (E horizon) Organic matter Clays A A E E Bh horizon Bt horizon Bh Bt Spodic horizon Argillic horizon 2 Soil Taxonomy Diagnostic Epipedons Diagnostic Subsurface horizons Moisture Regimes Temperature Regimes Age Texture Depth Soil Taxonomy Soil forming processes, presence or Order Absence of major diagnostic horizons 12 Similar genesis Suborder 63 Grasslands – thick, dark Great group 250 epipedons High %B.S. Sub group 1400 Family 8000 Series 19,000 Soil Orders Entisols Histosols Inceptisols Andisols Gelisols Alfisols Mollisols Ultisols Spodosols Aridisols Vertisols Oxisols 3 Soil Orders Entisol Ent- Recent Histosol Hist- Histic (organic) Inceptisol Incept- Inception Alfisol Alf- Nonsense Ultisol Ult- Ultimate Spodosol Spod- Spodos (wood ash) Mollisol Moll- Mollis (soft) Oxisol Ox- oxide Andisol And- Ando (black) Gelisol
    [Show full text]
  • The Content of Mineral Nitrogen in Histosols and Its Relationship with Soil Organic Matter
    ISSN 1392-3196 Zemdirbyste-Agriculture Vol. 107, No. 1 (2020) 11 ISSN 1392-3196 / e-ISSN 2335-8947 Zemdirbyste-Agriculture, vol. 107, No. 1 (2020), p. 11–16 DOI 10.13080/z-a.2020.107.002 The content of mineral nitrogen in Histosols and its relationship with soil organic matter Gediminas STAUGAITIS, Andrius ŠARKA Lithuanian Research Centre for Agriculture and Forestry, Agrochemical Research Laboratory Savanorių 287, Kaunas, Lithuania E-mail: [email protected] Abstract The aim of the research was to investigate the content of mineral nitrogen (Nmin) at the 0–30, 30–60 and 60–90 cm layers of Histosols and their relationship with soil organic matter (SOM). The experiment was conducted in natural or cultivated perennial meadows of Lithuania in 2016–2018. Every year in November, 21 sites were installed and Nmin was analysed. The studies showed that the content of Nmin in Histosols were significantly higher compared to those in mineral soils, and they widely ranged in the air-dried soil samples at different depths as follows: 37.5 to -1 -1 -1 128.2 mg kg at 0–30 cm, 22.9 to 143.4 mg kg at 30–60 cm and 5.2 to 85.3 mg kg at 60–90 cm. Nmin content at the 0–30 and 30–60 cm layers were lower in Bathiterric Histosol and Bathifibric-Fibric Histosol compared to those in Pachiterric Histosol and Pachiterri-Fibric Histosol. In addition, the content of Nmin in Histosols depended on the peat layer thickness. At the 60–90 cm layer of Pachiterric Histosol and Pachiterri-Fibric Histosol, mineral soil was already present in many of the profiles, and SOM was lower, therefore, minN content was lower as well.
    [Show full text]
  • A Mathematical Representation of Microalgae
    Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-359 Manuscript under review for journal Biogeosciences Discussion started: 14 September 2017 c Author(s) 2017. CC BY 4.0 License. A mathematical representation of microalgae distribution in aridisol and water scarcity Abdolmajid Lababpour1 1Department of Mechanical Engineering, Shohadaye Hoveizeh University of Technology, Dasht-e Azadeghan, 64418-78986, 5 Iran Correspondence to: Abdolmajid Lababpour ([email protected]) Abstract. The restoration technologies of biological soil crust (BSC) in arid and semi-arid areas can be supported by simulations performed by mathematical models. The present study represents a mathematical model to describe behaviour of the complex microalgae development on the soil surface. A diffusion-reaction system was used in the model formulation which 10 incorporating parameters of photosynthetic organisms, soil water content and physical parameter of soil porosity, extendable for substrates and exchanged gases. For the photosynthetic microalgae, the dynamic system works as a batch mode, while input and output are accounted for soil water-limited substrate. The coupled partial differential equations (PDEs) of model were solved by numerical finite-element method (FEM) after determining model parameters, initial and boundary conditions. The MATLAB features, were used in solving and simulation of model equations. The model outputs reveals that soil water 15 balance shift in microalgae inoculated lands compare to bare lands. Refining and application of the model for the biological soil stabilization and the biocrust restoration process will provide us with an optimized mean for biocrust restoration activities and success in the challenge with land degradation, regenerating a favourable ecosystem state, and reducing dust emission- related problems in the arid and semi-arid areas of the world.
    [Show full text]